internal heat gains and small dwellings

25
Internal gain assump/ons and building size Nick Grant, EMail [email protected] @ecominimalnick Alan Clarke, EMail [email protected] @AR_Clarke Interna/onal Passivhaus conference Aachen 2014 Thanks to members of the Passivhaus Trust for technical review.

Upload: nick-grant

Post on 17-Jul-2015

106 views

Category:

Design


1 download

TRANSCRIPT

Internal  gain  assump/ons  and  building  size  !

Nick  Grant,  E-­‐Mail  [email protected]  @ecominimalnick  

 Alan  Clarke,  E-­‐Mail  [email protected]  @AR_Clarke!

Interna/onal  Passivhaus  conference    Aachen  2014  

Thanks  to  members  of  the  Passivhaus  Trust  for  technical  review.  

Small  is  beau6ful  but  tricky  in  PHPP  

Our  model  building:  2  floors  Square  in  plan  6m  fixed  height  0.5m  wall,  roof  and  floor  thickness  L=  3.6m  to  13.3m  

PloWng  form  factor  v  Floor  area  

Mean  detached  German  Passivhaus  

0.0!

1.0!

2.0!

3.0!

4.0!

5.0!

6.0!

7.0!

8.0!

0! 50! 100! 150! 200! 250! 300!

Form

fact

or!

Total floor area (m2)!

Form factor = heat loss area / floor area!

Prop

osed

 dwelling  

PloWng  Annual  heat  v  floor  area  smaller  dwellings  appear  less  efficient  0.1  U  values,  PH  vent  and  glazing,  simplest  form  etc,  same  for  all  sizes  

Even

 a  cub

e  won

’t  work  

Almost  any  shape  and  orienta6on  works  in  PHPP  

But  small  area  so  should  s6ll  use  less?  

0!

200!

400!

600!

800!

1000!

1200!

1400!

1600!

20! 70! 120! 170!

kWh/

(a.p

)!

Total floor area!

Calculated annual heating demand per person by PHPP (35m2/p) !

Does it really cost more to heat a small home of the same specification?!

This  doesn’t  fit  my  anecdotal  experience:  15m2  living  off  grid  for  7  years,  100mm  insula6on  &  double  glazed  but  cosy  warm  with  twigs  and  body  heat.  1/3  not  3x  the  fuel  to  heat  our  larger  super-­‐insulated  house  

What  about  a  6ny  envelope,  in  an  extreme  climate?  

Na6onal  Geographic  

Is  high  form  factor  compensated  by  higher  specific  gains?  

About  a  third  ±  PH  hea6ng  is  from  IHGs  

0.0

16.1

11.5

14.9

5.8

0.0 0.0

13.6

0.0 0.0 0.0 4.3

5.2 0.0

12.5

1.1

0

5

10

15

20

25

30

35

40

45

Losses Gains

Hea

t flo

ws

[kW

h/(m²a

)]

.

Energy balance heating (annual method)

Non useful heat gains

Exterior wall - Ambient

Roof/Ceiling - Ambient

Floor slab / Basement ceiling

Windows

Ventilation

Solar gains

Internal heat gains

Heating demand

2.1  W/m2  IHG  breakdown:  

Per  person:  Metabolic,  ligh6ng  people,  drying  towels,  some  appliances    ≅  54W/p  

Per  m2:  Aux  electric,  ligh6ng  space,  DHW  distribu6on,  pot  plant  evapora6on?    ≅  0.1W/m2  

Per  dwelling:  Fridge,  freezer,  appliances,  boiler  DHW  base  storage      ≅105W/dwelling  

Calculated  in  PHPP  IHG  sheet  (DHW  not  included):  

But  how  many  people?  Occupancy  v  TFA  

SAP  2005  

SAP  2012  (based  on  30,000  homes)  

Is  UK  occupancy  data  relevant?  

0.0!

0.5!

1.0!

1.5!

2.0!

2.5!

3.0!

3.5!

0!

50!

100!

150!

200!

250!

Peop

le/h

ome!

m2!

Average m2/p!

Average m2/dwelling!

PHPP35m2/p!

P/dwelling!

Linear (P/dwelling)!

IHG  calculated  using  PHPP  assump6ons    with  BRE  occupancy  rate.  

y = 71.32x-0.73!R² = 0.99!

0.0!

1.0!

2.0!

3.0!

4.0!

5.0!

6.0!

7.0!

8.0!

20! 40! 60! 80! 100! 120! 140! 160! 180! 200!

Inte

rnal

hea

t gai

n (W

/m2 )!

Total floor area (m2)!

calculated W/m²!

W/m2 PHPP occupancy for comparison!curve fit W/m²!

2.1 W/m2 is about right for typical detached PH in Germany!

PHPP  2.1  W/m2  

IHG  with  BRE  occupancy  to  obtain  curve  fit  

0.0!

5.0!

10.0!

15.0!

20.0!

25.0!

30.0!

35.0!

