institute for advanced study - princeton...

57
Traversable Wormholes Juan Maldacena Institute for Advanced Study October, 2018

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • TraversableWormholes

    JuanMaldacenaInstituteforAdvancedStudy

    October,2018

  • Introduction/Motivation

    • Specialrelativityisbasedontheideaofamaximumspeedforpropagationofsignals.

    • Ingeneralrelativitywehaveageneralcurvedgeometry.

    • Istherealsoamaximalspeedforpropagationofsignals?

  • • Inprinciple,yes.Itisgivenbythelightconesinthatcurvedgeometry.

    • Couldwehaveacurvedgeometrythatallowsa``shortcut’’?

    • Couldquantumfluctuationsproducethesegeometries?

    Therearecurvedgeometrieswherenaivelyfarawaypointsarerelativelycloseby.

  • AretheysolutionsofEinsteinequations?

  • FullSchwarzschildsolution

    Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

    not in causal contact and information cannot be transmitted across the bridge. This can

    easily seen from the Penrose diagram, and is consistent with the fact that entanglement

    does not imply non-local signal propagation.

    (a)(b)

    Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neckconnecting two asymptotically flat regions. (b) Here we have two distant entangled blackholes in the same space. The horizons are identified as indicated. This is not an exactsolution of the equations but an approximate solution where we can ignore the small forcebetween the black holes.

    All of this is well known, but what may be less familiar is a third interpretation of the

    eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

    can consider two very distant black holes in the same space. If the black holes were not

    entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

    created at t = 0 in the entangled state (2.1), then the bridge between them represents the

    entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

    7

    ER

    Eddington,Lemaitre,Einstein,Rosen,Finkelstein,Kruskal

    Vacuumsolution.Twoexteriors,sharingtheinterior.

    Rightexterior

    Leftexterior

    singularity

  • Wormholeinterpretation.

    Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

    not in causal contact and information cannot be transmitted across the bridge. This can

    easily seen from the Penrose diagram, and is consistent with the fact that entanglement

    does not imply non-local signal propagation.

    (a)(b)

    Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neckconnecting two asymptotically flat regions. (b) Here we have two distant entangled blackholes in the same space. The horizons are identified as indicated. This is not an exactsolution of the equations but an approximate solution where we can ignore the small forcebetween the black holes.

    All of this is well known, but what may be less familiar is a third interpretation of the

    eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

    can consider two very distant black holes in the same space. If the black holes were not

    entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

    created at t = 0 in the entangled state (2.1), then the bridge between them represents the

    entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

    7

    L R

    Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

    not in causal contact and information cannot be transmitted across the bridge. This can

    easily seen from the Penrose diagram, and is consistent with the fact that entanglement

    does not imply non-local signal propagation.

    (a)(b)

    Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neckconnecting two asymptotically flat regions. (b) Here we have two distant entangled blackholes in the same space. The horizons are identified as indicated. This is not an exactsolution of the equations but an approximate solution where we can ignore the small forcebetween the black holes.

    All of this is well known, but what may be less familiar is a third interpretation of the

    eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

    can consider two very distant black holes in the same space. If the black holes were not

    entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

    created at t = 0 in the entangled state (2.1), then the bridge between them represents the

    entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

    7

    Nontraversable

    Nosignals

    Nocausalityviolation

    Fuller,Wheeler,Friedman,Schleich,Witt,Galloway,Wooglar

    L R

    Verylargedistance

  • Nosciencefictiontraversablewormholes

    • Einsteinequations

    • Butthestresstensorhastoobeysomeconstraints,itisnottotallyarbitrary.

    • Inparticular,itisbelieveditshouldobeytheAANEC.

    Rµ⌫ �1

    2gµ⌫R = Tµ⌫

  • AANEC

    • Achronal AverageNullEnergyCondition.

    • Achronal (fastestline)

    • Note:inQFT,wecanhaveinsomeregions.

    Z 1

    �1dx

    �T�� � 0

    FlatspaceQFT:Faulkner,Leigh,Parrikar,Wang.Hartman,Kundu,Tajdini

    T�� < 0

  • Duetothispropertyofmatter,ambientcausalityispreserved.

  • ButwestillhavethefullSchwarzschildsolutiontointerpret.

