interactions fondamentales -...

6

Click here to load reader

Upload: phamtram

Post on 10-Sep-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

1

Interactions fondamentales

I. Introduction :

La physique (du grec φυσικη) est étymologiquement la science de la Nature. Son champ est néanmoins plus

restreint : elle décrit de façon à la fois quantitative et conceptuelle les composants fondamentaux de l'univers, les

forces qui s'y exercent et leurs effets.

Elle développe des théories en utilisant l'outil des mathématiques pour décrire et prévoir l'évolution d'un système.

Cette science n'accepte comme résultat que ce qui est mesurable et reproductible par expérience. Celle-ci permet

de valider ou d'infirmer une théorie donnée. http://fr.wikipedia.org/wiki/Physique

II. Différents types d’interaction :

Où en est la recherche fondamentale ?

Pour valider les différents modèles prévus par les théoriciens, les expériences à réaliser mettent des quantités d’énergie de plus en plus importantes. Par exemple, pour étudier les forces nucléaires impliquées dans l’interaction forte entre les quarks constituants les protons et les neutrons, il faut réunir l’énergie nécessaire pour vaincre cette interaction. C’est ce qu’on réalise dans des accélérateurs de particules comme le LHC (large hadron collider) au CERN à Genève et qui a permis cet été de confirmer l’existence du boson de Higgs, particules permettant d’expliquer les différences entre les masses des particules élémentaires. Nous nous intéresserons plus particulièrement à :

Page 2: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

2

Permet d’expliquer…

Interaction gravitationnelle (Gravitation Universelle selon Newton)

Mouvement des planètes, des galaxies… Mouvement des objets dans le champ de pesanteur

Interaction électrostatique

Phénomènes électrostatiques simples (orages) Champ électrostatique (créé par des charges statiques) ; lignes de champ électrique et spectre Liaison des atomes dans les molécules Liaison des ions dans un composé ionique Interaction entre soluté et solvant

Interaction magnétique Champ magnétique (créé par des charges en mouvement) ; lignes de champ et spectre

Interaction forte

Intervient entre les quarks constituants des protons et les neutrons ; de type attractive

L’interaction forte permet la cohésion des noyaux atomiques en

liant les protons et les neutrons entre eux au sein de ce noyau. Si

cette interaction n'existait pas, les noyaux ne pourraient pas être

stables et seraient dissociés sous l'effet de la répulsion

électrostatique des protons entre eux.

Interaction faible

n'est connue que depuis quelques décennies. Elle est une

interaction à courte portée, ce qui explique le confinement de ses

effets à l'intérieur des protons et des neutrons, entre les quarks

qui constituent eux-mêmes ces particules. Elle se manifeste lors

de la transmutation d’un neutron en proton, ce qui intervient

dans la radioactivité β.

III. Comment modéliser une interaction ? 1. Document Nostalgie de la lumière, Michel Cassé, 1987 :

Dans la conception contemporaine, il faut entendre par force non seulement ce qui pousse, qui tire ou modifie le

mouvement, mais aussi tout ce qui incite au changement, à la métamorphose. La force, ou mieux l’interaction, dans

l’acception physicienne, se définit donc comme l’agent unique de la transformation.

Questions :

a. Extraire du texte une définition de la notion de force.

b. Quel outil mathématique peut-on utiliser pour modéliser une force ? Justifier.

c. Combien de forces interviennent dans l’interaction entre deux objets A et B ? Que pensez-vous de ces

forces ?

En utilisant les forces (à définir ; qui agit sur qui ?), faire les schémas correspondant à

une interaction de type attractive

une intercation de type répulsive

Page 3: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

3 IV. Modélisation des interactions électrostatiques et gravitationnelles (théorie classique) :

Interaction gravitationnelle

La masse :

La masse d’un corps traduit la quantité de matière que contient ce corps.

