interactions between intrinsic and stimulusevoked

16
1 Interactions between Intrinsic and Stimulus-Evoked Activity in Recurrent Neural Networks L.F. Abbott and Kanaka Rajan Department of Neuroscience Department of Physiology and Cellular Biophysics Columbia University College of Physicians and Surgeons New York, NY 10032‐2695 USA and Haim Sompolinsky Racah Institute of Physics Interdisciplinary Center for Neural Computation Hebrew University Jerusalem, Israel Introduction Trial‐to‐trial variability is an essential feature of neural responses, but its source is a subject of active debate. Response variability (Mast and Victor, 1991; Arieli et al., 1995 & 1996; Anderson et al., 2000 & 2001; Kenet et al., 2003; Petersen et al., 2003a & b; Fiser, Chiu and Weliky, 2004; MacLean et al., 2005; Yuste et al., 2005; Vincent et al., 2007) is often treated as random noise, generated either by other brain areas, or by stochastic processes within the circuitry being studied. We call such sources of variability “external” to stress the independence of this form of noise from activity driven by the stimulus. Variability can also be generated internally by the same network dynamics that generates responses to a stimulus. How can we distinguish between external and internal sources of response variability? Here we show that internal sources of variability interact nonlinearly with stimulus‐induced activity, and this interaction yields a suppression of noise in the evoked state. This provides a theoretical basis and potential mechanism for the experimental observation that, in many brain areas, stimuli cause significant suppression of neuronal variability (Werner and Mountcastle, 1963; Fortier, Smith and Kalaska, 1993; Anderson et al., 2000; Friedrich and Laurent, 2004; Churchland et al., 2006; Finn, Priebe and Ferster, 2007; Mitchell, Sundberg and Reynolds, 2007; Churchland et al., 2009). The combined theoretical and experimental results suggest that internally generated activity is a significant contributor to response variability in neural circuits. We are interested in uncovering the relationship between intrinsic and stimulus‐ evoked activity in model networks and studying the selectivity of these networks to features of the stimuli driving them. The relationship between intrinsic and

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interactions between Intrinsic and StimulusEvoked

1

InteractionsbetweenIntrinsicandStimulus­Evoked

ActivityinRecurrentNeuralNetworks

L.F.AbbottandKanakaRajan

DepartmentofNeuroscienceDepartmentofPhysiologyandCellularBiophysics

ColumbiaUniversityCollegeofPhysiciansandSurgeonsNewYork,NY10032‐2695USA

and

HaimSompolinsky

RacahInstituteofPhysicsInterdisciplinaryCenterforNeuralComputation

HebrewUniversityJerusalem,Israel

Introduction

Trial‐to‐trialvariabilityisanessentialfeatureofneuralresponses,butitssourceisasubjectofactivedebate.Responsevariability(MastandVictor,1991;Arielietal.,1995&1996;Andersonetal.,2000&2001;Kenetetal.,2003;Petersenetal.,2003a&b;Fiser,ChiuandWeliky,2004;MacLeanetal.,2005;Yusteetal.,2005;Vincentetal.,2007)isoftentreatedasrandomnoise,generatedeitherbyotherbrainareas,orbystochasticprocesseswithinthecircuitrybeingstudied.Wecallsuchsourcesofvariability“external”tostresstheindependenceofthisformofnoisefromactivitydrivenbythestimulus.Variabilitycanalsobegeneratedinternallybythesamenetworkdynamicsthatgeneratesresponsestoastimulus.Howcanwedistinguishbetweenexternalandinternalsourcesofresponsevariability?Hereweshowthatinternalsourcesofvariabilityinteractnonlinearlywithstimulus‐inducedactivity,andthisinteractionyieldsasuppressionofnoiseintheevokedstate.Thisprovidesatheoreticalbasisandpotentialmechanismfortheexperimentalobservationthat,inmanybrainareas,stimulicausesignificantsuppressionofneuronalvariability(WernerandMountcastle,1963;Fortier,SmithandKalaska,1993;Andersonetal.,2000;FriedrichandLaurent,2004;Churchlandetal.,2006;Finn,PriebeandFerster,2007;Mitchell,SundbergandReynolds,2007;Churchlandetal.,2009).Thecombinedtheoreticalandexperimentalresultssuggestthatinternallygeneratedactivityisasignificantcontributortoresponsevariabilityinneuralcircuits.

Weareinterestedinuncoveringtherelationshipbetweenintrinsicandstimulus‐evokedactivityinmodelnetworksandstudyingtheselectivityofthesenetworkstofeaturesofthestimulidrivingthem.Therelationshipbetweenintrinsicand

Page 2: Interactions between Intrinsic and StimulusEvoked

2

extrinsicallyevokedactivityhasbeenstudiedexperimentallybycomparingactivitypatternsacrosscorticalmaps(Arielietal.,1995&1996).Wedeveloptechniquesforperformingsuchcomparisonsincaseswherethereisnoapparentsensorymap.Inadditiontorevealinghowthetemporalandspatialstructureofspontaneousactivityaffectsevokedresponses,thesemethodscanbeusedtoinferinputselectivity.Historically,selectivitywasfirstmeasuredbystudyingstimulus‐drivenresponses(HubelandWiesel,1962),andonlylaterweresimilarselectivitypatternsobservedinspontaneousactivityacrossthecorticalsurface(Arielietal.,1995&1996).Wearguethatitispossibletoworkinthereverseorder.Havinglittleinitialknowledgeofsensorymapsinournetworks,weshowhowtheirspontaneousactivitycaninformusabouttheselectivityofevokedresponsestoinputfeatures.Throughoutthisstudy,werestrictourselvestoquantitiesthatcanbemeasuredexperimentally,suchasresponsecorrelations,soouranalysismethodscanbeappliedequallytotheoreticalmodelsandexperimentaldata.

