interlinked sph pressure solvers for strong fluid-rigid...

34
Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling Copyright of figures and other materials in the paper belongs original authors. Presented by Ki-hoon Kim 2019.10. 10 Computer Graphics @ Korea University C. Gissler(University of Freiburg) et al. SIGGRAPH 2019

Upload: others

Post on 16-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling

Copyright of figures and other materials in the paper belongs original authors.

Presented by Ki-hoon Kim

2019.10. 10

Computer Graphics @ Korea University

C. Gissler(University of Freiburg) et al.SIGGRAPH 2019

Page 2: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 2Computer Graphics @ Korea University

• Introduction

• Method

• Result & Conclusion

Index

Page 3: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Introduction

Page 4: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 4Computer Graphics @ Korea University

• Particle-sampled solids are a popular basis for boundary handling

• In iteration solvers, contact forces are only applied after solver

• This concept causes substantial issues in the two-way coupling

Introduction

Page 5: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 5Computer Graphics @ Korea University

• Stabilize the handling of SPH fluid-rigid interfaces

• Fluid-rigid and rigid-rigid contacts are uniformly handled

With SPH Concept

• Our approach can be combined with iterative SPH solver

Contributions

Page 6: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 6Computer Graphics @ Korea University

• Particle-Based Fluid Simulation for Interactive ApplicationsM.Muller et al. / SCA 2003

Show the interaction of fluids and deformable objects

Basic of SPH Fluid Simulation on CG

Related Work

SPH

Page 7: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 7Computer Graphics @ Korea University

• Predictive-corrective Incompressible SPH(PCI-SPH)B. Solenthaler and R.Pajarola/SIGGRAPH 2009

Predict Pressure Force

Enforce 𝜌𝑛𝑒𝑥𝑡 = 𝜌0

• Implicit Incompressible SPH(IISPH)Markus Ihmsen et al./TVCG 2013

Predict Velocity Field

Enforce 𝛻 ∙ 𝐯𝑛𝑒𝑥𝑡 = 0

• Both methods adjust pressure Force.

Related Work

Iterative Pressure Solver

Page 8: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 8Computer Graphics @ Korea University

• Versatile Rigid-Fluid Coupling for Incompressible SPHAkinci et al. / SIGGRAPH 2012

Boundary particles for the solid boundaries

Extends to two-way fluid-solid coupling

Contacts force is based on SPH Pressure

• Direct Forcing for Lagrangian Rigid-Fluid CouplingBecker et al. / TVCG 2009

Predictor-corrector Scheme

Only enforce correction of particle position

Related Work

SPH-Rigid Coupling

Page 9: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Method

Page 10: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 10Computer Graphics @ Korea University

• 𝐅𝑟𝑓𝑟

and 𝐅𝑟𝑟𝑟 are only applied after the iterations

By using final pressure field

• 𝐯𝑟∗ is erroneous during the solver iterations.

Generic iterative pressure solver with the boundary handling

𝑙 : Iteration Step𝑝 : Pressure𝐯 : Velocity

Small 𝑓: FluidSmall 𝑟: Rigid Body

Upper *: Predicted

Algorithm 1

Page 11: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 11Computer Graphics @ Korea University

• Forces at the fluid-rigid interface are not only applied to fluid.

• Update the velocity 𝐯𝑟∗,𝑙 in each iteration 𝑙.

• Improved predicted velocities 𝐯𝑟∗,𝑙 influence

Pressure refinement 𝑝𝒇𝑙

Fluid velocity 𝐯𝒇∗,𝑙

Iterative pressure solver with interleaved fluid-rigid update

Algorithm 2

Page 12: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 12Computer Graphics @ Korea University

• We integrated the forces proposed by Akinci et al[2012]. and Band et al. [2018b]

Fluid-Rigid interface forces

Algorithm 2

Page 13: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 13Computer Graphics @ Korea University

• 𝐅𝑟𝑟𝑟 based on artificial density deviations

𝐅𝑟𝑟𝑟 is contact force

• If there is a contact, we calculate a density 𝜌𝑟 > 𝜌𝑟0

𝜌𝑟 is density of rigid particle

𝜌𝑟0 is rest density of rigid particle

• Determine contact forces such that 𝜌𝑟 = 𝜌𝑟0 for all rigid particles

Contact force is artificial pressure force: −𝛻 ∙ 𝑝𝑟 𝑝𝑟 is artificial pressure

Rigid body solver

Page 14: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 14Computer Graphics @ Korea University

• Proposed system derived from the continuity equation𝐷𝜌𝑟𝐷𝑡

= −𝜌𝑟𝛻 ∙ 𝐯𝑟

• Discretizing time with

A backward difference

Constraint that the density at 𝑡 + Δ𝑡

• 𝜌𝑟𝑛𝑒𝑥𝑡 = 𝜌𝑟

0

𝜌𝑟0−𝜌𝑟

Δ𝑡= −𝜌𝑟𝛻 ∙ 𝐯𝑟

𝑛𝑒𝑥𝑡 (Eq.1)