On peut aussi la définir comme un coefficient, caractéristique de chaque particule, qui

détermine le comportement de la particule quand elle interagit avec d’autres particules

La masse se mesure en kilogramme (kg)

Loi de la gravitation :

Dans le vide, deux corps A et B, séparées par une distance r = AB et de masses respectives mA et

mB, sont soumises à deux forces directement opposées, dont l’intensité est proportionnelle au

produit des masses et inversement proportionnelle au carré de la distance qui sépare ces masses.

Expression de l’intensité des forces :

Calculer l’intensité de la force d’interaction qui existe entre la Terre et la Lune.

On donne :

Masse de la Terre : MT = 6,00.1024

kg

Masse de la Lune : ML = 7,2.1022

kg

Distance Terre – Lune : d = 380 000 km

L’interaction électrostatique :

Charge électrique :

La charge électrique est un coefficient caractéristique de chaque particule, qui détermine

l’intensité de ses interactions électrostatiques avec les autres particules.

Il existe deux types de charges électriques définis par rapport au type d’interaction: les

charges positives et les charges négatives. Il y a répulsion entre deux charges de même

signe et attraction entre deux charges de signes opposés.

La charge se mesure en Coulomb (C).

La charge élémentaire e est la plus petite charge électrique que puisse porter une

particule. Sa valeur est e=+/-1,6.10-19

C.

Toute autre charge électrique est un multiple de la charge élémentaire.

Loi de Coulomb :

Dans le vide, deux particules A et B, séparées par une distance r = AB et portant respectivement

les charges qA et qB, sont soumises à deux forces directement opposées, dont l’intensité est

proportionnelle au produit des charges et inversement proportionnelle au carré de la distance qui

sépare ces charges.

Si qA et qB de signes opposés :

Si qA et qB de même signe :

Expression de l’intensité des forces :

Calculer l’intensité de la force d’interaction qui existe entre le noyau d’un atome d’or et un de ses

électrons périphérique. On donne :

Numéro atomique de l’or : Z = 79

Rayon atomique de l’or : r = 410-14

m

Charge du porton : qp = +e = 1,610-19

C

Charge de l’électron : qe = – e = – 1,610-19

C

A B

A B

A B

Page 4: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

4 V. Comparaison des différentes interactions : 1. Document Nostalgie de la lumière, Michel Cassé, 1987 :

Les forces, en apparence, sont au nombre de quatre : forte, faible, électromagnétique et gravitationnelle.

Les quatre forces sont spécifiques, hiérarchisées en portée et en intensité.

L’interaction forte domine en intensité toutes les autres, dont l’interaction électromagnétique (d’où son nom), laquelle

surpasse l’interaction faible, qui elle-même laisse très loin derrière la minuscule force de gravitation.

Pourtant, il ne faut pas s’y méprendre, cette hiérarchie microscopique ne reflète en rien l’influence des forces à grande

échelle. La gravitation est sans conteste la force dominante à l’échelle cosmique, parce qu’elle n’est contrebalancée par

aucune antigravitation, et que son intensité, bien que déclinante, s’exerce sans limite de distance.

Les interactions forte et faible, de par leur portée minuscule, se sont fait un royaume du noyau de l’atome.

Quant à l’interaction électromagnétique, bien que de portée illimitée, elle ne saurait gouverner le vaste Cosmos car les

grandes structures sont neutres d’un point de vue ’électrique. En effet, les charges électriques plus et moins, en nombre

égal, partout se neutralisent. Ce n’est pas pour autant une entité négligeable : la force électromagnétique a pris

possession du vaste domaine laissé vacant entre l’atome et l’étoile, qui inclut le minéral, l’animal, le végétal et l’homme.

Questions :

a. Compléter le tableau en utilisant les informations du texte.