Webeginbydescribingthenetworkmodelandillustratingthetypesofactivityitproduces,usingcomputersimulations.Inparticular,weillustrateanddiscussatransitionbetweentwotypesofresponses;oneinwhichintrinsicandstimulus‐evokedactivitycoexist,andtheotherinwhichintrinsicactivityiscompletelysuppressed.Next,weexplorehowthespatialpatternsofspontaneousandevokedresponsesarerelated.Byspatialpattern,wemeanthewaythatactivityisdistributedacrossthedifferentneuronsofthenetwork.Spontaneousactivityisausefulindicatorofrecurrenteffects,becauseitiscompletelydeterminedbynetworkfeedback.Therefore,westudytheimpactofnetworkconnectivityonthespatialpatternofinput‐drivenresponsesbycomparingthespatialstructureofevokedandspontaneousactivity.Finally,weshowhowthestimulusselectivityofthenetworkcanbeinferredfromananalysisofitsspontaneousactivity.

TheModel

Neuronsinthemodelweconsideraredescribedbyfiring‐rates,theydonotfireindividualactionpotentials.Suchfiring‐ratenetworksareattractivebecausetheyareeasiertosimulatethanspikingnetworkmodelsandareamenabletomoredetailedmathematicalanalyses.Ingeneral,aslongasthereisnolarge‐scalesynchronizationofactionpotentials,firing‐ratemodelsdescribenetworkactivityadequately(Shriki,HanselandSompolinsky,2003;WongandWang,2006).WeconsideranetworkofNinterconnectedneurons,withneuronicharacterizedbyanactivationvariablexisatisfying

τdxidt

= −xi + g Jijrj + Iij=1

N

∑ .

Thetimeconstantτissetto10ms.Forallofthefigures,except5e,N=1000.TherecurrentsynapticweightmatrixJhaselementJijdescribingtheconnectionfrompresynapticneuronjtopostsynapticneuroni.Excitatoryconnectionscorrespond

Page 3: Interactions between Intrinsic and StimulusEvoked

3

topositivematrixelements,inhibitoryconnectionstonegativeelements.Theinputterm,Iiforneuroni,takesvariousformsthatwillbedescribedasweusethem.

Thefiringrateofneuroniisgivenby

ri = R0 + φ(x i) with

φ(x) = R0 tanh(x /R0)for

x ≤ 0 and

φ(x) = (Rmax − R0)tanh(x /(Rmax − R0)) for

x > 0 .Here,R0isthebackgroundfiringrate(thefiringratewhenx=0),andRmaxisthemaximumfiringrate.Thisfunctionallowsustospecifyindependentlythemaximumfiringrate,Rmax,andthebackgroundrate,R0,andsetthemtoreasonablevalues,whileretainingthegeneralformofthecommonlyusedtanhfunction.ThisfiringratefunctionisplottedinFigure1forR0=0.1Rmax,thevalueweuse.Tofacilitatecomparisonwithexperimentaldatainavarietyofsystems,wereportallresponsesrelativetoRmax.Similarly,wereportallinputcurrentsrelativetothecurrentI1/2requiredtodriveanisolatedneurontohalfofitsmaximalfiringrate(seeFigure1).

Figure1.ThefiringratefunctionusedinthenetworkmodelversustheinputIforR0=0.1RmaxnormalizedbythemaximumfiringrateRmax.TheparameterI1/2isdefinedbythedashedlines.

Althoughaconsiderableamountisknownaboutthestatisticalpropertiesof

recurrentconnectionsincorticalcircuitry(Holmgrenetal.,2003;Songetal.,2005),wedonothaveanythinglikethespecificneuron‐to‐neuronwiringdiagramwewouldneedtobuildatrulyfaithfulmodelofacorticalcolumnorhypercolumn.Instead,weconstructtheconnectionmatrixJofthemodelnetworkonthebasisofastatisticaldescriptionoftheunderlyingcircuitry.WedothisbychoosingelementsofthesynapticweightmatrixindependentlyandrandomlyfromaGaussiandistributionwithzeromeanandvariance1/N.Wecoulddividethenetworkintoseparateexcitatoryandinhibitorysubpopulations,butthisdoesnotqualitativelychangethenetworkpropertiesthatwediscuss(vanVreeswijkandSompolinsky,1996&1998;RajanandAbbott,2006).

Theparametergcontrolsthestrengthofthesynapticconnectionsinthemodel,butbecausethesestrengthsarechosenfromadistributionwithzeromeanandnonzerovariance,gactuallycontrolsthesizeofthestandarddeviationofthesynapticstrengths(seeDiscussion).Withoutanyinput(Ii=0foralli)andforlargenetworks(largeN),twospontaneouspatternsofactivityareseen.Ifg<1,thenetworkisinatrivialstateinwhichxi=0andri=R0forallneurons(alli).Thecaseg>1ismoreinterestinginthatthespontaneousactivityofthenetworkischaotic,meaningthatitisirregular,non‐repeatingandhighlysensitivetoinitialconditions

Page 4: Interactions between Intrinsic and StimulusEvoked

4

(Sompolinsky,Crisanti,andSommers,1988;vanVreeswijkandSompolinsky,1996&1998).Wetypicallyuseavalueofg=1.5,meaningthatournetworksareinthischaoticstatepriortoactivatinganyinputs.

