integrable model in bose-einstein condensates

76
Integrable model in Integrable model in Bose-Einstein condensate Bose-Einstein condensate s s Wu-Ming Liu (Institute of Physics, Chinese Acade my of Sciences http:// www.iphy.ac.cn Email: [email protected] Phone: 86-10-82649249

Upload: sunee

Post on 22-Feb-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Integrable model in Bose-Einstein condensates. Wu-Ming Liu (Institute of Physics, Chinese Academy of Sciences ) http:// www.iphy.ac.cn Email: [email protected] Phone: 86-10-82649249. Collaborators. Prof. S.T. Chui (Delaware Univ.) Prof. I. Kats (ILL, France) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Integrable model in  Bose-Einstein condensates

Integrable model in Integrable model in Bose-Einstein condensatesBose-Einstein condensates

Wu-Ming Liu(Institute of Physics, Chinese Academy of Science

s )http:// www.iphy.ac.cn

Email: [email protected]: 86-10-82649249

Page 2: Integrable model in  Bose-Einstein condensates

CollaboratorsCollaboratorsProf. S.T. Chui (Delaware Univ.)Prof. I. Kats (ILL, France)Prof. J.Q. Liang (Shanxi Univ.)Prof. B. A. Malomed (Tel Aviv Univ.)Prof. Q. Niu (Texas Univ.)Prof. Y.Z. Wang (SIOM, CAS)Prof. B. Wu (IOP, CAS)Prof. W.P. Zhang (East China Normal Univ.)Prof. W.M. Zheng (ITP, CAS)

Page 3: Integrable model in  Bose-Einstein condensates

OutlineOutline1. Introduction

2. BEC tunneling - instanton

3. BEC interference - long time solution

4. BEC near Feshbach resonance– solitonBEC near Feshbach resonance– soliton

5. BEC in optical lattice – discrete soliton5. BEC in optical lattice – discrete soliton

6. Two component BEC - soliton inelastic collision

7. Spinor BEC - soliton

8. Conclusion

Page 4: Integrable model in  Bose-Einstein condensates

1. Introduction 7Li 6Li

Page 5: Integrable model in  Bose-Einstein condensates
Page 6: Integrable model in  Bose-Einstein condensates

C. E. Wieman and E. A. Cornell, Science 269, 198 (1995).

Page 7: Integrable model in  Bose-Einstein condensates

40 Lab. Elements: Li, Na, K, H, Rb, He, Fermi gases Y.Z. Wang, BEC in China, March 2002, Shanghai, China

Page 8: Integrable model in  Bose-Einstein condensates

2. BEC tunneling- instanton2. BEC tunneling- instanton

W.M. Liu, W.B. Fan, W.M. Zheng, J.Q. Liang, S.T. Chui,

Quantum tunneling of Bose-Einstein condensates

in optical lattices under gravity,

Phys. Rev. Lett. 88, 170408 (2002).

Page 9: Integrable model in  Bose-Einstein condensates

Fig. 1. The effective optical-plus-gravitational potential U/ER for parameters used in our experiment (ER =   2k2/2m is the photon recoil energy with k = 2 / ). The horizontal oscillating curves illustrate de Broglie waves from the tunnel output of each well. In region A, the relative phases of the waves interfere constructively to form a pulse. Heavy lines illustrate the energies of the lowest bound states of harmonic oscillator potentials that match the shapes of the actual potentials near each local energy minimum.

B.P. Anderson et al., Science 282, 1686 (1998).

Page 10: Integrable model in  Bose-Einstein condensates

Figure 1. (A) Combined potential of the optical lattice and the magnetic trap in the axial direction. The curvature of the magnetic potential is exaggerated by a factor of 100 for clarity. (B) Absorption image of the BEC released from the combined trap. The expansion time was 26.5 ms and the optical potential height was 5ER.

..

F.S. Cataliotti, Science 293, 843 (2001).