Interaction Portée Comparaison

Intensité Champ d’action

forte 10-15 m 1

électromagnétique infinie 10-2

gravitationnelle infinie 10-40

faible 10-17 m 10-6 Radioactivité β

b. A quoi sert la 3ème colonne du tableau ? Expliquer l’attribution des valeurs y figurant.

c. Expliquer pourquoi deux protons d’un même noyau ne se repoussent pas. On rappelle que la taille du noyau d’un atome est de l’ordre de grandeur de 10-15m.

d. Deux seulement de ces interactions fondamentales interviennent à notre échelle : pourquoi ? Pourquoi une seule nous est-elle vraiment familière ?

Page 5: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

5 VI. Applications :

1. Question : Quel type d’interaction intervient dans les phénomènes suivants :

a. Chute d’une balle b. Production de chaleur dans le cœur d’une centrale

atomique c. Production de chaleur à partir d’un réchau à gaz d. Production de lumière dans le Soleil e. Production de lumière dans une lampe à filament

f. Mouvement d’un satellite sur son orbite g. Production de lumière (domaine du visible) h. Production de rayons gamma (Rγ) i. Réactions chimiques j. Réactions nucléaires

2. On a marché sur la Lune :

Le but de l’exercice est d’exploiter les dialogues associés à quelques images extraites de l’album d’Hergé « On a marché sur la Lune », édité pour la première fois en 1953.

a. Montrer que 2r

MGg T en considérant que le poids d’un corps de masse m s’apparente à la force

gravitationnelle exercée par la Terre sur ce corps, lorsque le corps est à la distance r du centre de la Terre.

b. En déduire une expression de la pesanteur gT (ou gravité) à la surface de la Terre. c. Dans l’image 4, à quelle force Tintin et le capitaine Haddock sont-ils soumis ?

Exprimer la pesanteur gL qui intervient dans l’expression de cette force. d. Montrez que :

2

2

.

.

TL

LT

L

T

RM

RM

g

g où MT est Masse de la Terre et ML est la masse de la Lune

e. En utilisant l’image 6, donner la valeur du rapport L

T

g

g.

f. En déduire la masse de la Lune sachant que : MT = 6,0.1024 kg RT = 6,4.106 m RL= 1,6.106 m

Page 6: Interactions fondamentales - pontonniers-physique.frpontonniers-physique.fr/PremiereNew/LoisModeles/01Interaction.pdf · 1 Interactions fondamentales I. Introduction : La physique

6

3. Entre la Terre et la Lune :

On considère une navette spatiale entre la Terre et la Lune. On donne : Masse de la Terre : MT = 6,00.1024kg Masse de la Lune : ML = 7,2.1022kg Distance Terre – Lune : d = 380 000 km

a. Représenter sur le schéma les forces FT et FL exercées respectivement par la Terre et par la Lune sur la

navette.

b. Soit d0 la distance à laquelle se trouve la navette de la Terre. Exprimer la force exercée par la terre sur la navette.

c. A quelle distance se trouve la navette de la Lune ? Exprimer la force exercée par la Lune sur la navette.

d. On considère qu’au point considéré, les deux forces exprimées plus haut ont la même valeur.

Exprimer le rapport 2

0

0

d

dden fonction de MT et ML. Calculer ce rapport.

e. En déduire la valeur de la distance d0.

4. Interaction dans un cristal de chlorure de sodium :

Le cristal de chlorure de sodium est constitué d’un empilement ordonné d’ions. Les ions Cl- sont aux sommets de cubes contigus d’arête a et aux centre de chaque face de ce cube. Les ions Na+ sont situés au milieu de chaque arête et au centre de chaque cube.

a. Exprimer en fonction de a les plus petites distances entre les centres de : deux Cl- deux Na+ un Cl- et un Na+

b. Exprimer en fonction de a et e (quantité d’électricité élémentaire) la force électrique entre : deux Cl- les plus proches un ion Cl- et un ion Na+

c. Quel type de force maintient la cohésion du cristal ?

Terre Lune Navette

d0

d

?

Na+

Cl-