institut universite claude bernard de physique n ucleaire

26
I _ \'-- '--. '--.0 \"::t- \ J \oj , Institut Universite Claude Bernard IN2P3 - CNRS de Physique , N ucleaire 'i,* '""IJt FERMIlAB de Lyon SEP 1 8 1996 LISR LYCEN 9617 J uillet 1996 Dipole bands and multi-particle excitations in 193Pb. L. Ducroux 1, A. Astier 1 , R. DuffaitI, Y. Le COZl,2, M. Meyerl, S. Perries l , N. Redonl, J.F. Sharpey-Schafer 3 •• , A.N. Wilson 3 , R. Lucas 2 , V. Meot 2 , R. Collatz 5 , I. Deloncle 5 , F. Hannachl 5 A. Lopez-Martens 5 , M.G. Porquet 5 , C. Schiick 5 , F. Azaiez 6 , S. Bouneau 6 , C. Bourgeois 6 , A. Korichl 6 , N. Poffe 6 7 , H. Sergolle 6 , B.J.P. GallS, I. Hibbert 9 and R. Wadsworth 9 llPN Lyon IN2P31CNRS, Universite Claude Bernard, F-69622 Villeurbanne Cedex, France 2DAPNlA/SPhN, CE Saclay, 91191 Gif-sur-Yvette Cedex, France 3Univ. of Liverpool, Liverpool L69 3BX, United Kingdom 4NAC. Faure, ZA-7131 South Africa 5CSNSM. IN2P31CNRS, F-91405 Orsay Campus, France 6IPN,/N2P3ICNRS. F-91406 Orsay Campus, France 7Univ. of Oxford, Oxford OXI 3RH, United Kingdom 8CRN Strasbourg, IN2P31CNRS, F-67037 Strasbourg Cedex 2, Franre---·---·-·--"-".,-... ••.,,.• 9Univ. of York, York YOI 5DD. United Kingdom .. __... __ ._---_._-, ' .... , ) To be published in Z. Phys. A. .. --"-.....",,- ........ 1 ,. : .. - ·· .. ,--""",",.-.. -..- ._"... ,_ ..... t --.-.,. " r "

Upload: others

Post on 23-Jun-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Institut Universite Claude Bernard de Physique N ucleaire

I _

-shy-- --0 tshy

~

~ J oj

~ ~

~lJ

Institut Universite Claude Bernard

IN2P3 - CNRS de Physique ~ ~ N ucleaire

~ i IJt

FERMIlAB ~de Lyon SEP 1 8 1996

LISR LYCEN 9617

Juillet 1996

Dipole bands and multi-particle excitations in 193Pb

L Ducroux 1 A Astier1 R DuffaitI Y Le COZl2 M Meyerl S Perriesl

N Redonl JF Sharpey-Schafer3bullbull AN Wilson3 R Lucas2 V Meot2

R Collatz5 I Deloncle5 F Hannachl5bull A Lopez-Martens5 MG Porquet5

C Schiick5 F Azaiez6 S Bouneau6 C Bourgeois6 A Korichl6 N Poffe6bull7

H Sergolle6 BJP GallS I Hibbert9 and R Wadsworth9

llPN Lyon IN2P31CNRS Universite Claude Bernard F-69622 Villeurbanne Cedex France 2DAPNlASPhN CE Saclay 91191 Gif-sur-Yvette Cedex France 3Univ ofLiverpool Liverpool L69 3BX United Kingdom 4NAC Faure ZA-7131 South Africa 5CSNSM IN2P31CNRS F-91405 Orsay Campus France 6IPNN2P3ICNRS F-91406 Orsay Campus France 7Univ of Oxford Oxford OXI 3RH United Kingdom 8CRN Strasbourg IN2P31CNRS F-67037 Strasbourg Cedex 2 Franre---middot---middot-middot----~lt bullbullbull

9Univ of York York YOI 5DD United Kingdom _~__~__~___~_ _---__- ~ )To be published in Z Phys A ~--- ---- ~ ~

1 -middotmiddot middotmiddotmiddot-~middotmiddot-l~ --- - shy

__ ~

t~-- --- --~ ~~--~

I--middot--~middotmiddotmiddotmiddotmiddotmiddot r

FRA~Piii-UK

Dipole bands and multi-quasiparticle excitations in 193Pb

L Ducroux A Astier R Duifait Y Le Coz M Meyer S Perries N Redon Institut de Physique Nucleaire de Lyon IN2P9CNRS

Universite C Bernard Lyon-1 F-69622 Villeurbanne Cedex France

JF Sharpey-Schafert AN Wilson Oliver Lodge Laboratory University of Liverpool PO Box 147 Liverpool L69 9BX United Kingdom

R Lucas V Meot DAPNIA SPhN CEA Saclay 91191 Gif-sur- Yvette Cedex France

R Collatz I Deloncle F Hannachi A Lopez-Martens MG Porquet C Schuck Centre de Spectrometrie Nucleaire et de Spectroscopie de Masse IN2P9CNRS

B(U 104 F-91405 Orsay Campus France

F Azaiez S Bouneau C Bourgeois A Korichi N Poifet H Sergolle Institut de Physique Nucleaire IN2P9CNRS

BiU 104 F-91406 Orsay Campus France

BJP Gall Centre de Recherches Nucleaires de Strasbourg IN2P9CNRS

BP 28 F-67097 Strasbourg Cedex 2 France

I Hibbert R Wadsworth Department of Physics University of York

Heslington York Y01 5DD United Kingdom

Abstract The nucleus 193Pb was populated via the 168Er(30Si5n) reaction at a beam energy of 159 MeV and studied with the EUROGAM II spectrometer Five new dipole ~I 1 cascades have been found These structures have been connected to the level scheme which has been considerably extended up to a spin of 621 1i and an excitation energy of about 8 Me V Angular distribution coefficients a2 have been measured and confirm the dipole character of the in-band transitions B(M1)B(E2) ratios have been extracted for the two most intense cascades The 193Pb dipole bands are discussed in comparison with those known in odd lead isotopic series and the structure of the band heads is analyzed in terms of microscopic HF+BCS calculations The proposed configurations are based on a high-K two quasiproton excitation 7r([505]92- 0 [606]132+)K=11- coupled to one or three rotation aligned quasineutrons involving the i 132 P32 152 andor h92 subshells The main difference compared with the heavier lead isotopes is the presence of large n orbitals from the v (i13 2 ) shell near the Fermi surface which are responsible for the increasing band-head spin as A decreases

PACS 2110Hw 2320Lv 2780+w

present address DAPNIA SPhN CEA Saclay 91191 Gif-sur- Yvette Cedex France t present addressNational Accelerator Centre PO Box 72 Faure ZA-7191 SouthAfrica t present address Department of Physics University of Oxford K eble Road Oxford

OX1 9RH United Kingdom

1

I Introduction

The A=190 mass region has been widely investigated since the discovery of a superdeshy

formed (SD) band in 191Hg [1] Recently six SD bands have been discovered and discussed

in 193Pb [23] This nucleus is the lightest odd lead isotope where superdeformation has

been found Thanks to the interest devoted to this mass region a new phenomenon was

identified with the observation of dipole cascades in heavier lead nuclei 198-200Pb [45]

Many similar bands are now known to exist in lighter lead isotopes [6-20] In a few cases

lifetime measurements have been performed [1721-24] showing a low quadrupole collecshy

tivity and small deformation These dipole bands have similar properties most of them

are regular (ie they show a smooth increase of transition energy with spin) with low dynamical moments of inertia J(2) (15-25 h2 MeV-I) and large B(M1)B(E2) ratios (gt10

(PN eb)2) In most cases the bands are connected to the low-lying level scheme enabling

both spins and excitation energies to be determined These structures are interpreted as

high-K weakly deformed oblate states built on high-j quasiprotons coupled to rotation

aligned quasineutrons

An interesting question is whether these structures can be observed in very light lead

nuclei such as 193Pb This nucleus has been previously studied by Lagrange et al [25]

using the reaction 182W(1605n) at a 109 MeV beam energy The low-lying yrast levels and

transitions have been extensively investigated by both e- and coincidence techniques

In this paper we present results on 193Pb obtained in a study with the EUROGAM II

spectrometer [26] The level scheme has been considerably extended and the multipolarity

of most of the transitions determined by angular distribution measurements Five new

lI = 1 structures have been observed and connected to the low-lying states The five

new dipole lI = 1 bands in 193Pb and the evolution of these structures in the isotopic

series from A=192 to 200 are discussed in terms of static mean field Hartree-Fock+BCS

calculations [27-28] These bands are interpreted as high-K two quasiproton excitations

11 ([505]92- 29 [606]132+)K=l1- coupled to rotation aligned quasineutrons v (i132)ll (with n=13) and v ((i132)2 29 (p32 or 152)) andor v ((i132) 29 (h92)2) involving the

large n orbitals of v (i13 2) (n = 52 72) The departure from the strong coupling model

in terms of tilted-axis cranking model [29] is also considered

II Experhnent and results

Excited states in 193Pb were populated using the 168EreOSi5n) reaction The Si beam

at 159 MeV energy was delivered by the Vivitron accelerator at the Centre de Recherches