  • Blackholesasquantumsystems

    • AblackholeseenfromtheoutsidecanbedescribedasaquantumsystemwithSdegreesoffreedom(qubits).

    =

  • Wormholeandentangledstates

    Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions.The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions.

    not in causal contact and information cannot be transmitted across the bridge. This can

    easily seen from the Penrose diagram, and is consistent with the fact that entanglement

    does not imply non-local signal propagation.

    (a)(b)

    Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neckconnecting two asymptotically flat regions. (b) Here we have two distant entangled blackholes in the same space. The horizons are identified as indicated. This is not an exactsolution of the equations but an approximate solution where we can ignore the small forcebetween the black holes.

    All of this is well known, but what may be less familiar is a third interpretation of the

    eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we

    can consider two very distant black holes in the same space. If the black holes were not

    entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow

    created at t = 0 in the entangled state (2.1), then the bridge between them represents the

    entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

    7

    Connectedthroughtheinterior

    Entangled

    =W.IsraelJ.M.J.M.Susskind

    |TFDi =X

    n

    e��En/2|ĒniL|EniR(inaparticularentangledstate)

  • • Isitdifficulttogettwoblackholesintothisstate?Orclosetothisstate?

    • Isit”stable”inanysense?

    • Orcanwedismissthesesolutionsasmathematicalcuriosities…?

    • Cantheyteachusinterestinglessonsaboutquantumgravity?

  • FirstanalyzethisprobleminNearly-AdS2 gravity

  • N-AdS2xS2

    horizon

    Nearextremalblackholes

    M � QM ⇠ Q

    Itisacriticalsystem!

  • ThesurprisinglysimplegravitationaldynamicsofN-AdS2

    AdS2

    NAdS2=QFTonAdS2 +locationofboundary

    (HLBdy ⇥Hbulk ⇥HRBdy)/SL(2, R)

    Allgravitationaleffects

    Propertimealongtheboundary=timeoftheasymptoticallyflatregion=timeofthequantumsystem

  • Addaconstantinteractionbetweenthedualquantumsystems

    • Nearly-AdS2 gravity• Plusmatter• Plusboundaryconditionsconnectingthetwosides

    • Thisgeneratesnegativenullenergyandallowsforaneternallytraversablewormhole

    u isproperlengthalongtheboundary,orboundarytime.

    Sint = µ

    Zdu�L(u)�R(u)

  • NAdS2 gravity+Interaction

    Interactions

    Boundariesnowmove“straightup”

    Signalscannowpropagatefromoneboundarytotheother.

  • Comment

    • Westartedwithtwonearly-criticalsystems.• Addedarelevantinteraction.• Gotasystemwithgap.• Butwhosepropertiesaregovernedbythepropertiesofthecriticalsystem.(eg spectrumoflowenergyexcitationssetbythespectrumofanomalousdimensionsofthecriticalmodel.)

  • Wheredoesthatinteractioncomefrom?

  • Exchangeofbulkfieldscanleadtotheinteractionbetweenthequantumsystemsthedescribetheblackhole

  • Analogy:VanderWaalsinteractionTwoneutralatomsexchangingphotons.

    Hint /~dL.~dRd3

    dsmallenoughsothat1/dislargerthanthegapbetweenthegroundstateandthenextstates.

    1/d

    Entanglethetwoatoms.

    d

  • Thisreasoninginspiredthefollowingsolution

  • Wormholesin4dimensions,intheStandardModel+gravity

  • AlexeyMilekhin Fedor Popov

    Basedonworkwith:

    RelatedtopreviousworkwithXiaoliang Qi

    InspiredbyworkbyGao,Jafferis andWallon“Traversablewormholes”

  • DrawingbyJohnWheeler,1966

    Chargewithoutcharge.Masswithoutmass

    Spatialgeometry.Traversablewormhole

  • Recallaclassicresult

  • ItisaLongwormhole• Ittakeslongertogothroughthewormholethanthroughtheambientspace.

    • NotpossibleinclassicalphysicsduetotheNullEnergyCondition.BecausetheNECistrue.

    • NeedquantumeffectstoviolatetheANEC.Casimirenergy.

    • Canwedoitinacontrollableway?