40.0!

20! 40! 60! 80! 100! 120! 140! 160! 180! 200!

kWh/

(m2 .a

)!

Total floor area!

Heating demand for simplified dwelling!

variable W/m² internal gain!fixed 2.1 W/m² internal gain!

Annual  Heat  demand  Using  IHG  =  71TFA-­‐0.73  

IHG  assump6ons  will  never  be  correct  over  the  life  of  building  but  an  improved  heuris6c*  model  will  beker  reflect  reality  for  smaller  and  larger  buildings.    The  downsides  of  overes6ma6ng  IHGs  for  small  buildings  are  less  than  for  underes6ma6ng.  

“All  models  are  wrong,  some  are  useful”    George  Box  

*Rule  of  thumb/trial  and  error  

‘The  importance  of  hot  water  system  design  in  the  passivhaus’  Clarke  &  Grant  Dresden  2010  

Losses  contribu6ng  to  hea6ng  

Wasted  losses  

Assume  state  of  the  art  DHW  Dwelling  will  probably  have  either:  1.  Hot  water  distribu6on  from  central  system:    Say  15m  x  15mm  pipe  with  25mm  insula6on    =  45W  ignoring  conduc6on  to  outlets  etc.  

Or:    2.  Storage:    3W/K  PHPP  default  =  120W    2W/K  minimum  in  PHPP  =  80W  

 Plus  distribu6on  losses  and  actual  DHW  use  hea6ng  space  Can  we  agree  40W/dwelling  is  a  low  es6mate?      

0.0!

1.0!

2.0!

3.0!

4.0!

5.0!

6.0!

7.0!

8.0!

20! 40! 60! 80! 100! 120! 140! 160! 180! 200!

Inte

rnal

hea

t gai

n (W

/m2 )!

Total floor area (m2)!

calculated W/m²!

W/m2 PHPP occupancy for comparison!curve fit W/m²!

IHG  including  40W/dwelling  DHW  losses  

PHPP  2.1  W/m2  

Curve  fit:  IHG  =  100TFA-­‐0.77  

Adding  40W/dwelling  DHW  gains  IHG  =  100TFA-­‐0.77  

0.0  

5.0  

10.0  

15.0  

20.0  

25.0  

30.0  

35.0  

40.0  

20   40   60   80   100   120   140   160   180   200  

kWh/(m

2 .a)  

Total  floor  area  

variable  W/m²  internal  gain  fixed  2.1  W/m²  internal  gain  

Curve  should  pass  through  origin  0-­‐0!    

Small  buildings  do  need  less  heat/p  

0!

200!

400!

600!

800!

1000!

1200!

20! 70! 120! 170!

kWh/

(a.p

)!

Total floor area!

Overall annual heating demand per person BRE occupancy, ignoring DHW gains!

Curve  should  pass  through  origin  0-­‐0!    

Conclusions  •  kWh/(m2.a)  metric  validated,  (usually  cri6cised  as  

favouring  larger  dwellings).  •  Small  homes  work  beker  than  large  ones.  •  No  relaxa6on  is  needed  for  small  dwellings.  •  Implica6ons  for  summer  overhea6ng  calcula6ons.  •  More  realis6c  occupancy  assump6ons  have  

implica6ons  for  primary  energy  calcula6ons.    

Schools  (in  brief)  

Δ  Metabolic  Heat  Gains  Only  School      Children  TFA  m2    m2/child  Bushbury  Hill  (UK)  240    1707    7.1  Oakmeadow  (UK)  450    2205    4.9  Montgomery  (UK)  446    2367    5.3  Swillington  (UK)  240    1344    5.6  Wilkinson  (UK)    459    2500    5.4  LH  Hannover  (D)  300    3507    11.7  Gronau  (D)      336    2953    8.8  Reidberg  (D)    500    5540    11.1      Average  for  UK  examples      5.7  m2/child  Average  for  German  examples  10.5  m2/child  

Difference  +1.32W/m2   +  5-­‐6  kWh/(m2.a)  of  useful  hea/ng  Against  15kWh/(m2.a)  target  

Less reliance on solar gain

4.2

6.3

3.9

13.2

0.2

12.9

17.7

8.2

14.7

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Losses Gains

kWh/

(m2 .

a)

Annual Heat Balance

Heat Solar IHG Vent Doors Opaque Window Ground Roof Walls

3.8W/m2 v 2.8W/m2 IHG

Means we designed a different building 50% v 60% g glass No additional south glazing just to meet 15kWh/(m2.a)

Schools Conclusions •  Design  is  very  sensi6ve  to  IHG  assump6ons.  •  Too  low  an  IHG  assump6on  favours  passive  

solar  design  with  associated  high  cost  and  increased  overhea6ng  risk.  

•  Custom  IHG  calcula6ons  could  lead  to  game  playing  but  occupancy  density  and  6me  should  be  factored  in.  

•  More  detailed  analysis  could  not  be  fiked  into  this  paper.