Figure2.Firingratesandresponsevariabilitynormalizedbythemaximumfiringrate,Rmax,forastimulusinputsteppingfromzerotoaconstant,non‐zerovalueatt=1000ms.Leftcolumnshowsthefiringrateofatypicalneuroninanetworkwith1000neurons.Rightcolumnshowstheaveragefiringrate(redtraces)andthesquarerootoftheaveragefiring‐ratevariance(blacktraces)acrossthenetworkneurons.a‐b)Anetworkwithchaoticspontaneousactivityreceivingnonoiseinput.Theresponsevariability(b,blacktrace)dropstozerowhenthestimulusinputispresent.c‐d)Anetworkwithoutspontaneousactivitybutreceivingnoiseinput.Theresponsevariability(d,blacktrace)risesslightlywhenthestepinputisturnedon.Thestochasticinputinthisexamplewasindependentwhite‐noisetoeachneuron,low‐passfilteredwitha500mstimeconstant.ResponsestoStepInputTobeginourexaminationoftheeffectsofinputonchaoticspontaneousnetworkactivity,weconsidertheeffectofastepofinput(from0toapositivevalue),applieduniformlytoeveryneuron(Ii=Iforalli).Beforetheinputisturnedon(Figure2a&b,t<1000ms),atypicalneuronofthenetworkshowsthehighlyirregularactivitycharacteristicofthechaoticspontaneousstate.However,whenasufficientlystrongstimulusisapplied,theinternallygeneratedfluctuationsarecompletelysuppressed(Figure2a&b,t>1000ms).Wecontrastthisbehaviortothatofexternalnoise,byturningofftherecurrentdynamicsandgeneratingfluctuationswithexternal

Page 5: Interactions between Intrinsic and StimulusEvoked

5

stochasticinputs(Figure1c&d,t<1000ms).Inthiscase,thereisnoreductionintheamplitudeoftheneuronalfluctuationswhenastimulusisapplied,infactthereisasmallincrease.Notethattheincreaseinthemeanactivityissimilarinbothcases.Theseresultsrevealacriticaldistinctionbetweeninternallyandexternallygeneratedfluctuations–theformercanbesuppressedbyastimulusandthereforedonotnecessarilyinterferewithsensoryprocessing.

Torevealthenatureofinternallygeneratedvariability,wehaveconsideredanidealizedscenarioinFigure2inwhichtherewasnoexternalsourceofnoise.Inreality,weexpectbothexternalandinternalsourcesofnoisetocoexistinlocalcorticalcircuits.Aslongastheinternalnoiseprovidesasubstantialcomponentoftheoverallvariability,ourqualitativeresultsremainvalid.Wecansimulatethissituationbyaddingexternalnoise(asinFigure2c&d)toamodelthatexhibitschaoticspontaneousactivity(asinFigure2a&b).Theresultshowsasharpdropinvarianceatstimulusonset,butwithonlypartial,ratherthancomplete,suppressionofresponsevariability(Figure3).Thisresultisingoodagreementwithexperimentaldata(Churchlandetal.,2009).

Figure3.Firingratesandresponsevariabilitynormalizedbythemaximumfiringrate,Rmax,forthesamenetwork,stimulusandnoiseasinFigure2,butforanetworkwithbothspontaneousactivityandinjectednoise.a)Theresponseofatypicalneuron.b)Theaveragefiringrate(redtrace)increasesandtheresponsevariability(blacktrace)decreaseswhenthestimulusinputispresent,butitdoesnotgotozeroasinFigure2b.

ResponsetoPeriodicInputForFigures2&3,thestimulusconsistedofastepinputappliedidenticallytoallneurons.Toinvestigatetheeffectofmoreinterestingandrealisticstimulionthechaoticactivityofarecurrentnetwork,weconsiderinputswithnon‐homogeneousspatio‐temporalstructure.Specifically,weintroduceinputsthatoscillateinasinusoidalmannerwithamplitudeIandfrequencyfandexaminehowthesuppressionoffluctuationsdependsontheiramplitudeandfrequency.Inmanycases,neuronsinalocalpopulationhavediversestimulusselectivities,soa

Page 6: Interactions between Intrinsic and StimulusEvoked

6

particularstimulusmayinducelittlechangeinthetotalactivityacrossthenetwork.Tomimicthissituation,wegivetheseoscillatinginputsadifferentphaseforeachneuron(intermsofavisualstimulus,thisisequivalenttopresentingastationary,counterphasegratingtoapopulationofsimplecellswithdifferentspatial‐phaseselectivities).Specifically,Ii=Icos(2πft+θi),whereθiischosenrandomlyfromauniformdistributionbetween0and2π.Therandomlyassignedphasesensurethatthespatialpatternofinputinourmodelnetworkisnotcorrelatedwiththepatternofrecurrentconnectivity.

Figure4.Achaoticnetworkof1000neuronsreceivingsinusoidal5Hzinput.a)Firingratesoftypicalnetworkneurons(normalizedbyRmax).b)Thelogarithmofthepowerspectrumoftheactivityacrossthenetwork.i)Withnoinput(I=0),networkactivityischaotic.ii)Inthepresenceofaweakinput(I/I1/2=0.1),anoscillatoryresponseissuperposedonchaoticfluctuations.iii)Forastrongerinput(I/I1/2=0.5),thenetworkresponseisperiodic.

Intheabsenceofastimulusinput,thefiringratesofindividualneuronsfluctuateirregularly,asseeninFigure2(Figure4a‐i),andthepowerspectrumacrossnetworkneuronsiscontinuousanddecaysexponentiallyasafunctionoffrequency(Figure4b‐i),acharacteristicfeaturesofthechaoticstateofthisnetwork(Sompolinsky,Crisanti,andSommers,1988).Whenthenetworkisdrivenbyaweakoscillatoryinput,thesingle‐neuronresponseisasuperpositionofaperiodicpatterninducedbytheinputandachaoticbackground(Figure4a‐ii).Thepowerspectrumshowsacontinuouscomponentduetotheresidualchaosandpeaksatthefrequencyoftheinputanditsharmonics,reflectingtheperiodicbutnon‐sinusoidalcomponentoftheresponse(Figure4b‐ii).Foraninputwithalargeramplitude,thefiringratesofnetworkneuronsareperiodic(Figure4a‐iii),andthepowerspectrumshowsonlypeaksattheinputfrequencyanditsharmonics,withnocontinuous

Page 7: Interactions between Intrinsic and StimulusEvoked

7

spectrum(Figure4b‐iii).ThisindicatesacompletesuppressionoftheinternallygeneratedfluctuationsasinFigure2a&b.