Nucleaires in Strasbourg The measurement was made with a stack of two self-supporting

thin 600 P9 cm2 targets The -rays were detected in the EUROGAM II spectrometer

[26] which consists of 15 large escape suppressed Ge detectors at backward and forward

angles respectively and 24 escape suppressed clover Ge detectors near 900 relative to the beam direction

2

A total of 6 x 108 four- and higher fold events were recorded on magnetic tapes about

40 of the events corresponding to 193Pb residues The other main open channels were 192Pb (-120 of the events) 190Hg (-115) and 193Tl (-112) The data analysis has

been performed by means of multigated spectra and two-dimensional matrices Moreover

a cube has also been built and analysed using the analysis package LEVIT8R [30]

Angular distributions have been measured using four matrices corresponding to the four

independent angles of EUROGAM II (22deg 46deg 71deg and 80deg) Each matrix contains -rays

detected at one angle on the first axis in coincidence with transitions at any angle on the

second axis Furthermore the matrices were gated on several yrast transitions in the level

scheme in order to select the 193Pb nucleus

The level scheme previously established up to spin 332 Ii and 32 MeV excitation

energy by Lagrange et al [25] has been both significantly extended (up to 7932 ke V and

spin 612 Ii) and modified at lower excitation energy For instance previous work had

not observed the 311 keY transition (272+ -+252+) and all group B (see below for the

label explanation) representing about 50 of the 2213 keY (252+) level feeding intensity

Furthermore the cascade built on the 1994 keY (252+) state and beginning with the 677

keY transition was not observed in the previous work More than one hundred fifty -rays

have been included in the new level scheme shown in Figure 1 Table 1 contains the energies

and intensities (normalized at 100 for the 172+ -+132+ 8816 keY transition) for all

the transitions For the most intense -rays the angular coefficient a2 has been extracted

and the results are in excellent agreement with those of Lagrange et al [25] obtained by

electron measurements with the exception of two transitions 180 and 556 ke V located

above the 22 ns isomeric state at 1586 ke V The explanation for the different assignments

of the 556 keY multipolarity is probably due to the presence of another transition of 555

keY (292+ -+272+ Group B in Fig 1) twice as intense and of ~I == 1 nature This

transition was unresolved in the previous experiment Concerning the 180 keY transition

case our angular distribution measurement clearly suggests a ~I == 1 multipolarity as

opposed to the ~I == 2 one previously assigned with extremely low statistics

It is convenient to give labels to different groups in the level scheme in Figure 1

Thanks to the similarity of the low-lying states of 193Pb and those of 195Pb we will adopt

the label ordering chosen by M Kaci et al [20] Group A is built on the 132+ state

which is suggested by Lagrange et al [25] to be nearly 100 keY above the P32 ground

state Because of the lack of an experimental measurement of this value we will consider

the 132+ level as the reference for excitation energies Group B is built on top of group A

and contains intense dipole ~I == 1 (M1) and cross-over ~I == 2 (E2) transitions deexciting

positive parity states A sequence of five ~I == 1 and four ~I == 2 transitions seems to

appear in this complex group B starting at the 2426 keY (272+) level and extending

to the 4313 keY (372+) level In this range of excitation energy the intensity of this

3

- - ~-- - --------shy

structure is weaker than the other ones for instance the one based in the 2524 ke V level

An ensemble of mainly quadrupole transitions can be gathered into group C These are

built on the 22 ns isomeric state (212- at 1586 keY) Finally group D comprises all levels above the 11 ns isomeric state at 2584 keY (292-)

In the present work five new tlI == 1 structures have been clearly identified and the

dipole nature of their transitions unambiguously demonstrated by angular distribution

measurements Intensity arguments require a magnetic character of these tlI == 1 transishy

tions All these dipole bands have a rotational behaviour with regularly spaced transitions

The exceptions to this are tops of bands 1 and 2 where one can observe (see Figure 1)

backbending indicating pair breaking All these dipole bands have been connected to the

low-lying level scheme enabling their excitation energies and spin values to be determined

The five dipole bands can be separated into two sets with opposite parity Bands 1 la

1b have negative parity and bands 2 3 positive parity For bands 1 2 3 the labels have

been taken to be the same as similar bands in heavier Pb isotopes with respect to intensity

criteria For the weakest bands 1a and 1b the labels recall the fact that they are built on

band 1

Band 1 is the most intense of the five bands with about 17 of the total intensity of

the reaction channel Starting at 2584 keY on the 292- isomeric state (11 ns) band 1

extends up to 5218 keY (452-) and decays to group A levels

Both bands 1a and 1 b (each rv 06 intensity) are built on the top of band 1 Band

1a starts at 5092 keY at spin 452- and is observed up to the 7154 keY level (572-)

Band 1 b displays a regular behaviour at slightly higher excitation energy (5825 ke V) and

spin (492-) than band la and extends up to 7713 keY (612-)

On the positive parity side we have found two regular bands decaying to group B

labelled 2 and 3 with intensities of rv 7 and 3 respectively Band 2 is located at 4297

keY (392+) up to 7932 keY (612+) and band 3 is built on the 4944 keY level (432+)

reaching 6145 keY (512+)

Triple gated spectra showing the five dipole tlI == 1 bands are displayed in Figure 2

(for bands 1 1a and 1b) and Figure 3 (for bands 2 and 3)

For the two most intense bands (1 and 2) E2 cross-over transitions can be observed

allowing us to extract the experimental transition probability ratios B(M1)B(E2) with the hypothesis that tlI == 1 transitions have a pure magnetic character The B(M1 )B(E2)

ratios are summarized in Table 2

III Discussion

A large number of dipole tlI 1 bands are known in lead isotopes [4-24] These

structures have been interpreted in terms of weakly oblate-deformed high-Ilt quasiprotons

1[([505]92- reg [606]132+)K=11- and 1[([505]92- reg [514]72-)K=8+ coupled to rotation

4

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 2: Institut Universite Claude Bernard de Physique N ucleaire

Dipole bands and multi-quasiparticle excitations in 193Pb

L Ducroux A Astier R Duifait Y Le Coz M Meyer S Perries N Redon Institut de Physique Nucleaire de Lyon IN2P9CNRS

Universite C Bernard Lyon-1 F-69622 Villeurbanne Cedex France

JF Sharpey-Schafert AN Wilson Oliver Lodge Laboratory University of Liverpool PO Box 147 Liverpool L69 9BX United Kingdom

R Lucas V Meot DAPNIA SPhN CEA Saclay 91191 Gif-sur- Yvette Cedex France

R Collatz I Deloncle F Hannachi A Lopez-Martens MG Porquet C Schuck Centre de Spectrometrie Nucleaire et de Spectroscopie de Masse IN2P9CNRS

B(U 104 F-91405 Orsay Campus France

F Azaiez S Bouneau C Bourgeois A Korichi N Poifet H Sergolle Institut de Physique Nucleaire IN2P9CNRS

BiU 104 F-91406 Orsay Campus France

BJP Gall Centre de Recherches Nucleaires de Strasbourg IN2P9CNRS

BP 28 F-67097 Strasbourg Cedex 2 France

I Hibbert R Wadsworth Department of Physics University of York

Heslington York Y01 5DD United Kingdom

Abstract The nucleus 193Pb was populated via the 168Er(30Si5n) reaction at a beam energy of 159 MeV and studied with the EUROGAM II spectrometer Five new dipole ~I 1 cascades have been found These structures have been connected to the level scheme which has been considerably extended up to a spin of 621 1i and an excitation energy of about 8 Me V Angular distribution coefficients a2 have been measured and confirm the dipole character of the in-band transitions B(M1)B(E2) ratios have been extracted for the two most intense cascades The 193Pb dipole bands are discussed in comparison with those known in odd lead isotopic series and the structure of the band heads is analyzed in terms of microscopic HF+BCS calculations The proposed configurations are based on a high-K two quasiproton excitation 7r([505]92- 0 [606]132+)K=11- coupled to one or three rotation aligned quasineutrons involving the i 132 P32 152 andor h92 subshells The main difference compared with the heavier lead isotopes is the presence of large n orbitals from the v (i13 2 ) shell near the Fermi surface which are responsible for the increasing band-head spin as A decreases

PACS 2110Hw 2320Lv 2780+w

present address DAPNIA SPhN CEA Saclay 91191 Gif-sur- Yvette Cedex France t present addressNational Accelerator Centre PO Box 72 Faure ZA-7191 SouthAfrica t present address Department of Physics University of Oxford K eble Road Oxford