Page 11: Integrable model in  Bose-Einstein condensates

HamiltonianHamiltonian2

2 2( , )sin ( )2 lpH U x y z mgzm

Landau-Zener tunnelingLandau-Zener tunneling

Wannier-Stark tunnelingWannier-Stark tunneling

Parameters:Wells: 30 or 200

Atoms number: 10³ /well

Density: n₀=10¹³ cm ³⁻

4 /MF BU K nK atom

157 /k BE K nK atom

Page 12: Integrable model in  Bose-Einstein condensates

Landau-Zener tunnelingLandau-Zener tunneling Barrier between lattices is low Localized level between lattices is coupling Miniband Adiabatic approximation Tunneling between delocalized states in different Bloch bands

Potential energy and Bloch bandsPotential energy and Bloch bands

Page 13: Integrable model in  Bose-Einstein condensates

Tilted bands and WS laddersTilted bands and WS ladders

Wannier-Stark tunnelingWannier-Stark tunneling An external field Wavefunction of miniband is localization Miniband is divided into discrete level Wannier-Stark ladder Tunneling between localized states in different individual wells

—Wannier-Stark localized states

Page 14: Integrable model in  Bose-Einstein condensates

Bloch bands and WS LadderBloch bands and WS Ladder

2

, ,

, ,

( )2

( ) ( )( )exp( )

( ) ( )

B

k k

k k

PH V xm

V x d V xx ikx

x d x

2

0

( )2

( ) ( )

2

W

l

B

PH V x Fxm

V x d V xE E ldF

TdF

WS Ladder

Page 15: Integrable model in  Bose-Einstein condensates

Wannier-Stark energy spectrumWannier-Stark energy spectrum Resonances condition

for discrete spectrum

mean energy of \alpha band

Actual energy spectrum for discrete spectrum

,

0, 1...lE dFl

l

, 2

/

l E dFl i

I.W. Herbst et al., Commun. Math. Phys. 80, 23(1981)J. Agler et al., ibid 100, 161 (1985)

J.-M. Combes et al., ibid 140, 291(1991)

Page 16: Integrable model in  Bose-Einstein condensates

Potential energy and energy bandsPotential energy and energy bands

Page 17: Integrable model in  Bose-Einstein condensates

2 ImE

Decay rateDecay rate

2 2H EA e e iT

E: complex energyE: complex energy Transition amplitudeTransition amplitude

No crossing--conditionNo crossing--condition

top

top

0( ( , ) )

/ 2lU x y E

mg

Page 18: Integrable model in  Bose-Einstein condensates

Transition amplitudeTransition amplitude*

2

( ) ( ) ( , ; , )

1( , ; , ) { }exp( [ ( ) ( )] )2

f

i

E f E i f f i i f i

f f i i

A d d

dzD x m V z dd

Periodic instanton represents pseudo-condensPeriodic instanton represents pseudo-condensed atom configuration responsible for tunnelined atom configuration responsible for tunneling under barrier at energy Eg under barrier at energy E

Page 19: Integrable model in  Bose-Einstein condensates

20 0 0

30 0

1 4( ) ( , ) cos ( )2

1 4( , )sin ( )3

l

l

V z V U x y z

U x y z

Potential V(z)Potential V(z)

0 0 0 01( , ) cos ( , )( )sin3l lV U x y U x y 0 arcsin( )

4 ( , )l

mgU x y

Euler-Lagrange equation

21 ( ) ( ( ))2

dzm V z Ed

Page 20: Integrable model in  Bose-Einstein condensates

Periodic instanton solution – solutPeriodic instanton solution – solutions of classical Euler-Lagrange ions of classical Euler-Lagrange equations in Euclidean space-timequations in Euclidean space-time with finite energye with finite energy

denote three roots of equation V(z)=E

1 2 3( ) ( ) ( )z E z E z E

23 2 3( ) ( ) ( )z z z z sn u k

Page 21: Integrable model in  Bose-Einstein condensates

All instanton contributionsAll instanton contributions

20 1 3

' 21

8 ( , )cos ( )2

( ) 3WlU x y z z

E i ek k mA e

342 22

0 1

4 22

64 2 ( , ) cos ( ) [(1 )( 2) ( )15 3

2( 1) ( )

lk mW U x Y z z k k k

k k k

Page 22: Integrable model in  Bose-Einstein condensates

Decay rate of metastable stateDecay rate of metastable state

'1

1 30

( )