Wehaveusedamean‐fieldapproachsimilartothatdevelopedbySompolinsky,Crisanti,andSommers(1988)toanalyzepropertiesofthetransitionbetweenchaoticaperiodicresponsestoaperiodicstimulus(Rajan,AbbottandSompolinsky,2009).Thisextendspreviousworkontheeffectofinputonchaoticnetworkactivity(Molgedey,SchuchhardtandSchuster,1992;BertchingerandNatschläger,2004)tocontinuoustimemodelsandperiodicinputs.Wefindthatthereisacriticalinputintensity(acriticalvalueofI)thatdependsonfandg,belowwhichnetworkactivityischaoticthoughdrivenbytheinput(asinFigures4a‐ii&4b‐ii)andabovewhichitisperiodic(asinFigures4a‐iii&4b‐iii).Asurprisingfeatureofthiscriticalamplitudeisthatitisanon‐monotonicfunctionofthefrequencyfoftheinput.Asaresult,thereisa“best”frequencyatwhichitiseasiesttoentrainthenetworkandsuppresschaos.Fortheparametersweuse,the“best”frequencyisaround5Hz,afrequencyweremanysensorysystemstendtooperate,andtherearesomeinitialexperimentalindicationsthatthisisindeedtheoptimalfrequencyforsuppressingbackgroundactivitybyvisualstimulation(WhiteandFiser,2008).Itisinterestingthatapreferredinputfrequencyforentrainmentariseseventhoughthepowerspectrumofthespontaneousactivitydoesnotshowanyresonantfeatures(Figure4b‐i).

PrincipalComponentAnalysisofSpontaneousandEvokedActivityTheresultsoftheprevioustwosectionsrevealedaregimeinwhichaninputgeneratesanon‐chaoticnetworkresponse,eventhoughthenetworkischaoticintheabsenceofinput.Althoughthechaoticintrinsicactivityhasbeencompletelysuppressedinthisnetworkstate,itsimprintcanstillbedetectedinthespatialpatternofthenon‐chaoticactivity.

ThenetworkstateatanyinstantcanbedescribedbyapointinanN‐dimensionalspacewithcoordinatesequaltothefiringratesoftheNneurons.Overtime,activitytraversesatrajectoryinthisN‐dimensionalspace.Principalcomponentanalysiscanbeusedtodelineatethesubspaceinwhichthistrajectorypredominantlylies.Theanalysisisdonebydiagonalizingtheequal‐timecross‐correlationmatrixofnetworkfiringrates,<ri(t)rj(t)>,wheretheanglebracketsdenoteanaverageovertimeTheeigenvaluesofthismatrixexpressedasafractionoftheirsum(denotedby

˜ λ a ),indicatethedistributionofvariancesacrossdifferentorthogonaldirectionsintheactivitytrajectory.Inthespontaneousstate,thereareanumberofsignificantcontributorstothetotalvariance,asindicatedinFigure5a.Forthisvalueofg,theleading10%ofthecomponentsaccountfor90%ofthetotalvariance.Thevarianceassociatedwithhighercomponentsfallsoffexponentially.Itisinterestingtonotethattheprojectionsofthenetworkactivityontotheprincipalcomponentdirectionsfluctuatemorerapidlyforhighercomponents(Figure5c),revealingtheinteractionbetweenthespatialandtemporalstructureofthechaoticfluctuations.

Page 8: Interactions between Intrinsic and StimulusEvoked

8

Figure5:Principalcomponentanalysisofthechaoticspontaneousstateandnon‐chaoticdrivenstate.a)Percentvarianceaccountedforbydifferentprincipalcomponentsforchaoticspontaneousactivity.b)Sameasa,butfornon‐chaoticdrivenactivity.c)Projectionsofthechaoticspontaneousactivityontoprincipalcomponentvectors1,10and50(indecreasingorderofvariance).d)Projectionsofperiodicdrivenactivityontoprincipalcomponents1,3,and5.Projectionsontocomponents2,4,and6aresimilarexceptforbeingphaseshiftedbyπ/2.e)Theeffectivedimension,Neff,ofthetrajectoryofchaoticspontaneousactivity(definedinthetext)asafunctionofgfornetworkswith1000(solidcircles)or2000(opencircles)neurons.Parameters:g=1.5fora‐d,andf=5andI/I1/2=0.7forbandd.

Thenon‐chaoticdrivenstateisapproximatelytwodimensional(Figure5b),with

thetwodimensionsdescribingacircularoscillatoryorbit.Projectionsofthisorbitcorrespondtotheoscillationsπ/2apartinphase.Theresidualvarianceinthehigherdimensionsreflectshigherharmonicsarisingfromnetworknonlinearity,asillustratedbytheprojectionsinFigure5d.

Toquantifythedimensionofthesubspacecontainingthechaotictrajectoryinmoredetail,weintroducethequantity

Neff = ˜ λ a2

a=1

N

−1

.

Thisprovidesameasureoftheeffectivenumberofprincipalcomponentsdescribingatrajectory.Forexample,ifnprincipalcomponentssharethetotalvarianceequally,andtheremainingN­nprincipalcomponentshavezerovariance,Neff=n.Forthechaoticspontaneousstateinthenetworkswestudy,Neffincreaseswithg(Figure5e),duetothehigheramplitudeandfrequencycontentofthechaoticactivityforlargeg.NotethatNeffscalesapproximatelywithN,whichmeansthatlargenetworkshaveproportionallyhigher‐dimensionalchaoticactivity(comparethetwotracesinFigures5e).Thefactthatthenumberofactivatedmodesisonly2%ofthesystemdimensionality,evenforgashighas2.5,isanothermanifestationofthedeterministicnatureofthefluctuations.Forcomparison,wecalculatedNeffforasimilarnetworkdrivenbyexternalwhitenoise,withgsetbelowthechaotictransitionatg=1.Inthiscase,Neffonlyassumesuchlowvalueswhengiswithinafewpercentofthecriticalvalue1.TheresultsinFigure5illustrateanotherfeature

Page 9: Interactions between Intrinsic and StimulusEvoked

9

ofthesuppressionofspontaneousactivitybyinput,whichisthatthePCAdimensionNeffisreduceddramaticallybythepresenceoftheinput.