OX1 9RH United Kingdom

1

I Introduction

The A=190 mass region has been widely investigated since the discovery of a superdeshy

formed (SD) band in 191Hg [1] Recently six SD bands have been discovered and discussed

in 193Pb [23] This nucleus is the lightest odd lead isotope where superdeformation has

been found Thanks to the interest devoted to this mass region a new phenomenon was

identified with the observation of dipole cascades in heavier lead nuclei 198-200Pb [45]

Many similar bands are now known to exist in lighter lead isotopes [6-20] In a few cases

lifetime measurements have been performed [1721-24] showing a low quadrupole collecshy

tivity and small deformation These dipole bands have similar properties most of them

are regular (ie they show a smooth increase of transition energy with spin) with low dynamical moments of inertia J(2) (15-25 h2 MeV-I) and large B(M1)B(E2) ratios (gt10

(PN eb)2) In most cases the bands are connected to the low-lying level scheme enabling

both spins and excitation energies to be determined These structures are interpreted as

high-K weakly deformed oblate states built on high-j quasiprotons coupled to rotation

aligned quasineutrons

An interesting question is whether these structures can be observed in very light lead

nuclei such as 193Pb This nucleus has been previously studied by Lagrange et al [25]

using the reaction 182W(1605n) at a 109 MeV beam energy The low-lying yrast levels and

transitions have been extensively investigated by both e- and coincidence techniques

In this paper we present results on 193Pb obtained in a study with the EUROGAM II

spectrometer [26] The level scheme has been considerably extended and the multipolarity

of most of the transitions determined by angular distribution measurements Five new

lI = 1 structures have been observed and connected to the low-lying states The five

new dipole lI = 1 bands in 193Pb and the evolution of these structures in the isotopic

series from A=192 to 200 are discussed in terms of static mean field Hartree-Fock+BCS

calculations [27-28] These bands are interpreted as high-K two quasiproton excitations

11 ([505]92- 29 [606]132+)K=l1- coupled to rotation aligned quasineutrons v (i132)ll (with n=13) and v ((i132)2 29 (p32 or 152)) andor v ((i132) 29 (h92)2) involving the

large n orbitals of v (i13 2) (n = 52 72) The departure from the strong coupling model

in terms of tilted-axis cranking model [29] is also considered

II Experhnent and results

Excited states in 193Pb were populated using the 168EreOSi5n) reaction The Si beam

at 159 MeV energy was delivered by the Vivitron accelerator at the Centre de Recherches

Nucleaires in Strasbourg The measurement was made with a stack of two self-supporting

thin 600 P9 cm2 targets The -rays were detected in the EUROGAM II spectrometer

[26] which consists of 15 large escape suppressed Ge detectors at backward and forward

angles respectively and 24 escape suppressed clover Ge detectors near 900 relative to the beam direction

2

A total of 6 x 108 four- and higher fold events were recorded on magnetic tapes about

40 of the events corresponding to 193Pb residues The other main open channels were 192Pb (-120 of the events) 190Hg (-115) and 193Tl (-112) The data analysis has

been performed by means of multigated spectra and two-dimensional matrices Moreover

a cube has also been built and analysed using the analysis package LEVIT8R [30]

Angular distributions have been measured using four matrices corresponding to the four

independent angles of EUROGAM II (22deg 46deg 71deg and 80deg) Each matrix contains -rays

detected at one angle on the first axis in coincidence with transitions at any angle on the

second axis Furthermore the matrices were gated on several yrast transitions in the level

scheme in order to select the 193Pb nucleus

The level scheme previously established up to spin 332 Ii and 32 MeV excitation

energy by Lagrange et al [25] has been both significantly extended (up to 7932 ke V and

spin 612 Ii) and modified at lower excitation energy For instance previous work had

not observed the 311 keY transition (272+ -+252+) and all group B (see below for the

label explanation) representing about 50 of the 2213 keY (252+) level feeding intensity

Furthermore the cascade built on the 1994 keY (252+) state and beginning with the 677

keY transition was not observed in the previous work More than one hundred fifty -rays

have been included in the new level scheme shown in Figure 1 Table 1 contains the energies

and intensities (normalized at 100 for the 172+ -+132+ 8816 keY transition) for all

the transitions For the most intense -rays the angular coefficient a2 has been extracted

and the results are in excellent agreement with those of Lagrange et al [25] obtained by

electron measurements with the exception of two transitions 180 and 556 ke V located

above the 22 ns isomeric state at 1586 ke V The explanation for the different assignments

of the 556 keY multipolarity is probably due to the presence of another transition of 555

keY (292+ -+272+ Group B in Fig 1) twice as intense and of ~I == 1 nature This

transition was unresolved in the previous experiment Concerning the 180 keY transition

case our angular distribution measurement clearly suggests a ~I == 1 multipolarity as

opposed to the ~I == 2 one previously assigned with extremely low statistics

It is convenient to give labels to different groups in the level scheme in Figure 1

Thanks to the similarity of the low-lying states of 193Pb and those of 195Pb we will adopt

the label ordering chosen by M Kaci et al [20] Group A is built on the 132+ state

which is suggested by Lagrange et al [25] to be nearly 100 keY above the P32 ground

state Because of the lack of an experimental measurement of this value we will consider

the 132+ level as the reference for excitation energies Group B is built on top of group A

and contains intense dipole ~I == 1 (M1) and cross-over ~I == 2 (E2) transitions deexciting

positive parity states A sequence of five ~I == 1 and four ~I == 2 transitions seems to

appear in this complex group B starting at the 2426 keY (272+) level and extending

to the 4313 keY (372+) level In this range of excitation energy the intensity of this

3

- - ~-- - --------shy

structure is weaker than the other ones for instance the one based in the 2524 ke V level

An ensemble of mainly quadrupole transitions can be gathered into group C These are

built on the 22 ns isomeric state (212- at 1586 keY) Finally group D comprises all levels above the 11 ns isomeric state at 2584 keY (292-)

In the present work five new tlI == 1 structures have been clearly identified and the

dipole nature of their transitions unambiguously demonstrated by angular distribution

measurements Intensity arguments require a magnetic character of these tlI == 1 transishy

tions All these dipole bands have a rotational behaviour with regularly spaced transitions

The exceptions to this are tops of bands 1 and 2 where one can observe (see Figure 1)

backbending indicating pair breaking All these dipole bands have been connected to the

low-lying level scheme enabling their excitation energies and spin values to be determined

The five dipole bands can be separated into two sets with opposite parity Bands 1 la

1b have negative parity and bands 2 3 positive parity For bands 1 2 3 the labels have

been taken to be the same as similar bands in heavier Pb isotopes with respect to intensity

criteria For the weakest bands 1a and 1b the labels recall the fact that they are built on

band 1

Band 1 is the most intense of the five bands with about 17 of the total intensity of

the reaction channel Starting at 2584 keY on the 292- isomeric state (11 ns) band 1

extends up to 5218 keY (452-) and decays to group A levels

Both bands 1a and 1 b (each rv 06 intensity) are built on the top of band 1 Band

1a starts at 5092 keY at spin 452- and is observed up to the 7154 keY level (572-)

Band 1 b displays a regular behaviour at slightly higher excitation energy (5825 ke V) and

spin (492-) than band la and extends up to 7713 keY (612-)

On the positive parity side we have found two regular bands decaying to group B

labelled 2 and 3 with intensities of rv 7 and 3 respectively Band 2 is located at 4297

keY (392+) up to 7932 keY (612+) and band 3 is built on the 4944 keY level (432+)

reaching 6145 keY (512+)

Triple gated spectra showing the five dipole tlI == 1 bands are displayed in Figure 2

(for bands 1 1a and 1b) and Figure 3 (for bands 2 and 3)

For the two most intense bands (1 and 2) E2 cross-over transitions can be observed

allowing us to extract the experimental transition probability ratios B(M1)B(E2) with the hypothesis that tlI == 1 transitions have a pure magnetic character The B(M1 )B(E2)

ratios are summarized in Table 2

III Discussion

A large number of dipole tlI 1 bands are known in lead isotopes [4-24] These

structures have been interpreted in terms of weakly oblate-deformed high-Ilt quasiprotons

1[([505]92- reg [606]132+)K=11- and 1[([505]92- reg [514]72-)K=8+ coupled to rotation

4

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 3: Institut Universite Claude Bernard de Physique N ucleaire

I Introduction

The A=190 mass region has been widely investigated since the discovery of a superdeshy

formed (SD) band in 191Hg [1] Recently six SD bands have been discovered and discussed

in 193Pb [23] This nucleus is the lightest odd lead isotope where superdeformation has

been found Thanks to the interest devoted to this mass region a new phenomenon was

identified with the observation of dipole cascades in heavier lead nuclei 198-200Pb [45]

Many similar bands are now known to exist in lighter lead isotopes [6-20] In a few cases

lifetime measurements have been performed [1721-24] showing a low quadrupole collecshy

tivity and small deformation These dipole bands have similar properties most of them

are regular (ie they show a smooth increase of transition energy with spin) with low dynamical moments of inertia J(2) (15-25 h2 MeV-I) and large B(M1)B(E2) ratios (gt10