𝐯𝑟𝑛𝑒𝑥𝑡 is desired(Unknown) velocity at 𝑡 + Δ𝑡to obtain desired density 𝜌𝑟

𝑛𝑒𝑥𝑡 = 𝜌𝑟0

System of Rigid body Solver

Continuity Equation

Page 15: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 15Computer Graphics @ Korea University

• 𝐯𝑟𝑛𝑒𝑥𝑡 can be written as

𝐯𝑟𝑛𝑒𝑥𝑡 = 𝐯𝑹

𝑛𝑒𝑥𝑡 +𝛚𝑅𝑛𝑒𝑥𝑡 × 𝐫𝑟

𝑛𝑒𝑥𝑡 (Eq. 2)

𝑅 is respective rigid body

𝐯𝑅 is linear velocity of 𝑅

𝛚𝑅 is angular velocity of 𝑅

𝐫𝑟 is vector from center of mass of 𝑅 to rigid particle

System of Rigid body Solver

Velocity Decomposition of Rigid particles

Page 16: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 16Computer Graphics @ Korea University

• Using integration and Newton’s 2nd law, write 𝐯𝑹𝑛𝑒𝑥𝑡

𝐯𝑹𝑛𝑒𝑥𝑡 = 𝐯𝑅 + Δ𝑡

1

𝑀𝑅(𝐅𝑅 + Σ𝑘𝐅𝑘

𝑟𝑟) (Eq. 3)

𝑘 is rigid particle of 𝑅

𝑀𝑅 is mass of 𝑅

𝐅𝑅 : Comprises all momentum-changing except 𝐅𝒓𝑟𝑟

• Fluid-Rigid Interface force

• Gravity

• Etc.

• The angular velocity 𝝎𝑹𝑛𝑒𝑥𝑡 in (Eq. 2) can be written as

𝝎𝑹𝑛𝑒𝑥𝑡 = 𝝎𝑅 + Δ𝑡𝐈𝑅

−1(𝛕𝑅 + 𝐈𝑅𝛚𝑅 ×𝛚𝑅 + Σ𝑘𝐫𝑘 × 𝐅𝑘𝑟𝑟) (Eq. 4)

𝐈𝑅 is inertia tensor of 𝑅

𝛕𝑅 is all source torques except contact force

System of Rigid body Solver

Velocity Integration of Rigid body

Page 17: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 17Computer Graphics @ Korea University

• Using (Eq. 2) to (Eq. 4), we write (Eq. 1) as

Unknown velocities are replaced by unknown rigid-rigid contact forces

• 𝐯𝑟𝑛𝑒𝑥𝑡 → 𝐅𝑘

𝑟𝑟

System of Rigid body Solver

Rewrite Continuity Equation

(Eq. 5)

Page 18: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 18Computer Graphics @ Korea University

• Approximation 𝐫𝒓𝑛𝑒𝑥𝑡 = 𝐫𝑟

• The source terms 𝑠𝑟 =𝜌𝑟0−𝜌𝑟

Δ𝑡+ 𝜌𝑟𝛻 ∙ 𝐯𝑟

𝑠

𝐯𝑟𝑠 =

𝐅𝑅 and 𝛕𝑅 include the fluid-rigid interface forces and all forces

They do not include the rigid-rigid contact forces.

We assume to be constant.

System of Rigid body Solver

Assumption to Linearize

Page 19: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 19Computer Graphics @ Korea University

• We move 𝑠𝑟 to left-hand side and leave the rigid-rigid contact force terms on the right-hand side.

• (Eq. 6) can be written as

𝐊𝑟𝑘 =1

𝑀𝑅𝕀 − 𝐫𝑟𝐼𝑅

−1 𝐫𝑘

𝕀 is the identity matrix

𝐫𝑟 is the skew-symmetric cross-product matrix of 𝐫𝑟• Ex) 𝐱 × 𝐲 = �ු�𝐲 [𝐱, 𝐲 are column vector, �ු� is matrix]

𝐊 is referred to as collision matrix and has been proposed before

System of Rigid body Solver

Linearize System(b=Ax)

(Eq. 6)

(Eq. 7)

Page 20: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 20Computer Graphics @ Korea University

• We model the contact forces as pressure forces.𝐅𝑘𝑟𝑟 = −𝑉𝑘𝛻𝑝𝑘

𝑉𝑘 is artificial volume

𝑝𝑘 is unknown artificial pressure

• This pressure is only used for rigid-rigid contact

• (Eq. 7) can be written as

System of Rigid body Solver

Artificial Pressure

(Eq. 8)

Page 21: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 21Computer Graphics @ Korea University