NetworkEffectsontheSpatialPatternofEvokedActivityInthenon‐chaoticregime,thetemporalstructureofnetworkresponsesislargelydeterminedbytheinput;theybothoscillateatthesamefrequency,althoughthenetworkactivityincludesharmonicsnotpresentintheinput.Theinputdoesnot,however,exertnearlyasstrongcontrolonthespatialstructureofthenetworkresponse.Thephasesofthefiring‐rateoscillationsofnetworkneuronsareonlypartiallycorrelatedwiththephasesoftheinputsthatdrivethem,andtheyarestronglyinfluencedbytherecurrentfeedback.

Wehaveseenthattheorbitdescribingtheactivityinthenon‐chaoticdrivenstateconsistsprimarilyofacircleinatwo‐dimensionalsubspaceofthefullN‐dimensionsdescribingneuronalactivities.Wenowaskhowthiscirclealignsrelativetosubspacesdefinedbydifferentnumbersofprincipalcomponentsthatcharacterizethespontaneousactivity.Thisrelationshipisdifficulttovisualizebecauseboththechaoticsubspaceandthefullspaceofnetworkactivitiesarehighdimensional.Toovercomethisdifficulty,wemakeuseofthenotionof“principalangles”betweensubspaces(IpsenandMeyer,1995).

Thefirstprincipalangleistheanglebetweentwounitvectors(calledprincipalvectors),oneineachsubspace,thathavethemaximumoverlap(dotproduct).Higherprincipalanglesaredefinedrecursivelyastheanglesbetweenpairsofunitvectorswiththehighestoverlapthatareorthogonaltothepreviouslydefinedprincipalvectors.Specifically,fortwosubspacesofdimensiond1andd2definedbytheorthogonalunitvectorsV1a,fora=1,2,...,d1andV2b,forb=1,2,...,d2,thecosinesoftheprincipalanglesareequaltothesingularvaluesofthed1byd2matrixformedfromallthepossibledotproductsofthesetwovectors.Theresultingprincipalanglesvarybetween0andπ/2withzeroanglesappearingwhenpartsofthetwosubspacesoverlapandπ/2correspondingtodirectionsinwhichthetwosubspacesarecompletelynon‐overlapping.Theanglebetweentwosubspacesisthelargestoftheirprincipalangles.ThisdefinitionisillustratedinFigure6awhereweshowtheirregulartrajectoryofthechaoticspontaneousactivity,describedbyitstwoleadingprincipalcomponents(blackcurveinFigure6a).Thecircularorbitoftheperiodicactivity(redcurveinFigure6a)hasbeenrotatedbythesmallerofitstwoprincipalangles.Theanglebetweenthesetwosubspaces(theangledepictedinFigure6a)isthentheremaininganglethroughwhichtheperiodicorbitwouldhavetoberotatedtobringitintoalignmentwiththehorizontalplanecontainingthetwo‐dimensionalprojectionofthechaotictrajectory.

Figure6ashowstheanglebetweenthesubspacesdefinedbythefirsttwoprincipalcomponentsoftheorbitofperiodicdrivenactivityandthefirsttwoprincipalcomponentsofthechaoticspontaneousactivity.Wenowextendthisideatoacomparisonofthetwo‐dimensionalsubspaceoftheperiodicorbitandsubspacesdefinedbythefirstmprincipalcomponentsofthechaoticspontaneousactivity.ThisallowsustoseehowtheorbitliesinthefullN‐dimensionalspaceof

Page 10: Interactions between Intrinsic and StimulusEvoked

10

neuronalactivitiesrelativetothetrajectoryofthechaoticspontaneousactivity.Theresults(Figure6b,reddots)showthatthisangleisclosetoπ/2forsmallm,equivalenttotheanglebetweentworandomlychosensubspaces.However,thevaluedropsquicklyforsubspacesdefinedbyprogressivelymoreoftheleadingprincipalcomponentsofthechaoticactivity.Ultimately,thisangleapproacheszerowhenallNofthechaoticprincipalcomponentvectorsareconsidered,asitmust,becausethesespantheentirespaceofnetworkactivities.

Figure6:Spatialpatternofnetworkresponses.a)Definitionoftheanglebetweenthesubspacedefinedbythefirsttwocomponentsofthechaoticactivity(blackcurve)andatwo‐dimensionaldescriptionoftheperiodicorbit(redcurve).b)Relationshipbetweentheorientationofperiodicandchaotictrajectories.Anglesbetweenthesubspacedefinedbythetwoprincipalcomponentsofthenon‐chaoticdrivenstateandsubspacesformedbyprincipalcomponents1throughmofthechaoticspontaneousactivity,wheremappearsonthehorizontalaxis(reddots).Blackdotsshowtheanalogousanglesbutwiththetwo‐dimensionalsubspacedefinedbyrandominputphasesreplacingthesubspaceofthenon‐chaoticdrivenactivity.c)Effectofinputfrequencyontheorientationoftheperiodicorbit.Theangle(verticalaxis)betweenthesubspacesdefinedbythetwoleadingprincipalcomponentsofnon‐chaoticdrivenactivityatdifferentfrequencies(horizontalaxis)andthesetwovectorsfora5Hzinputfrequency.d)Networkselectivitytodifferentspatialpatternsofinput.Signal(dashedcurvesandopencircles)andnoise(solidcurvesandfilledcircles)amplitudesinresponsetoinputsalignedtotheleadingprincipalcomponentsofthespontaneousactivityofthenetwork.Theinsetshowsalargerrangeonacoarserscale.Parameters:I/I1/2=0.7andf=5Hzforb,I/I1/2=1.0forc,andI/I1/2=0.2andf=2Hzford.