(PN eb)2) In most cases the bands are connected to the low-lying level scheme enabling

both spins and excitation energies to be determined These structures are interpreted as

high-K weakly deformed oblate states built on high-j quasiprotons coupled to rotation

aligned quasineutrons

An interesting question is whether these structures can be observed in very light lead

nuclei such as 193Pb This nucleus has been previously studied by Lagrange et al [25]

using the reaction 182W(1605n) at a 109 MeV beam energy The low-lying yrast levels and

transitions have been extensively investigated by both e- and coincidence techniques

In this paper we present results on 193Pb obtained in a study with the EUROGAM II

spectrometer [26] The level scheme has been considerably extended and the multipolarity

of most of the transitions determined by angular distribution measurements Five new

lI = 1 structures have been observed and connected to the low-lying states The five

new dipole lI = 1 bands in 193Pb and the evolution of these structures in the isotopic

series from A=192 to 200 are discussed in terms of static mean field Hartree-Fock+BCS

calculations [27-28] These bands are interpreted as high-K two quasiproton excitations

11 ([505]92- 29 [606]132+)K=l1- coupled to rotation aligned quasineutrons v (i132)ll (with n=13) and v ((i132)2 29 (p32 or 152)) andor v ((i132) 29 (h92)2) involving the

large n orbitals of v (i13 2) (n = 52 72) The departure from the strong coupling model

in terms of tilted-axis cranking model [29] is also considered

II Experhnent and results

Excited states in 193Pb were populated using the 168EreOSi5n) reaction The Si beam

at 159 MeV energy was delivered by the Vivitron accelerator at the Centre de Recherches

Nucleaires in Strasbourg The measurement was made with a stack of two self-supporting

thin 600 P9 cm2 targets The -rays were detected in the EUROGAM II spectrometer

[26] which consists of 15 large escape suppressed Ge detectors at backward and forward

angles respectively and 24 escape suppressed clover Ge detectors near 900 relative to the beam direction

2

A total of 6 x 108 four- and higher fold events were recorded on magnetic tapes about

40 of the events corresponding to 193Pb residues The other main open channels were 192Pb (-120 of the events) 190Hg (-115) and 193Tl (-112) The data analysis has

been performed by means of multigated spectra and two-dimensional matrices Moreover

a cube has also been built and analysed using the analysis package LEVIT8R [30]

Angular distributions have been measured using four matrices corresponding to the four

independent angles of EUROGAM II (22deg 46deg 71deg and 80deg) Each matrix contains -rays

detected at one angle on the first axis in coincidence with transitions at any angle on the

second axis Furthermore the matrices were gated on several yrast transitions in the level

scheme in order to select the 193Pb nucleus

The level scheme previously established up to spin 332 Ii and 32 MeV excitation

energy by Lagrange et al [25] has been both significantly extended (up to 7932 ke V and

spin 612 Ii) and modified at lower excitation energy For instance previous work had

not observed the 311 keY transition (272+ -+252+) and all group B (see below for the

label explanation) representing about 50 of the 2213 keY (252+) level feeding intensity

Furthermore the cascade built on the 1994 keY (252+) state and beginning with the 677

keY transition was not observed in the previous work More than one hundred fifty -rays

have been included in the new level scheme shown in Figure 1 Table 1 contains the energies

and intensities (normalized at 100 for the 172+ -+132+ 8816 keY transition) for all

the transitions For the most intense -rays the angular coefficient a2 has been extracted

and the results are in excellent agreement with those of Lagrange et al [25] obtained by

electron measurements with the exception of two transitions 180 and 556 ke V located

above the 22 ns isomeric state at 1586 ke V The explanation for the different assignments

of the 556 keY multipolarity is probably due to the presence of another transition of 555

keY (292+ -+272+ Group B in Fig 1) twice as intense and of ~I == 1 nature This

transition was unresolved in the previous experiment Concerning the 180 keY transition

case our angular distribution measurement clearly suggests a ~I == 1 multipolarity as

opposed to the ~I == 2 one previously assigned with extremely low statistics

It is convenient to give labels to different groups in the level scheme in Figure 1

Thanks to the similarity of the low-lying states of 193Pb and those of 195Pb we will adopt

the label ordering chosen by M Kaci et al [20] Group A is built on the 132+ state

which is suggested by Lagrange et al [25] to be nearly 100 keY above the P32 ground

state Because of the lack of an experimental measurement of this value we will consider

the 132+ level as the reference for excitation energies Group B is built on top of group A

and contains intense dipole ~I == 1 (M1) and cross-over ~I == 2 (E2) transitions deexciting

positive parity states A sequence of five ~I == 1 and four ~I == 2 transitions seems to

appear in this complex group B starting at the 2426 keY (272+) level and extending

to the 4313 keY (372+) level In this range of excitation energy the intensity of this

3

- - ~-- - --------shy

structure is weaker than the other ones for instance the one based in the 2524 ke V level

An ensemble of mainly quadrupole transitions can be gathered into group C These are

built on the 22 ns isomeric state (212- at 1586 keY) Finally group D comprises all levels above the 11 ns isomeric state at 2584 keY (292-)

In the present work five new tlI == 1 structures have been clearly identified and the

dipole nature of their transitions unambiguously demonstrated by angular distribution

measurements Intensity arguments require a magnetic character of these tlI == 1 transishy

tions All these dipole bands have a rotational behaviour with regularly spaced transitions

The exceptions to this are tops of bands 1 and 2 where one can observe (see Figure 1)

backbending indicating pair breaking All these dipole bands have been connected to the

low-lying level scheme enabling their excitation energies and spin values to be determined

The five dipole bands can be separated into two sets with opposite parity Bands 1 la

1b have negative parity and bands 2 3 positive parity For bands 1 2 3 the labels have

been taken to be the same as similar bands in heavier Pb isotopes with respect to intensity

criteria For the weakest bands 1a and 1b the labels recall the fact that they are built on

band 1

Band 1 is the most intense of the five bands with about 17 of the total intensity of

the reaction channel Starting at 2584 keY on the 292- isomeric state (11 ns) band 1

extends up to 5218 keY (452-) and decays to group A levels

Both bands 1a and 1 b (each rv 06 intensity) are built on the top of band 1 Band

1a starts at 5092 keY at spin 452- and is observed up to the 7154 keY level (572-)

Band 1 b displays a regular behaviour at slightly higher excitation energy (5825 ke V) and

spin (492-) than band la and extends up to 7713 keY (612-)

On the positive parity side we have found two regular bands decaying to group B

labelled 2 and 3 with intensities of rv 7 and 3 respectively Band 2 is located at 4297

keY (392+) up to 7932 keY (612+) and band 3 is built on the 4944 keY level (432+)

reaching 6145 keY (512+)

Triple gated spectra showing the five dipole tlI == 1 bands are displayed in Figure 2

(for bands 1 1a and 1b) and Figure 3 (for bands 2 and 3)

For the two most intense bands (1 and 2) E2 cross-over transitions can be observed

allowing us to extract the experimental transition probability ratios B(M1)B(E2) with the hypothesis that tlI == 1 transitions have a pure magnetic character The B(M1 )B(E2)

ratios are summarized in Table 2

III Discussion

A large number of dipole tlI 1 bands are known in lead isotopes [4-24] These

structures have been interpreted in terms of weakly oblate-deformed high-Ilt quasiprotons

1[([505]92- reg [606]132+)K=11- and 1[([505]92- reg [514]72-)K=8+ coupled to rotation

4

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 4: Institut Universite Claude Bernard de Physique N ucleaire

A total of 6 x 108 four- and higher fold events were recorded on magnetic tapes about

40 of the events corresponding to 193Pb residues The other main open channels were 192Pb (-120 of the events) 190Hg (-115) and 193Tl (-112) The data analysis has

been performed by means of multigated spectra and two-dimensional matrices Moreover

a cube has also been built and analysed using the analysis package LEVIT8R [30]

Angular distributions have been measured using four matrices corresponding to the four

independent angles of EUROGAM II (22deg 46deg 71deg and 80deg) Each matrix contains -rays

detected at one angle on the first axis in coincidence with transitions at any angle on the

second axis Furthermore the matrices were gated on several yrast transitions in the level

scheme in order to select the 193Pb nucleus

The level scheme previously established up to spin 332 Ii and 32 MeV excitation

energy by Lagrange et al [25] has been both significantly extended (up to 7932 ke V and

spin 612 Ii) and modified at lower excitation energy For instance previous work had

not observed the 311 keY transition (272+ -+252+) and all group B (see below for the

label explanation) representing about 50 of the 2213 keY (252+) level feeding intensity