• We use SPH Interpolation

𝐴𝑖 = Σ𝑗𝑚𝑗

𝜌𝑗𝐴𝑗𝑊𝑖𝑗

𝐴 is arbitrary scalar quantity

𝑚 is mass

𝜌 is density

𝑊 is Kernel function

• Spatial derivatives

Gradient: 𝛻𝐴𝑖 = 𝜌𝑖Σ𝑗𝑚𝑗(𝐴𝑖

𝜌𝑖2 +

𝐴𝑗

𝜌𝑗2)𝛻𝑊𝑖𝑗

Divergence: 𝛁 ∙ 𝐀𝑖 =1

𝜌𝑖Σ𝑗𝑚𝑗(𝐀𝑖 − 𝐀𝑗)𝛻𝑊𝑖𝑗

Introduced in “Smoothed particle hydrodynamics and magnetohydrodynamics”Daniel J. Price /Journal of Computational Physics 2012

Implementation

SPH

Page 22: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 22Computer Graphics @ Korea University

• Artificial Rest Volume

𝑉0𝑟 =

𝛾

Σ𝑘𝑊𝑟𝑘

𝛾 is user parameter. We use 0.7

• Artificial Rest Density

Artificial Rest Density is irrelevant for the simulation.

Implementation

Artificial Rest(Initial) Values

Page 23: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 23Computer Graphics @ Korea University

• Artificial Density

𝜌𝑟 = 𝜌𝑟0𝑉𝑟

0Σ𝑘𝑊𝑟𝑘 or Σ𝑘𝜌𝑘0𝑉𝑘

0𝑊𝑟𝑘

If other objects are in contact, we get a density deviation

• 𝜌𝑟 > 𝜌𝑟0

• Artificial Volume

𝑉𝑟 =𝜌𝑟0𝑉𝑟

0

𝜌𝑟

Implementation

Compute Artificial Values

Page 24: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 24Computer Graphics @ Korea University

• 𝑠𝑟 =𝜌𝑟0−𝜌𝑟

Δ𝑡+ 𝜌𝑟𝛻 ∙ 𝐯𝑟

𝑠

𝜌𝑟 has been computed.

• 𝐯𝑟𝑠 =

We can compute this term directly.

• Divergence term

Implementation

Compute 𝒔𝒓(Left-hand Side of (Eq. 8))

(Eq. 9)

Page 25: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 25Computer Graphics @ Korea University

• Compute 𝜌𝑟𝛁 ∙ (Δ𝑡Σ𝑘𝑉𝑘𝐊𝑟𝑘𝛁𝑝𝑘)

• Step 1-1. Compute Gradient Pressure(Pressure Force)

• Step 2: Accumulates Velocity change per Rigid body

• Step 3: Compute Velocity change per Rigid Particle𝐯𝑟𝑟𝑟 = 𝐯𝑅

𝑟𝑟 +𝝎𝑟𝑟𝑟 × 𝐫𝑟

= −Δ𝑡Σ𝑘𝑉𝑘𝐊𝑟𝑘𝛁𝑝𝑘

• Step 4: Compute Divergence Using 𝐯𝑟𝑟𝑟 = −Δ𝑡Σ𝑘𝑉𝑘𝐊𝑟𝑘𝛁𝑝𝑘

Implementation

Compute (Right-hand Side of (Eq. 8))

Page 26: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 26Computer Graphics @ Korea University

• We use a relaxed Jacobi solver

𝛽𝑟𝑅𝐽

is relaxation coefficient

• 𝛽𝑟𝑅𝐽

=0.5

𝑛𝑢𝑚_𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠

𝑏𝑟 is diagonal elements of linear system

Implementation

Solver step

(Eq. 10)

Page 27: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 27Computer Graphics @ Korea University

Combining fluid and rigid body solver

Algorithm 3

Page 28: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Result & Conclusion

Page 29: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 29Computer Graphics @ Korea University

Result

Page 30: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 30Computer Graphics @ Korea University

Performance Comparison(Akinci)

Part of Table2

Page 31: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 31Computer Graphics @ Korea University

Performance Comparison(with bullet)

Table 3

Page 32: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 32Computer Graphics @ Korea University

Stability Comparison(with bullet)

Table 3

Page 33: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 33Computer Graphics @ Korea University

• The accuracy of the contact handling is related to the size of a rigid body and a fluid particle.

• The accuracy of the contact handling is coupled to the accuracy of the fluid simulation.

• Performance gain is reduced in

Scenarios with smaller density ratios

Calm scenes with slowly moving particles

Limitations

Page 34: Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Couplingkucg.korea.ac.kr/new/seminar/2019/ppt/ppt-2019-10-10.pdf · 2019-11-12 · • Versatile Rigid-Fluid Coupling for Incompressible

Ki-hoon Kim | 2019-11-12 | # 34Computer Graphics @ Korea University

• We have introduced a strong two-way coupling method

• The technique shares characteristics of a unified approach by solving pressure

• We solve a monolithic system, we show that it is a flexible and useful extension.

• In Future

Investigate the applicability of our concept to alternative Lagrangian fluid formulations.

Conclusion