Page 11: Interactions between Intrinsic and StimulusEvoked

11

Intheperiodicstate,thetemporalphasesofthedifferentneuronsdeterminetheorientationoftheorbitinthespaceofneuronalactivities.Therapidlyfallinganglebetweenthisorbitandthesubspacesdefinedbyspatialpatternsdominatingthechaoticstate(Figure6b,reddots)indicatesthatthesephasesarestronglyinfluencedbytherecurrentconnectivitythatinturndeterminesthespatialpatternofthespontaneousactivity.Asanindicationofthemagnitudeofthiseffect,wenotethattheanglesbetweentherandomphasesinusoidaltrajectoryoftheinputtothenetworkandthesamechaoticsubspacesaremuchlargerthanthoseassociatedwiththeperiodicnetworkactivity(Figure6b,blackdots).

TemporalFrequencyModulationofSpatialPatternsAlthoughrecurrentfeedbackinthenetworkplaysanimportantroleinthespatialstructureofdrivennetworkresponses,thespatialpatternoftheactivityisnotfixedbutinsteadisshapedbyacomplexinteractionbetweenthedrivinginputandtheintrinsicnetworkdynamics.Itisthereforesensitivetoboththeamplitudeandthefrequencyofthisdrive.Toseethis,weexaminehowtheorientationoftheapproximatelytwo‐dimensionalperiodicorbitofdrivennetworkactivityinthenon‐chaoticregimedependsoninputfrequency.Weusethetechniqueofprincipalanglesdescribedintheprevioussection,toexaminehowtheorientationoftheoscillatoryorbitchangeswhentheinputfrequencyisvaried.Forcomparisonpurposes,wechoosethedominanttwo‐dimensionalsubspaceofthenetworkoscillatoryresponsestoadrivinginputat5Hzasareference.Wethencalculatetheprincipalanglesbetweenthissubspaceandthecorrespondingsubspacesevokedbyinputswithdifferentfrequencies.TheresultshowninFigure6cindicatesthattheorientationoftheorbitforthesedrivenstatesrotatesastheinputfrequencychanges.

ThefrequencydependenceoftheorientationoftheevokedresponseislikelyrelatedtotheeffectseeninFigure6cinwhichhigherfrequencyactivityisprojectedontohigherprincipalcomponentsofthespontaneousactivity.Thiscausestheorbitofdrivenactivitytorotateinthedirectionofhigher‐orderprincipalcomponentsofthespontaneousactivityasthestimulusfrequencyincreases.Inaddition,thelargerthestimulusamplitude,theclosertheresponsephasesoftheneuronswillbetotherandomphasesoftheirexternalinputs(resultsnotshown).

NetworkSelectivityWehaveshownthattheresponseofanetworktorandom‐phaseinputisstronglyaffectedbythespatialstructureofspontaneousactivity(Figure6b).Wenowaskifthespatialpatternsthatdominatethespontaneousactivityinanetworkcorrespondtothespatialinputpatternstowhichthenetworkrespondsmostvigorously.Ratherthanusingrandom‐phaseinputs,wenowalignedtheinputstoournetworkalongthedirectionsdefinedbydifferentprincipalcomponentsofitsspontaneousactivity.Specifically,theinputtoneuroniissettoIViacos(2πft),whereIistheamplitudefactorandViaistheithcomponentofprincipalcomponentvectoraofthe

Page 12: Interactions between Intrinsic and StimulusEvoked

12

spontaneousactivity.Theindexaisorderedsothata=1correspondstotheprincipalcomponentwithlargestvarianceanda=Ntheleast.Toanalyzetheresultsofusingthisinput,wedividetheresponseintoasignalcomponentcorrespondingtothetrial‐averagedresponse,andanoisecomponentconsistingofthefluctuationsaroundthisaverageresponse.Wecalltheamplitudeofthesignalcomponentoftheresponsethe“signalamplitude”andthestandarddeviationofthefluctuationsthe“noiseamplitude”.

AsseeninFigure6dtheamplitudeofthesignalcomponentoftheresponsedecreasesslowlyasafunctionofwhichprincipalcomponentisusedtodefinetheinput.Amoredramaticeffectisseenonthenoisecomponentoftheresponse.FortheinputamplitudeusedinFigure6d,inputsalignedtothefirst5principalcomponentsofthespontaneousactivitycompletelysuppressthechaoticnoise,resultinginperiodicdrivenactivity.Forhigher‐orderprincipalcomponents,thenetworkactivityischaotic.Thus,the“noise”showsmoresensitivitytothespatialstructureoftheinputthanthesignal.

DiscussionOurresultssuggestthatexperimentsthatstudythestimulus‐dependenceofthetypicallyignorednoisecomponentofresponsesshouldbeinterestingandcouldprovideinsightintothenatureandoriginofactivityfluctuations.Responsevariabilityandongoingactivityissometimesmodeledasarisingfromastochasticprocessexternaltothenetworkgeneratingtheresponses.Thisstochasticnoiseisthenaddedlinearlytothesignaltocreatethetotalneuronalactivityintheevokedstate.Ourresultsindicatethatrecurrentdynamicsofthecorticalcircuitislikelytocontributesignificantlytotheemergenceofirregularneuronalactivity,andthattheinteractionbetweensuchdeterministic“noise”andexternaldriveishighlynonlinear.Inourwork(Rajan,AbbottandSompolinsky,2009),wehaveshownthatthestimuluscausesastrongsuppressionofactivityfluctuationsandfurthermorethatthenonlinearinteractionbetweentherelativelyslowchaoticfluctuationsandthestimulusresultsinanon‐monotonicfrequencydependenceofthenoisesuppression.

Animportantfeatureofthenetworkswestudyisthatthevarianceofthesynapticstrengthsacrossthenetworkcontrolstheemergenceofinterestingcomplexdynamics.Thishasimportantimplicationsforexperimentsbecauseitsuggeststhatthemostinterestingandrelevantmodulatorsofnetworksmaybesubstancesoractivity‐dependentmodulationsthatdonotnecessarilychangepropertiesofsynapsesonaverage,butratherchangesynapticvariance.Synapticvariancecanbechangedeitherbymodifyingtherangeoverwhichsynapticstrengthsvaryacrossapopulationofsynapses,aswehavedonehere,orbymodifyingthereleaseprobabilityandvariabilityofquantalsizeatsinglesynapses.Suchmodulatorsmightbeviewedaslesssignificantbecausetheydonotchangethenetbalancebetweenexcitationandinhibition.However,networkmodelingsuggeststhatsuchmodulationsareofgreatimportanceincontrollingthestateoftheneuronalcircuit.