Furthermore the cascade built on the 1994 keY (252+) state and beginning with the 677

keY transition was not observed in the previous work More than one hundred fifty -rays

have been included in the new level scheme shown in Figure 1 Table 1 contains the energies

and intensities (normalized at 100 for the 172+ -+132+ 8816 keY transition) for all

the transitions For the most intense -rays the angular coefficient a2 has been extracted

and the results are in excellent agreement with those of Lagrange et al [25] obtained by

electron measurements with the exception of two transitions 180 and 556 ke V located

above the 22 ns isomeric state at 1586 ke V The explanation for the different assignments

of the 556 keY multipolarity is probably due to the presence of another transition of 555

keY (292+ -+272+ Group B in Fig 1) twice as intense and of ~I == 1 nature This

transition was unresolved in the previous experiment Concerning the 180 keY transition

case our angular distribution measurement clearly suggests a ~I == 1 multipolarity as

opposed to the ~I == 2 one previously assigned with extremely low statistics

It is convenient to give labels to different groups in the level scheme in Figure 1

Thanks to the similarity of the low-lying states of 193Pb and those of 195Pb we will adopt

the label ordering chosen by M Kaci et al [20] Group A is built on the 132+ state

which is suggested by Lagrange et al [25] to be nearly 100 keY above the P32 ground

state Because of the lack of an experimental measurement of this value we will consider

the 132+ level as the reference for excitation energies Group B is built on top of group A

and contains intense dipole ~I == 1 (M1) and cross-over ~I == 2 (E2) transitions deexciting

positive parity states A sequence of five ~I == 1 and four ~I == 2 transitions seems to

appear in this complex group B starting at the 2426 keY (272+) level and extending

to the 4313 keY (372+) level In this range of excitation energy the intensity of this

3

- - ~-- - --------shy

structure is weaker than the other ones for instance the one based in the 2524 ke V level

An ensemble of mainly quadrupole transitions can be gathered into group C These are

built on the 22 ns isomeric state (212- at 1586 keY) Finally group D comprises all levels above the 11 ns isomeric state at 2584 keY (292-)

In the present work five new tlI == 1 structures have been clearly identified and the

dipole nature of their transitions unambiguously demonstrated by angular distribution

measurements Intensity arguments require a magnetic character of these tlI == 1 transishy

tions All these dipole bands have a rotational behaviour with regularly spaced transitions

The exceptions to this are tops of bands 1 and 2 where one can observe (see Figure 1)

backbending indicating pair breaking All these dipole bands have been connected to the

low-lying level scheme enabling their excitation energies and spin values to be determined

The five dipole bands can be separated into two sets with opposite parity Bands 1 la

1b have negative parity and bands 2 3 positive parity For bands 1 2 3 the labels have

been taken to be the same as similar bands in heavier Pb isotopes with respect to intensity

criteria For the weakest bands 1a and 1b the labels recall the fact that they are built on

band 1

Band 1 is the most intense of the five bands with about 17 of the total intensity of

the reaction channel Starting at 2584 keY on the 292- isomeric state (11 ns) band 1

extends up to 5218 keY (452-) and decays to group A levels

Both bands 1a and 1 b (each rv 06 intensity) are built on the top of band 1 Band

1a starts at 5092 keY at spin 452- and is observed up to the 7154 keY level (572-)

Band 1 b displays a regular behaviour at slightly higher excitation energy (5825 ke V) and

spin (492-) than band la and extends up to 7713 keY (612-)

On the positive parity side we have found two regular bands decaying to group B

labelled 2 and 3 with intensities of rv 7 and 3 respectively Band 2 is located at 4297

keY (392+) up to 7932 keY (612+) and band 3 is built on the 4944 keY level (432+)

reaching 6145 keY (512+)

Triple gated spectra showing the five dipole tlI == 1 bands are displayed in Figure 2

(for bands 1 1a and 1b) and Figure 3 (for bands 2 and 3)

For the two most intense bands (1 and 2) E2 cross-over transitions can be observed

allowing us to extract the experimental transition probability ratios B(M1)B(E2) with the hypothesis that tlI == 1 transitions have a pure magnetic character The B(M1 )B(E2)

ratios are summarized in Table 2

III Discussion

A large number of dipole tlI 1 bands are known in lead isotopes [4-24] These

structures have been interpreted in terms of weakly oblate-deformed high-Ilt quasiprotons

1[([505]92- reg [606]132+)K=11- and 1[([505]92- reg [514]72-)K=8+ coupled to rotation

4

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 5: Institut Universite Claude Bernard de Physique N ucleaire

structure is weaker than the other ones for instance the one based in the 2524 ke V level

An ensemble of mainly quadrupole transitions can be gathered into group C These are

built on the 22 ns isomeric state (212- at 1586 keY) Finally group D comprises all levels above the 11 ns isomeric state at 2584 keY (292-)

In the present work five new tlI == 1 structures have been clearly identified and the

dipole nature of their transitions unambiguously demonstrated by angular distribution

measurements Intensity arguments require a magnetic character of these tlI == 1 transishy

tions All these dipole bands have a rotational behaviour with regularly spaced transitions

The exceptions to this are tops of bands 1 and 2 where one can observe (see Figure 1)

backbending indicating pair breaking All these dipole bands have been connected to the

low-lying level scheme enabling their excitation energies and spin values to be determined

The five dipole bands can be separated into two sets with opposite parity Bands 1 la

1b have negative parity and bands 2 3 positive parity For bands 1 2 3 the labels have

been taken to be the same as similar bands in heavier Pb isotopes with respect to intensity

criteria For the weakest bands 1a and 1b the labels recall the fact that they are built on

band 1

Band 1 is the most intense of the five bands with about 17 of the total intensity of

the reaction channel Starting at 2584 keY on the 292- isomeric state (11 ns) band 1

extends up to 5218 keY (452-) and decays to group A levels

Both bands 1a and 1 b (each rv 06 intensity) are built on the top of band 1 Band

1a starts at 5092 keY at spin 452- and is observed up to the 7154 keY level (572-)

Band 1 b displays a regular behaviour at slightly higher excitation energy (5825 ke V) and

spin (492-) than band la and extends up to 7713 keY (612-)

On the positive parity side we have found two regular bands decaying to group B

labelled 2 and 3 with intensities of rv 7 and 3 respectively Band 2 is located at 4297

keY (392+) up to 7932 keY (612+) and band 3 is built on the 4944 keY level (432+)

reaching 6145 keY (512+)

Triple gated spectra showing the five dipole tlI == 1 bands are displayed in Figure 2

(for bands 1 1a and 1b) and Figure 3 (for bands 2 and 3)

For the two most intense bands (1 and 2) E2 cross-over transitions can be observed

allowing us to extract the experimental transition probability ratios B(M1)B(E2) with the hypothesis that tlI == 1 transitions have a pure magnetic character The B(M1 )B(E2)

ratios are summarized in Table 2

III Discussion

A large number of dipole tlI 1 bands are known in lead isotopes [4-24] These

structures have been interpreted in terms of weakly oblate-deformed high-Ilt quasiprotons

1[([505]92- reg [606]132+)K=11- and 1[([505]92- reg [514]72-)K=8+ coupled to rotation

4

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 6: Institut Universite Claude Bernard de Physique N ucleaire

aligned quasineutrons from i 13 2 152 and P32 orbitals For the following we will use the

notation of the cranked shell model introduced by H Hiibel et al [31] in 194Hg (A B C

and D for i 13 2 E and F for 152 and P32 orbitals) but in order to discuss the properties of

the isotopic lead series from A=192 to A=200 we will also use the complete orbital labels

As we discuss below comparison of the dipole bands of 193 Pb with those in the heavier

lead isotopes 195197199Pb [201815] allows the following configuration assignments to be

suggested v (i 13 2) 07r ([505]92- 0 [606]132+) K=ll- called All (band 1)

v (i 13 2)3 07r ([505]92- 0 [606]132+) K=ll- called ABC11 (band 1a)

v ((i13 2)2 0 (P32) ) 07r ([505]92- 0 [606]132+) K=ll- called ABEF11 (bands 23)

v (i132 )2 0 (52)) 0 7r ([505]92- 0 [606]132+) K=ll-

Concerning the structure in group B discussed above the lowest state lies at the same range

of excitation energy than the 11 ns isomeric state (292-) at 2584 keY Its configuration

should be of three quasiparticule excitation type A possible interpretation could be

not definitively observed up to now in heavier lead isotopes At this point of the discussion

the spin values of the band heads are not understood and the configuration assignment of

the last new dipole fjI 1 band (lb) remains unknown

Band 1 is built on the 292- isomeric state (11 ns) at 2584 ke V and consists of 8

fjI = 1 transitions up to the spin 452- The spin and parity of the band head lead us to

propose the three quasiparticle v (i132) 0 7r ([505]92- 0 [606]132+) K=ll- configuration