  • E / � 1L

    NegativeCasimirenergy

    Quantumeffect

    T++ < 0

    Thenullenergyconditiondoesnotholdfornulllinesthatarenotachronal!

    time

    Circle

    Eg.Twospacetime dimensions

    NegativenullenergyinQFT

  • Somenecessaryelements

    • WeneedsomethinglookinglikeacircletohavenegativeCasimirenergy.

    • Largenumberofbulkfieldstoenhancethesizeofquantumeffects.

    • Wewillshowhowtoassembletheseelementsinafewsteps.

  • Thetheory

    Einstein+U(1)gaugefield+masslesschargedfermion

    CouldbetheStandardModelatverysmalldistances,withthefermionseffectivelymassless.TheU(1)isthehypercharge.SU(3)xSU(2)xU(1).

    S =

    Zd

    4x

    M

    2plR�

    1

    g

    2F

    2 + i ̄ 6 D �

  • Thefirstsolution:ExtremalblackholeMagneticchargeq

    AdS2 ⇥ S2

    lPlanck = 1

    Z

    S2F = q = integer

    rere ⇠ q

  • βisthe‘’length”ofthethroat.Redshiftfactorbetweenthetopandthebottom

    horizon

    AdS2 ⇥ S2

    Verysmall

    lPlanck = 1

    re

    M = re + r3eT

    2 = re +r3e�2

    Thenextsolution:NearExtremalblackholere ⇠ q

  • Motionofchargedfermions

    • Magneticfieldonthesphere.• ThereisaLandaulevelwithpreciselyzeroenergy.• Orbitalandmagneticdipoleenergiespreciselycancel.

    BMasslessfermionsà U(1)chiralsymmetry

    4danomalyà 2danomalyà thereshouldbemasslessfermionsin2d.

    (HereweviewFasnon-dynamical).

  • Motionofchargedfermions• Degeneracy=q=fluxofthemagneticfieldonthesphere.Formaspinj,representationofSU(2),2j+1=q.

    • Weeffectivelygetqmasslesstwodimensionalfermionsalongthetimeandradialdirection.

    • Wecanthinkofeachofthemasfollowingamagneticfieldline.

  • q masslesstwodimensionalfields,alongfieldlines.

  • AdS2

    ds2 =�dt2 + d�2

    sin2 �ds2 = �(r2 � 1)dt2 + dr

    2

    (r2 � 1)Global Thermal/Rindler

  • NearlyAdS2

    ds2 =�dt2 + d�2

    sin2 �

    Connectthemtoflatspace,sothattisanisometry.Theyacquirenon-zeroenergywhenthethroathasfinitelength

    ds2 = �(r2 � 1)dt2 + dr2

    (r2 � 1)Global Thermal/Rindler

    M = re + r3eT

    2 = re +r3e�2

  • Connectapairblackholes

    connectandinglobalAdS2

  • Approximateconfiguration

    Wedescribethesolutionbyjoiningthreeapproximatesolutions.Joinedviaoverlappingregionsofvalidity.

    Onehaspositivemagneticcharge,theothernegative.

    AdS2xS2

    Extremalchargedblackholethroat

    Flatspace+pointparticles

  • Fermiontrajectories

    Positivemagneticcharge

    Negativemagneticcharge

    Chargedfermionmovesalongthemagneticfieldlines.Closedloop.

  • CasimirenergyAssume:“Lengthofthethroat”islargerthanthedistance.

    L=timeittakestogothroughthethroatasmeasuredfromoutside

    L>>d

    Casimirenergyisoftheorderof

    Lout

    L

    d

    L � Lout

    > d

    FullenergyalsoneedstotakeintoAccounttheconformalanomalybecauseAdS2 hasawarpfactor.Thatjustchangesthenumericalfactor.

    E / � qL+ d

    ⇠ � qL

  • Findingthesolution

    Balancetheclassicalcurvature+gaugefieldenergyvstheCasimirenergy.

    Nowthethroatisstabilized.Negativebindingenergy.