Page 13: Interactions between Intrinsic and StimulusEvoked

13

Therandomcharacteroftheconnectivityinournetworkprecludesasimpledescriptionofthespatialactivitypatternsintermsoftopographicallyorganizedmaps.Ouranalysisshowsthatevenincorticalareaswheretheunderlyingconnectivitydoesnotexhibitsystematictopography,dissectingthespatialpatternsoffluctuationsinneuronalactivitycanrevealimportantinsightaboutbothintrinsicnetworkdynamicsandstimulusselectivity.Principalcomponentanalysisrevealedthatdespitethefactthatthenetworkconnectivitymatrixisfullrank,theeffectivedimensionalityofthechaoticfluctuationsismuchsmallerthanthenumberofneuronsinthenetwork.Thissuppressionofspatialmodesismuchstrongerthanexpectedfromalinearnetworklow‐passfilteringaspatio‐temporalwhitenoiseinput.Furthermore,asinthetemporaldomain,activespatialpatternsexhibitstrongnonlinearinteractionbetweenexternaldrivinginputsandintrinsicdynamics.Surprisingly,evenwhenthestimulusamplitudeisstrongenoughtofullyentrainthetemporalpatternofnetworkactivity,spatialorganizationoftheactivityisstillstronglyinfluencedbyrecurrentdynamics,asshowninFigures6cand6d.

Wehavepresentedtoolsforanalyzingthespatialstructureofchaoticandnon‐chaoticpopulationresponsesbasedonprincipalcomponentanalysisandanglesbetweentheresultingsubspaces.Principalcomponentanalysishas,beenappliedprofitablytoneuronalrecordings(see,forexample,Broome,JayaramanandLaurent,2006).Theseanalysesoftenplotactivitytrajectoriescorrespondingtodifferentnetworkstatesusingthefixedprincipalcomponentcoordinatesderivedfromcombinedactivitiesunderallconditions.Ouranalysisoffersacomplementaryapproachwherebyprincipalcomponentsarederivedforeachstimulusconditionseparately,andprincipalanglesareusedtorevealnotonlythedifferencebetweentheshapesoftrajectoriescorrespondingtodifferentnetworkstates,butalsothedifferenceintheorientationofthelowdimensionalsubspacesofthesetrajectorieswithinthefullspaceofneuronalactivity.

Manymodelsofselectivityincorticalcircuitsrelyonknowledgeofthespatialorganizationofafferentinputsaswellascorticalconnectivity.However,inmanycorticalareas,suchinformationisnotavailable.Ourresultsshowthatexperimentallyaccessiblespatialpatternsofspontaneousactivity(e.g.fromvoltage‐orcalcium‐sensitiveopticalimagingexperiments)canbeusedtoinferthestimulusselectivityinducedbythenetworkdynamicsandtodesignspatiallyextendedstimulithatevokestrongresponses.Thisisparticularlytruewhenselectivityismeasuredintermsoftheabilityofastimulustoentraintheneuraldynamics,asinFigure6d.Ingeneral,ourresultsindicatethattheanalysisofspontaneousactivitycanprovidevaluableinformationaboutthecomputationalimplicationsofneuronalcircuitry.

AcknowledgmentsResearchofKRandLAsupportedbyNationalScienceFoundationgrantIBN‐0235463andanNIHDirector'sPioneerAward,partoftheNIHRoadmapforMedicalResearch,throughgrantnumber5‐DP1‐OD114‐02.HSispartiallysupportedbygrantsfromtheIsraelScienceFoundationandtheMcDonnell

Page 14: Interactions between Intrinsic and StimulusEvoked

14

Foundation.ThisresearchwasalsosupportedbytheSwartzFoundationthroughtheSwartzCentersatColumbiaandHarvardUniversities.

ReferencesAnderson,J.S.,Lampl,I.,Gillespie,D.C.andFerster,D.Thecontributionofnoiseto

contrastinvarianceoforientationtuningincatvisualcortex.Science290,1968‐1972(2000).

Anderson,J.S.,Lampl,I.,Gillespie,D.C.andFerster,D.Membranepotentialandconductancechangesunderlyinglengthtuningofcellsincatprimaryvisualcortex.J.Neurosci.21,2104‐2112(2001).

Arieli,A.,Shoham,D.,Hildesheim,R.andGrinvald,A.Coherentspatiotemporalpatternsofongoingactivityrevealedbyreal‐timeopticalimagingcoupledwithsingle‐unitrecordinginthecatvisualcortex.J.Neurophysiol.73,2072‐2093(1995).

Arieli,A.,Sterkin,A.,Grinvald,A.andAertsen,A.Dynamicsofongoingactivity:explanationofthelargevariabilityinevokedcorticalresponses.Science273,1868‐1871(1996).

Bertchinger,N.andNatschläger,T.Real‐timecomputationattheedgeofchaosinrecurrentneuralnetworks.NeuralComput.16,1413‐1436(2004).

Broome,B.M.,Jayaraman,V.andLaurent,G.Encodinganddecodingofoverlappingodorsequences.Neuron51,467‐482(2006).

Churchland,M.M.,Yu,B.M.,Cunningham,J.P.,Sugrue,L.P.,Cohen,M.R.,Corrado,G.S.,Newsome,W.T.,Clark,A.M.,Hosseini,P.Scott,B.B.Bradley,D.C.,Smith,M.A.,Kohn,A.,Movshon,J.A.,Armstrong,K.M.,Moore,T.,Chang,S.W.,Snyder,L.H.,Ryu,S.I.,Santhanam,G.,Sahani,M.andShenoy,K.V.Stimulusonsetquenchesneuralvariability:awidespreadcorticalphenomenon.(2009,submitted).