(called All) for this band This is corroborated by the following points

i) For all dipole bands observed in odd (even) Pb isotopes the K =11- two quasiproton

excitation coupled to a one quasineutron (two quasineutron respectively) excitation is the

most intense This is also the case for band 1 in 193Pb Moreover the excitation energy of

the band head fits perfectly with the systematics of the similar configuration All observed in 195197199Pb [201815] presented in Figure 4

ii) The energy of the All configuration can be roughly estimated using the experishy

mental energies of the I=11 quasiproton states of neighbouring even 192194Pb isotopes

[1314] and the V (i132) energy in 193Pb

E(All193 Ph) ~ ~ [E(ll- 92 Ph) + E(ll- 94 Ph)] + E(132+ 93 Ph)

~ 2838 keY

This value is in reasonable agreement with the experimental energy of 2584 ke V obshy

served for the All band head

5

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 7: Institut Universite Claude Bernard de Physique N ucleaire

iii) The mean value of the extracted B (M1 ) B(E2) ratio is 22plusmn7 (f-L N eb)2 in the

same range that the experimental B(M1)B(E2) ratios of the similar bands in 195197199Pb

[202324] This large value of the B(M1)B(E2) ratio (gt 10 (f-LNeb) typical for lead isotopes implies a strong B(M1) and then a high-]( configuration

Above band 1 two sub-structures are observed labelled 1a and 1b decaying to band

1 One can clearly consider band 1a as based on a five quasiparticle excitation and more

precisely on a two quasi neutron excitation added to the All configuration occuring at the

spin of 452- and at the excitation energy of 5092 keV This is corroborated by two facts

i) Figure 5a compares the behaviour of the angular momentum projections Ix along

the rotational axis as a function of the rotational frequency for bands 1-la in 193Pb to

those reported in 195197199Pb [201815] and interpreted as All at low spin and ABC11

(ie v (i 13 2 )3 reg7r ([505]92- reg [606]132+) K=l1 ) at high spin The progressive alignment

of an i13 2 neutron pair along the rotational axis occurs at the same frequency of about

035 MeV for all these four odd Pb isotopes The systematics exhibit another similar

characteristic the gain in terms of Ix of about 10 Ii at the frequency of 03 MeV

ii) We can estimate the ABC11 experimental excitation energy from both ](==11shylevel in 192194Pb and yrast 332+ state (ABC) in 193Pb

E(ABCll193 Pb) ~ ~ [E(1l-1 92 Pb)+E(1l-194 Pb)] +E(332+193 Pb)

~ 5451 keV

This value is close to the 5091 keV experimental value for the band head of band 1a

Therefore this leads us to propose the configuration ABC11 for band 1a

Concerning band 1b it is worth noting that such a dipole band has never been observed

in heavier Pb isotopes It appears weakly at higher excitation energy (5825 keV) and spin

(492-) than band 1a Band Ibis well established in the level scheme and connected to

band 1 via three dipole transitions 354 320 and 323 ke V which we assume are Ml Thus

band 1b has the same negative parity as band 1 (and 1a) The interpretation of this band

will be discussed in more detail later

Bands 2 and 3 can be discussed together They occur at 4296 ke V and 4944 ke V

excitation energy respectively and are built on the positive states 392+ and 432+ reshy

spectively Three alternative configurations can be proposed satisfying spin and parishy

ty for the two band heads v (i 13 2 )3 reg 7r ([505]92- reg [514]72-)K=8+ (ie ABC8)

and v ((i132)2 reg (P32 or 152)) reg 7r([505]92- reg [606]132+)K=11- (ie ABEF11) In

197199Pb [1815] both ABEll and ABF11 have been observed and the most intense band

has been labelled ABEll The following considerations lead us to propose these two latter

configurations to understand these two bands

i) The systematics in terms of projection of the angular momentum on the rotational

axis and of excitation energy confirm this ABEF11 assignment (see Figures 5b 5c) In

6

i

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 8: Institut Universite Claude Bernard de Physique N ucleaire

particular it is worth noting that the alignment of an i13 2 neutron pair occurs at the top

of band 2 in 193Pb as was the case for the same band in 195197Pb [2018]

ii) The behaviour of the moment of inertia is quite similar to that of band c in 194Pb

[12] interpreted as AB11 at low spin and ABCD11 at high spin The saturation due to the

alignment of the next i 132 neutron pair (CD) observed in both cases in Figure 6 appears

at the same frequency (038 MeV)

Band 2 is intense enough to allow us to extract a mean B(M1)B(E2) ratio value

of 14 plusmn 4 (PN eb)2 which is consistent with the suggested configuration Therefore we

propose the following assignments ABEll for band 2 and ABF11 for the weaker band

3 As it will be discussed in the next paragraph the two orbitals P32 (1=32) and 152

(1=52) are located within about 100 keV So it is impossible to determine precisely

which are E and F orbitals since they are probably both admixtures of the P32 and 152

orbitals even at these low deformations

Band 1 b cannot be understood by analogy with neighbouring odd lead isotopes Moreshy

over the spin values of all band heads which differ by 1 or 2 nfrom one odd lead isotope to

another are not yet explained So let us discuss the properties of the bands in 193Pb in the

framework of static constrained Hartree-Fock+BCS calculations [27-28] using the Skyrme

effective interaction with the parametrization SkM This treatment has been already apshy

plied to the dipole bands in 192 Hg described in reference [32] In that case independent

multiquasiparticle (1 qp 3 qp 5 qp 7 qp ) excitations with no residual interaction and no

Coriolis treatment between the rotational structures were constructed Figure 7 presents

the neutron single particle spectra versus the deformation for oblate shapes for 192Pb As

for all neighbouring lead isotopes the ground state in 192Pb has a spherical shape But

if we now consider the two quasiproton ]=11- excitation the stabilization of the potenshy

tial energy is obtained for an oblate deformation with a mass quadrupole moment around

QOm =-12 b corresponding to a charge quadrupole moment of Qoc=-51 eb Since all the

bands observed in the 193Pb nucleus are interpreted as built on the K =11- excitation the

valence particle states are determined at this oblate deformation For neutrons near the

Fermi level and grouped within less than 2 MeV of each other the following valence orshy

bitals are available (see Figure 7) 11r= 32-(P32) 52-(52) 32+(i 132) 12+ (i 132)

12-(p32) above and 52+(i132) 72+(i132) 12-(h9 2) 32-(h9 2) 92+(i 13 2) below

An initial result of our theoretical calculations gives an explanation of the general

trend observed for the band-head spins of the lead isotopic series involving the i13 2 0 K =11- coupling Indeed if we consider for instance the most intense All dipole band

the experimental spins are 252- e99 Pb [15]) 272- e97 Pb [18]) 272- e95Pb [20]) and

292- (193Pb this work) When decreasing the mass number from A=200 down to A=192

the Fermi level reaches deeper into the i 132 subshells with larger 1 projections (ie less

aligned to the rotational axis) such as n 32 52 and 72 for 192Pb This phenolnenon

7

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 9: Institut Universite Claude Bernard de Physique N ucleaire

appears more clearly by considering the corresponding quasiparticle scheme One can

see in Figure 8 the evolution of the valence quasiparticle energies for the i13 2 and h9 2

orbitals The lowest configuration of the i 13 2 shell is it == 12 for 2ooPb 198Pb and 196Pb

it == 32 for 194Pb and it == 52 for 192Pb independently of the deformation in a range

from QOm == -6 to -12 b If now we calculate geometrically with the simplest model the

total spin value resulting from the coupling of the quasiproton K ==11- configuration along

the symmetry axis with an i 13 2 quasineutron we obtain different values when selecting

different it projections (Figure 9) By taking the lowest theoretical it values namely

it==12 for 200Pb and it==52 for 192Pb the calculations reproduce this evolution ie the

increase of the band-head spin when A decreases

The same shifts of around 1 or 2 nare found for the other bands in 193Pb as ABCll

and ABEFll which contain at least one i 13 2 quasineutron in their configurations

Concerning now the last band lb observed at about 600 keY above the band head of

band la one can exclude its interpretation as a seven quasiparticle (like ABCll + 2 qp)

excitation for the two following reasons

i) Band 1 b would be expected at a much higher exitation energy It appears at

relatively similar energy than band la Moreover band lb does not decay to band la

which would be expected if it was built on ABCll

ii) The alignment along the rotational axis of bands l-lb plotted in Figure 5d is similar

to that of bands l-la The experimental gain of about 4 n is not enough to be caused by

a seven quasiparticle excitation

We propose two configurations

bull v (i 13 2 )3 0 1( ([505]92- 0 [606]132+)K=U- by considering larger it projections

for one or two of the three i 13 2 subshells than those needed for band la For instance

in order to reproduce the experimental spin value of 492 n we can couple the three

it == 123252 to K == 11- with the generalization of the formula used for the All

coupling

It is worth noting that in that case we should observe some cross-talk transitions between

bands la and 1b their non-observation is probably due to the weak intensity of the bands

bull v ((i132) 0 (h92)2) 01(([505]92- 0 [606]132+)K=U- because of the presence of

the h9 2 orbital near the Fermi level in 192Pb as shown in Figure 8

According to our calculations the first configuration energy is closer to the experimenshy

tal one but the difference with the second configuration involving two h9 2 quasineutrons

is not significant enough to distinguish between both proposed assignments

8

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 10: Institut Universite Claude Bernard de Physique N ucleaire