    Verysmall.Onlylowenergywavescanexploreit

    M � q = q3

    L2� q

    L,

    @M

    @L= 0 �! L ⇠ q2

    Ebinding = M � q = �1

    q= � 1

    rs

    SolveEinsteinequationsinthethroatregionwiththenegativequantumstresstensor=

  • Thisisnotyetasolutionintheoutsideregion:

    Thetwoobjectsattractandwouldfallontoeachother

  • Addingrotation

    dre ⇠ q

    ⌦ =

    rred3

    Keplerrotationfrequency

    d � re

  • Throatisfragile• Rotationà radiationà effectivetemperature:T=Ω

    • WeneedthatΩ issmallerthantheenergygapofthethroat

    • Theconfigurationwillonlyliveforsometime,untiltheblackholesgetcloser..

    • TheseissuescouldbeavoidedbygoingtoAdS4 …

    ⌦ ⌧ 1L

    ⌦ =

    rred3

    Keplerrotationfrequency

  • Somenecessaryinequalities

    Fromstabilizedthroatsolution

    BlackholescloseenoughtothatCasmirenergycomputationwascorrect.

    Blackholesfarenoughsothattheyrotateslowlycomparedtotheenergygap.

    Unruh-liketemperaturelessthanenergygapKeplerrotationfrequency

    Theyarecompatible

    Othereffectswecouldthinkoffarealsosmall:canallowsmalleccentricity,addelectromagneticandgravitationalradiation,etc.Hasafinitelifetime.

    L ⇠ q2

    d ⌧ L �! d ⌧ q2

    rq

    d3= ⌦ ⌧ 1

    L�! q 53 ⌧ d

    q53 ⌧ d ⌧ q2

  • Lengthscales

    rs ⇠ q ⌧ d ⌧ L ⇠ q2 ⌧ ⌦�1

    Sizeofeachblackholeandinverseofbindingenergyofthewormhole

    Distancebetweenblackholes

    ”length”ofthroatortimeittakestogothroughthewormhole.

    Inverseenergygap.Redshiftedenergyforexcitationsdeepinthewormhole.

    Inverserotationfrequency

  • Finalsolution

    Looksliketheexterioroftwonearextremalblackholes.Buttheyconnected.Butthereisnohorizon!.Zeroentropysolution.Ithasasmallbindingenergy.

  • Entropyandentanglement

    • Totalspacetime hasnoentropyandnohorizon.

    • Ifweonlylookatoneobjectà entanglemententropy=extremalblackholeentropy

    • Wormhole=twoentangledblackholes

    • TotalHamiltonian H = HL +HR +Hint

    Generatedbyfermionsinexterior

  • • Ifweweretodisconnecttheblackholesintheexteriorà theinteriorwouldevolveintothegeometryoftheeternalnear-extremalblackhole.

  • Rotationà temperature

    Temperaturedoesnotcreateparticlesinthethroat

    T ⇠ ⌦ ⌧ Egap ⇠1

    L

    WormholeisthestablethermodynamicphaseforT<1/Q3

    Two Black Holes : F = �TQ2

    Wormhole : F = �Ebinding = �1

    Q

    Forthesolutionwedescribedsofar:Wormholeismetastable.

  • LengthLasdincreases

    dd d

    q2

    q2 q5/2 d

    L

    Ec / +1

    4

    1

    L� 1

    L+ d

    CasimircylinderConformalanomaly

    Stopsbeingclassical

  • WormholesintheStandardModel

    IfnatureisdescribedbytheStandardModelatshortdistancesanddissmallerthantheelectroweakscale,

    Ifthestandardmodelisnotvalidà similaringredientsmightbepresentinthetruetheory.

    Thatitcan exist,doesnotmeanthatitiseasily producedbysomenaturalorartificialprocess.

    1 ⌧ q ⌧ 108

    Distancedsmallerthanelectroweakscale.

  • Theyareconnectedthroughawormhole!

    MuchsmallerthantheonesLIGOortheLHCcandetect!

    Pairofentangled blackholes.

  • Conclusions

    • WedisplayedasolutionofanEinsteinMaxwelltheorywithchargedfermions.

    • Itisatraversablewormholeinfourdimensionsandwithnoexoticmatter.

    • Itbalancesclassicalandquantumeffects.• Ithasanon-trivialspacetime topology,whichisforbiddenintheclassicaltheory.

    • Canbeviewedasapairofentangledblackholes.• Butithasnohorizonandnoentropy.

  • Questions

    • Ifwestartfromdisconnectednearextremalblackholes:Cantheybeconnectedquicklyenough?à topologychange.