2( )3

EE

E

w ek

z zw w

is energy dependent frequencyis energy dependent frequency

20

0 2

16 ( , ) coslU x ywm

is frequency of small oscillationsis frequency of small oscillations

Page 23: Integrable model in  Bose-Einstein condensates

Decay rate of nth low excited stateDecay rate of nth low excited state

0 0nE n E

max0

0

2max 0 0 0

4321 ( )! 2

1 ( , ) cos cot6

nn

l

Vn w

V V U x y

Harmonic approximationHarmonic approximation

Metastable ground stateMetastable ground state

max

0

365max

0 00

3122

VwVw e

w

Page 24: Integrable model in  Bose-Einstein condensates

Tunneling rate of Landau-Zener regimeTunneling rate of Landau-Zener regime

2

2

4

8

cgg

LZ

c

mg e

g

Page 25: Integrable model in  Bose-Einstein condensates

Atoms:Atoms:

Yale experimental Yale experimental

parametersparameters

87Rb

850( , ) 2.1

50l R

LZ

nmU x y E

ms

3 10

1

12.26 10

12.3788

LZ

LZ

s

sms

TheoryTheory

Page 26: Integrable model in  Bose-Einstein condensates

Atoms:Atoms: INFM (Istituto NazioINFM (Istituto Nazionale di Fisica della nale di Fisica della Materia, Italy)Materia, Italy)

87Rb

795( , ) 5

0.3l R

LZ

nmU x y E

s

TheoryTheory

3 10

1

2.63 10

2.600.39

LZ

LZ

s

ss

Page 27: Integrable model in  Bose-Einstein condensates

At high temperature:At high temperature:Arrhenius lawArrhenius lawmax /0

2BV k T

AR e

Temperature dependenceTemperature dependence

0max0

0

432

0( ) (1 )

wk TB

B

Vwe

wk TT e e

Page 28: Integrable model in  Bose-Einstein condensates

Crossover temperatureCrossover temperature

0

2257

( , ) 2.1

crB

cr

l R

hwT

kT nKU x y E

At low temperature:At low temperature:Pure quantum tunnelingPure quantum tunneling

At intermediate temperature:At intermediate temperature:Thermally assisted tunnelingThermally assisted tunneling

Page 29: Integrable model in  Bose-Einstein condensates
Page 30: Integrable model in  Bose-Einstein condensates

Measure tunneling from lowest metastable stateMeasure tunneling from lowest metastable state

1. Turn on a potential which has only one state in each well.2. Accelerate potential in such a way that only band of state

s from these levels are swept along with potential, leaving all higher states behind (so they can be neglected).

3. Increase amplitude of potential, so that different wells become isolated from each other.

4. Tilt potential (by acceleration) to achieve Wannier-Stark regime described by present theory.

5. Observe how many atoms survive in time t.

0

0

( )n

nB

Et

k T

n

NN t eZ

PopulationPopulationExperimental predictionExperimental prediction

Page 31: Integrable model in  Bose-Einstein condensates

Measure decays from excited Measure decays from excited states and at higher temperature states and at higher temperature 1. Starting with a thermal distribution of free

atom states, turn on potential to some amplitude, so that eventually there are n bands lying in wells.

2. Accelerate potential so that n bands are taken along with wells, leaving atoms in higher bands behind. The acceleration must be such that occupation number of each of n bands is not changed during this process.