Another approach different to the strong coupling model is the tilted-axis cranking

(TAC) model [29] which has been successfully applied in heavier 197199-202Pb isotopes

[181519] In this model both proton and neutron angular momentum components pershy

pendicular to the total angular momentum decrease implying a gradual alignment the

so called shears effect A direct consequence of the shears effect is a decrease of the

B(M1) values along the bands Such experimental B(M1) values have been obtained in

196-199Pb nuclei [1721-24] and show a decrease with increasing spin within the bands as

expected for the shears mechanism For the lightest lead isotopes only B(M1)B(E2)

ratios are available and no significant variations of these values have been observed In our

results in 193Pb we can just note a slight decrease of this ratio within band 1 when the

spin increases but only with three values (see Table 2) Lifetime or more B(M1)B(E2)

ratios are required in order to conclude on the validity of the shears effect in the lightest

lead isotopes

IV Conclusions

Five new dipole 111 = 1 bands have been identified and connected to the level scheme

in 193Pb A difference of 1-2 n for the band-head spin has been established in the dipole

bands at variance with the similar ones in heavier odd lead isotopes These results have

been explained in the framework of microscopic Hartree-Fock+BCS calculations and conshy

figurations proposed for the five structures The prominence of large n orbitals of the

v (i13 2) shell has been demonstrated Lifetime measurements will be necessary to assess

the validity of the TAC model for the light lead isotopes

Acknowledgements

We would like to thank all those involved in the setting up and commissioning of

EUROGAM 2 especially D Curien G Duchene and G de France We are especially

indebted to A Meens of the CRN Strasbourg for manufacturing the targets and the crew of

the VIVITRON We are grateful to J Meyer for the theoretical calculations on lead isotopes

and DC Radford for providing the Radware analysis software The EUROGAM project

is funded jointly by IN2P3 (France) and EPSRC (UK) One of us (ANW) acknowledges

the receipt of an EPSRC postgraduate studentship

9

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 11: Institut Universite Claude Bernard de Physique N ucleaire

References

[1] Moore EF et aI Phys Rev Lett 63360 (1989) [2] Hugues JR et al Phys Rev C51 447 (1995) [3] Ducroux L et al Phys Rev C53 2701 (1996) [4] Clark RM et al Phys Lett B275 247 (1992) [5] Baldsiefen G et al Phys Lett B275 252 (1992)

[6] Fant B et aI J of Phys G17 319 (1991)

[7] Clark RM et aI Z Phys A342 371 (1992)

[8] Baldsiefen G et al Z Phys A343 245 (1992)

[9] Kuhnert A et al Phys Rev C46 133 (1992)

[10] Dagnall PJ et al J of Phys GI9 465 (1993)

[11] Hugues JR et al Phys Rev C47 R1337 (1993) [12] Clark RM et al Nuci Phys A562 121 (1993) [13] Plompen AJM et ala Nucl Phys A562 61 (1993) [14] Porquet MG et aI J of Phys G20 765 (1994)

[15] Baldsiefen G et aI Nuci Phys A574 521 (1994)

[16] Fant B et aI Phys Scr T56245 (1995)

[17] Moore EF et aI Phys Rev C51 115 (1995)

[18] Baldsiefen G et aI NucI Phys A587 562 (1995)

[19] Baldsiefen G et aI NucI Phys A592 365 (1995)

[20] Kaci M et al Z Phys A354 267 (1996) [21] Wang TF et aI Phys Rev Lett 691737 (1992)

[22] Hugues J R et al Phys Rev C48 2135 (1993) [23] Clark RM et aI Phys Rev C50 84 (1994)

[24] Neffgen M et aI Nuci Phys A595 499 (1995) [25] Lagrange JM et aI Nuci Phys A530 437 (1991)

[26] Nolan PJ NucI Phys A520 657c (1990) [27] Bonche P et al Nuci Phys A519 509 (1990) [28] Meyer J et al Nuci Phys A588 597 (1995) and private communication

[29] Frauendorf S Nucl Phys A557 259c (1993)

[30] Radford D Nuci lnst Meth A361 297 (1995) [31] Hubel H et aI Nuci Phys A453 316 (1986)

[32] Le Coz Y et al Z Phys A348 87 (1994)

10

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 12: Institut Universite Claude Bernard de Physique N ucleaire

Table captions

Table 1 Energies total intensities (corrected for detector efficiency and electron internal

conversion) normalized at 100 for the 172+ ~132+ 8816 keY transition

angular distribution coefficient a2 and assignments of transitions in 193Pb

Table 2 B(M1)B(E2) ratios measured in 193 Pb

Figure captions

Figure 1 Partial level scheme of 193Pb The energies are indicated in keY and the width

of the arrows is proportional to the total intensity of the transitions

Figure 2 Background-subtracted triple-gated spectra for dipole bands 1 1a and 1 b in

193Pb The gates are labelled by and the transition energies of the bands

are indicated in keV For each spectrum the transitions of the other bands in

coincidence are indicated by their corresponding band label and the transitions

decaying the band are labelled by their energy and spins

Figure 3 Background-subtracted triple-gated spectra for dipole bands 2 and 3 in 193 Pb

The gates are labelled by and the transition energies of the bands are indicated

in keY and the transitions decaying the band are labelled by their energy and

spIns

Figure 4 Experimental excitation energies of band heads for All ABC11 ABEF11 and ABC configurations in 193195197199201Pb (this work and [20181519])

Figure 5 Comparison between the angular momentum along the rotational axis for all the

new dipole structures in 193Pb and dipole bands in 195 Pb [20] 197Pb [18] and

199Pb [15] as a function of the rotational frequency

Figure 6 Dynamical moments of inertia for similar bands in 193Pb (band 2) and 194Pb

(band c [12]) as a function of the rotational frequency

Figure 7 Neutron single particle energies as a function of the mass quadrupole moment in

192Pb for oblate shapes obtained by HF+ BCS calculations [28] using the SkM

effective force For each orbital the corresponding n value is indicated

Figure 8 Quasineutron energies of valence i 13 2 (line) and h92 (dashed line) subshells for 192194198200Pb obtained by HF+BCS calculations [28] using the SkM effective

force For each mass number the deformation has been determined at the two quasiproton ] = 11 stabilization point and the lowest orbital taken as reference for the quasiparticle energies

Figure 9 Schematic representation of the coupling of a two quasiproton ] = 11- excitashy

tions along the deformation axis to an i 13 2 quasineutron with varying n projecshy

tions

11

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 13: Institut Universite Claude Bernard de Physique N ucleaire

II ~(keV) II ID Assignment II GROUP A

(409)

(665)

(721) 1581 186 (17) -021 plusmn 004

1840 136 (13) 012 plusmn 005

2129 259 (22) -018 plusmn 007

2190 84 (08) 019 plusmn 011

4319 34 (07) 028 plusmn 014

4973 10 (04) 113 plusmn 036

5201 819 (35) 020 plusmn 005

5278 138 (10) 018 plusmn 010

5911 283 (17) 022 plusmn 010

5931 346 (21) 019 plusmn 007

6223 44 (08)

6682 189 (13) -046 plusmn 011

7397 238 (14) -045 plusmn 007

8119 80 (05) 025 plusmn 008

8816 100 019 plusmn 005

10223 143 (05) -011 plusmn 009

( 415) 856

982

1460

1484

1640

1969

2345

2792

2948

2963

2964

3111

3240

3387

3427

3640 3679 3773 3820

3887 3958

4095 4196

4387

4481 4489

GROUP B

55 (05)

62 (08)

97(16)

74 (08)

35 (08)

11 (03)

54 (06)

02 (01)

79 (05)

06 (03) 163 (10)

02 (01)

05 (02)

105 (06) 78 (05) 43 (06) 06 (03)

24 (04)

12 (05) 56 (06)

47 (04)

15 (04)

17(04)

15 (04) 06 (03)

-035 plusmn 011

-042 plusmn 014

-041 plusmn 010

-019 plusmn 015

-019 plusmn 010

013 plusmn 019

-040 plusmn 009

-032 plusmn 010

-028 plusmn 005 -036 plusmn 011 -019 plusmn 008

-018 plusmn 012

021 plusmn 006

-046 plusmn 008

023 plusmn 010

-027 plusmn 010

Table 1 page 14 Ducroux et aI Z Phys A

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 14: Institut Universite Claude Bernard de Physique N ucleaire

Assignment

4612

4615 4629 5102 5324 5404

5453

5554 5675

5818

6099 6441 6776 7017 7067 7423 7551

7594

7702

7735

7915 8517 9460

10301

11452

11749

1800

2046

2631 3410

3850 4214

4727

5470

5427

5560

5650 5950 6132 6387 6574 6726

6934 7128 7306 7666 8064

05 (02) 07 (03) 143 (11)