Churchland,M.M.,Yu,B.M.,Ryu,S.I.,Santhanam,G.andShenoy,K.V.Neuralvariabilityinpremotorcortexprovidesasignatureofmotorpreparation.J.Neurosci26,3697‐3712(2006).

Finn,I.M.,Priebe,N.J.andFerster,D.Theemergenceofcontrast‐invariantorientationtuninginsimplecellsofcatvisualcortex.Neuron54,137‐152(2007).

Fiser,J.,Chiu,C.andWeliky,M.Smallmodulationofongoingcorticaldynamicsbysensoryinputduringnaturalvision.Nature431,573‐578(2004).

Fortier,P.A.Smith,A.M.andKalaska,J.F.Comparisonofcerebellarandmotorcortexactivityduringreaching:directionaltuningandresponsevariability.J.Neurophysiol.69,1136‐1149(1993).

Friedrich,R.W.andLaurent,G.Dynamicsofolfactorybulbinputandoutputactivityduringodorstimulationinzebrafish.J.Neurophysiol.91,2658‐2669(2004).

Holmgren,C.,Harkany,T.,Svennenfors,B.andZilberter,Y.Pyramidalcellcommunicationwithinlocalnetworksinlayer2/3orratneocortex.J.Physiol.551,139‐153(2003).

Hubel,D.H.andWiesel,T.N.Receptivefields,binocularinteractionandfunctionalarchitectureinthecat’svisualcortex.J.Physiol.160,106‐154(1962).

Page 15: Interactions between Intrinsic and StimulusEvoked

15

Ipsen,I.C.F.andMeyer,C.D.Theanglebetweencomplementarysubspaces.Amer.Math.Monthly102,904‐911(1995).

Kenet,T.,Bibitchkov,D.,Tsodyks,M.,Grinvald,A.andArieli,A.Spontaneouslyemergingcorticalrepresentationsofvisualattributes.Nature425,954‐956(2003).

MacLean,J.N.,Watson,B.O.,Aaron,G.B.andYuste,R.Internaldynamicsdeterminethecorticalresponsetothalamicstimulation.Neuron48,811‐823(2005).

Mast,J.andVictor,J.D.Fluctuationsofsteady‐stateVEPs:interactionofdrivenevokedpotentialsandtheEEG.Electroenceph.andClinic.Neurophysiol.78,389‐401(1991).

Mitchell,J.F.,Sundberg,K.A.andReynolds,J.J.Differentialattention‐dependentresponsemodulationacrosscellclassesinmacaquevisualareaV4.Neuron55,131‐41(2007).

Molgedey,L.,Schuchhardt,J.andSchuster,H.G.Suppressingchaosinneuralnetworksbynoise.Phys.Rev.Lett.69,3717‐3719(1992).

Petersen,C.C.,Grinvald,A.andSakmann,B.Spatiotemporaldynamicsofsensoryresponsesinlayer2/3ofratbarrelcortexmeasuredinvivobyvoltage‐sensitivedyeimagingcombinedwithwhole‐cellvoltagerecordingsandneuronreconstructions.J.Neurosci.23,1298‐1309(2003).

Petersen,C.C.,Hahn,T.T.,Mehta,M.,Grinvald,A.andSakmann,B.Interactionofsensoryresponseswithspontaneousdepolarizationinlayer2/3barrelcortex.Proc.Natl.Acad.Sci.USA100,13638‐13643(2003).

Rajan,K.andAbbott,L.F.EigenvalueSpectraofRandomMatricesforNeuralNetworks.Phys.Rev.Lett.97,188104(2006).

Rajan,K.,Abbott,L.F.andSompolinsky,H.Frequency‐DependentSuppressionofChaosinRecurrentNeuralNetworks.(2009,submitted).

Shriki,O.,Hansel,D.andSompolinsky,H.Ratemodelsforconductance‐basedcorticalneuronalnetworks.NeuralComput.15,1809‐1841(2003).

Sompolinsky,H.,Crisanti,A.andSommers,H.J.ChaosinRandomNeuralNetworks.Phys.Rev.Lett.61,259‐262(1988).

Song,S.,Sjöström,P.J.,Reigl,M.,Nelson,S.B.andChklovskii,D.B.Highlynon‐randomfeaturesofsynapticconnectivityinlocalcorticalcircuits.PLoSBiol.3,e68(2005).

vanVreeswijk,C.andSompolinsky,H.Chaosinneuronalnetworkswithbalancedexcitatoryandinhibitoryactivity.Science24,1724‐1726(1996).

vanVreeswijk,C.andSompolinsky,H.Chaoticbalancedstateinamodelofcorticalcircuits.NeuralComput.10,1321‐1371(1998).

Vincent,J.L.,Patel,G.H.,Fox,M.D.,Snyder,A.Z.,Baker,J.T.,VanEssen,D.C.,Zempel,J.M.,Snyder,L.H.,Corbetta,M.andRaichle,M.E.Intrinsicfunctionalarchitectureintheanaesthetizedmonkeybrain.Nature447,83‐86(2007).

Werner,G.andMountcastle,V.B.TheVariabilityOfCentralNeuralActivityInASensorySystem,AndItsImplicationsForTheCentralReflectionOfSensoryEvents.J.Neurophysiol.26,958‐977(1963).

Wong,K.‐F.andWang,X.‐J.ARecurrentNetworkMechanismofTimeIntegrationinPerceptualDecisions.J.Neurosci.26,1314‐1328(2006).

Page 16: Interactions between Intrinsic and StimulusEvoked

16

White,B.L.andFiser,J.Therelationshipbetweenawakeandanesthetizedneuralresponsesintheprimaryvisualcortexoftherat.Soc.Neurosci.Abstracts38:459.12(2008).

Yuste,R.,MacLean,J.N.,Smith,J.andLansner,A.Thecortexasacentralpatterngenerator.Nat.Rev.Neurosci.6,477‐483(2005).