3. Same as (3) above.4. Same as (4) above.5. Same as (5) above.

Page 32: Integrable model in  Bose-Einstein condensates

3. BEC interference–long time solution3. BEC interference–long time solution

W.M. Liu, B. Wu, Q. Niu,

Nonlinear effects in interference of Bose-Einstein condensates,

Phys. Rev. Lett. 84, 2294 (2000).

Page 33: Integrable model in  Bose-Einstein condensates

W. Ketterle, Science 275, 637 (1997).

Page 34: Integrable model in  Bose-Einstein condensates
Page 35: Integrable model in  Bose-Einstein condensates

Experimental parameters:

Separation of two BEC ~ 40 μm

Fringe spacing ~ 15 μm

Expanding time ~ 40 ms

Demonstration: 1. laser-like 2. coherent 3. long-range correlation

Implication: 1. atomic laser 2. Josephson effect

Page 36: Integrable model in  Bose-Einstein condensates

Many-body Hamiltonian

The mean field theory

Gross-Pitaevskii equation

rrrrVrrdrdr

rVm

rdrH ext

''' '21

22

2

trtrtr ,'~,,

trm

arVm

trt

i ext ,42

, 2222

Page 37: Integrable model in  Bose-Einstein condensates

Parameters:Parameters:

x is measured in unit of x0= 1μm

t in unit of mx0/ h, t= 120

φ in unit of square root of n0

G= 4πn0ax02= 5-10

Page 38: Integrable model in  Bose-Einstein condensates

Gross-Pitaevskii equationGross-Pitaevskii equation

2 2 2

242 ext

ai V rt m m

Long time solutionLong time solution

222 ( ) log(4 )

12

2 2

( )( , ) ( log )

1( ) log(1 ( ) )2

x xi i tt t

xtx t e O t tt

k r kg

Page 39: Integrable model in  Bose-Einstein condensates

Theoretical explanationTheoretical explanation

1 2''

0 012 2 22n nk E V n V

Fringe positionFringe position

Central fringeCentral fringe

1 2"

0 1 1 0 04 2k k k V V

Page 40: Integrable model in  Bose-Einstein condensates

Experimental prediction:Experimental prediction:1. Energy level 2. Many wave packets1. Energy level 2. Many wave packets

Ratio of level width to level spacingRatio of level width to level spacing

22 n ng E w En n

n n

k E ek E

Page 41: Integrable model in  Bose-Einstein condensates
Page 42: Integrable model in  Bose-Einstein condensates

S. Inouye et al., Nature 392, 151 (1998).S. Inouye et al., Nature 392, 151 (1998).

4. BEC 4. BEC near Feshbach resonancenear Feshbach resonance-soliton-soliton

Page 43: Integrable model in  Bose-Einstein condensates

Z. X. Liang, Z. D. Zhang, W. M. Liu,Z. X. Liang, Z. D. Zhang, W. M. Liu,

Dynamics of a bright soliton in Bose-Einstein condensates

with time-dependent atomic scattering length in an expulsive parabolic potential,

Phys. Rev. Lett. 74, 050402 (2005).Phys. Rev. Lett. 74, 050402 (2005).

Page 44: Integrable model in  Bose-Einstein condensates
Page 45: Integrable model in  Bose-Einstein condensates
Page 46: Integrable model in  Bose-Einstein condensates
Page 47: Integrable model in  Bose-Einstein condensates

SupernovaSupernovaS.L. Cornish et al., Phys. Rev. Lett. 85, 1795 (2000).S.L. Cornish et al., Phys. Rev. Lett. 85, 1795 (2000).

Page 48: Integrable model in  Bose-Einstein condensates

L. Khaykovich et al., Science 296, 1290 (2002).

5. BEC in optical lattice–discrete soliton5. BEC in optical lattice–discrete soliton

Page 49: Integrable model in  Bose-Einstein condensates

K.E. Strecker et al., Nature 417, 150 (2002).

Page 50: Integrable model in  Bose-Einstein condensates

K.E. Strecker et al., Nature 417, 150 (2002).

Page 51: Integrable model in  Bose-Einstein condensates

Z.W. Xie, Z.X. Cao, E.I. Kats, W.M. LiuZ.W. Xie, Z.X. Cao, E.I. Kats, W.M. Liu,,

Nonlinear dynamics Nonlinear dynamics of of dipolardipolar Bose-Einstein condensate Bose-Einstein condensate

in optical lattice,in optical lattice,

Phys. Rev. A 71, 025601 (2005).Phys. Rev. A 71, 025601 (2005).

Page 52: Integrable model in  Bose-Einstein condensates
Page 53: Integrable model in  Bose-Einstein condensates
Page 54: Integrable model in  Bose-Einstein condensates
Page 55: Integrable model in  Bose-Einstein condensates

G.P. Zheng, J.Q. Liang, W.M. Liu,G.P. Zheng, J.Q. Liang, W.M. Liu,

Phase diagram of two-species Bose-Einstein condensates in an optical latticePhys. Rev. A71, 053608 (2005)Phys. Rev. A71, 053608 (2005)

6. Two component BEC - soliton inelastic collision

Page 56: Integrable model in  Bose-Einstein condensates
Page 57: Integrable model in  Bose-Einstein condensates
Page 58: Integrable model in  Bose-Einstein condensates
Page 59: Integrable model in  Bose-Einstein condensates
Page 60: Integrable model in  Bose-Einstein condensates

Soliton filter and switchSoliton filter and switch

Page 61: Integrable model in  Bose-Einstein condensates
Page 62: Integrable model in  Bose-Einstein condensates

7. Spinor BEC - soliton 7. Spinor BEC - soliton J. Stenger, Nature 396, 345 (1998).

Page 63: Integrable model in  Bose-Einstein condensates

Z.W. Xie, W.P. Zhang, S.T. Chui, W.M. Liu,

Magnetic solitons of

spinor Bose-Einstein condensates

in optical lattice,

Phys. Rev. A69, 053609 (2004).

Page 64: Integrable model in  Bose-Einstein condensates
Page 65: Integrable model in  Bose-Einstein condensates
Page 66: Integrable model in  Bose-Einstein condensates

Z.D. Li, P.B. He, L.Li, J.Q. Liang, W.M. LiZ.D. Li, P.B. He, L.Li, J.Q. Liang, W.M. Liu,u,Soliton collision of

spinor Bose-Einstein condensates in optical lattice,

Phys. Rev. A71, 053608 (2005).

Page 67: Integrable model in  Bose-Einstein condensates
Page 68: Integrable model in  Bose-Einstein condensates
Page 69: Integrable model in  Bose-Einstein condensates

L. Li, Z.D. Li, B. A. Malomed, D. Mihalache, W. M. Liu,L. Li, Z.D. Li, B. A. Malomed, D. Mihalache, W. M. Liu,

Exact soliton solutions and Exact soliton solutions and nonlinear modulation instability nonlinear modulation instability

in spinor Bose-Einstein condensates,in spinor Bose-Einstein condensates,

Phys. Rev. A 72, 03???? (2005).Phys. Rev. A 72, 03???? (2005).

Page 70: Integrable model in  Bose-Einstein condensates
Page 71: Integrable model in  Bose-Einstein condensates
Page 72: Integrable model in  Bose-Einstein condensates
Page 73: Integrable model in  Bose-Einstein condensates

BEC tunneling - instanton

BEC interference - long time solution

BEC near Feshbach resonance– solitonBEC near Feshbach resonance– soliton

BEC in optical lattice – discrete solitonBEC in optical lattice – discrete soliton

Two component BEC - soliton inelastic collision

Spinor BEC - soliton

Page 74: Integrable model in  Bose-Einstein condensates

8. Conclusion8. Conclusion

Page 75: Integrable model in  Bose-Einstein condensates

Bose-Einstein condensates become an

ultralow-temperature laboratory

for atom optics, collisional physics and many-body physics, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.

Page 76: Integrable model in  Bose-Einstein condensates