05 (02) 35 (05)

02 (02)

02 (01) 122 (10)

12 (04) 11 (04)

12 (03) 04 (02) 125 (12) 17 (03)

16 (02) 53 (08) 10 (02)

26 (03)

04 (02)

07 (03) 08 (02) 154 (12)

01 (01)

01 (01) 03 (01)

02 (01) GROUP C

57 (04)

03 (01) 07 (02) 06 (02)

06 (03)

05 (02) 13 (05)

13(04)

04 (02)

61 (05)

13 (03) 07 (04) 17 (05) 08 (03) 04 (02)

12 (04)

05 (02) 04 (02) 04 (02) 02 (01) 20 (04)

--

-035 plusmn 010

-010 plusmn 008

-

--043 plusmn 008

-015 plusmn 014

050 plusmn 014 039 plusmn 023 019 plusmn 008 024 plusmn 012

040 plusmn 023 022 plusmn 008 037 plusmn 021

025 plusmn 011

-

-084 plusmn 031 017 plusmn 009

-

-038 plusmn 033

-

-012 plusmn 006

--

013 plusmn 019

-

-030 plusmn 013 026 plusmn 012

001 plusmn 019

030 plusmn 005

026 plusmn 012

030 plusmn 011 021 plusmn 013 021 plusmn 025 019 plusmn 012

039 plusmn 022

083 plusmn 033

037 plusmn 018

Table 1 page 24 Ducroux et aI Z Phys A

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 15: Institut Universite Claude Bernard de Physique N ucleaire

Assignment IItotII E~(keV) II GROUP D

) _ (5-)(3 (33-) _ (31-)

-1565 07 (03) -06 (03)1580 2 2

(~5-) _ (~3-)-032 plusmn 015 ( 3 -) _ (37 - )

02 (02)1759 -006 plusmn 01212 (03)2080 2

(-) _ (~3-)-022 plusmn 015 (~1-) _ (~9-)

10 (04)2311 -032 plusmn 011

( -) _ (~3 - ) 08 (03)2617

-(~3-) _ (~1-)

03 (02)2648 -017 plusmn 01603 (02)2952

41- 39shy-039 plusmn 01108 (03)3034 2 -2 (37-) _ ~5--039 plusmn 01016 (04)3196 2(~7-) _ ~5--027 plusmn 01007 (03)3197

(i-) - (~7-)-034 plusmn 011 (~3-) _ ~1-

09 (03)3236 -

(~3-) _ (~-) 03 (02)3257 04 (02) -3288

(~5-) _ ~3--031 plusmn 009 (~7-) _ (~5-)

12 (03)3537 -

( ~3 -) - ~1-02 (02)3624

-034 plusmn 02104 (03)3908 (~1-) _ 39shy-04 (03)3966 2

(i-) - (~3-)-018 plusmn 026 (3-) _ (7-)

05 (03)4065 -008 plusmn 01513 (03)4156

41- 39shy-020 plusmn 013 -2

( ~3 -) _ (~1 -) 11 (02)4241 2

-049 plusmn 01904 (03)4420 39- 37shy

-023 plusmn 00825 (04) 2 -24449 41 - 39shy-06 (03) 2 -2

(41-) _(39-shy4553

2 ~ 2 ) ( 3 -) _ (33 - )

-021 plusmn 01110 (02)4829 -018 plusmn 01106 (03)4878 2

( 31-) __ 29shy-10 (03)6758 2 2( ~5 -) _ (~1 -)-(33-) 29shy

01 (01)7117 056 plusmn 014 2 -213 (04)8340

39- 35shy- -202 (01)8465 241 - 37shy-01 (01) 2 -2

(45-- (41shy8691

- 2 ) - 2 ) (43-) (39-)

02 (01)11295 -02 (01)12252 2 - 2

Band 1 31- 29

165 (15) -035 plusmn 013 -21021 233- _ 31 172 (11) -032 plusmn 0052523 2 2

41- 39shy-033 plusmn 01328 (02) 2 -23345

43- 41shy-057 plusmn 016 -218 (04)3577 2

35 - 33shy130 (05) -036 plusmn 005 2 -23815

45 - 43shy-029 plusmn 013 2 -213 (03)3903

37- 35---2-037 plusmn 00777 (04)4016 2

39- 37shy-240 (03) -039 plusmn 0144138 2

35 31shy-205 (02) -6338 2

43-) _(39shy(2 - 2 )01 (01) -6923

41 - 37shy-204 (02) -7483 237- 33shy

10 (02) 2 -2020 plusmn 0197831 39- 35shy08 (02) 2 -- 28154

Ducroux et al Z Phys ATable 1 page 34

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 16: Institut Universite Claude Bernard de Physique N ucleaire

ASSignme]~ E(keV) II 10

06 (03)2391 05 (02)2656 05 (03)3295 04 (03)3756 03 (01)4129 02 (01)4392

Band 1a -020 plusmn 014 -030 plusmn 016 -053 plusmn 013 -059 plusmn 015

--020 plusmn 026

(~7 )~(~5) (~9-) ~ (J-) (521-) ~ (~-)

( 53-) ~ (51 - ) 2 2

(55-) ~ (53-)2 2

(sectj-) ~ (~-)

1763 06 (02)

2837 05 (02)

3119 04 (03)

3304 04 (02)

3845 03 (02)

4015 02 (01)

900 -1489 66 (10)

2320 69 (10)

2916 70 (07)

3652 57 (05)

3896 41 (04)

4161 32 (04)

4261 12 (02)

4327 06 (02)

(4261 ) 04 (03)

(4161 ) 02 (02)

6568 06 (02)

7547 08 (02)

8056 02 (01) 8422 03 (01)

8588 01 (01)

Band 1b -047 plusmn 009

-039 plusmn 009

-038 plusmn 014

-044 plusmn 010 -021 plusmn 019

-Band 2

--062 plusmn 019

-034 plusmn 009 -033 plusmn 005

-038 plusmn 005 -029 plusmn 007

---

-------

Band 3

(521-)~(~ ) (5

23-) ~ (5

21-)

(525-) ~ (523-)

( 527-) ~ (5i - ) ( 529-) ~ (5J - ) (yen -) ~ (2-)

(~1 +) ~ (3i+) (~3+) ~ (4f +) (~5+) ~ (~3+) (~7+) ~ (~5+) (~+) ~ (4J+) (51+) ~ (~9+)2( 53 +) ~ (5f + ) 2(55+) ~ (5~+)2( 57 +) ~ (55 + )

2 2(59+) ~ (57+)

2 2( 61+) ~ (5i + ) 2(~9+) ~ (~5+) (521 +) ~ (4J+) (523+) ~ (~+) ( 55 +) ~ (51 + )

2 2(57+) ~ (-yen+)2

2243 25 (04) -057 plusmn 010 (~5~) ~ (~3+)

2675 28 (03) -024 plusmn 012 (~7+) ~ (~5+)

3262 22 (02) -034 plusmn 010 (~9+) ~ (~7+)

3824 14 (03) -043 plusmn 008 (yen+)~(1+)

Table 1 page 44 Ducroux et al Z PhysA

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 17: Institut Universite Claude Bernard de Physique N ucleaire

E1 (Ml) keY

E1 (E2) keY

B(Ml)B(E2) ratio (-tNeb)2

Band 1 382 402 414

634 783 815

28 plusmn 5 22 plusmn 4 16 plusmn 6

Band 2 365 390 426

657 755 842

shy 15 plusmn 3 12 plusmn 3 15 plusmn 3

Table 2 Ducroux et aI Z Phys A

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 18: Institut Universite Claude Bernard de Physique N ucleaire

Bond

2Bo

nd 1b

~

I-

bull aq i

i (

)

~ u ~ (

) i

i 0 ~ gtlt (

) lt

+shy e

N

~

Band

10

193 Pb

(i 713

~+

639

~

547

Grou

p A

P

~

CJ)

gt

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 19: Institut Universite Claude Bernard de Physique N ucleaire

Otrgt

~ = = =Q rr

___ shy

V sAld Z Ie la xnOlJna Z alnll~

Counts t-t N ~

N ~ lt lt eN ~ e lt e 0 lt lt lt lt e

0 lt lt lt lt e0 lt 00 t-t deg lt

0= = = Q= Q= ~ =

t-t til 0

~U ~

~ lL176 Ib

It N lt o I-gt ~

213 [2712+252+]

231 239

~~ 1 l la 252~66lC

~ 1~ I~ Ib= 6 284trgt ~

~ -~ 0 -0 312 ~ 320 ~A 1U ~ 324 330 330 1 ~ ~ 1 1 335pL~

=- till o ~

c= 11 1 J 358

3161 382 385 390

1 1 1 402~-ti 402 1 4141 413

~ til lt

~~------------------~~----------------~----------------~ lt

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 20: Institut Universite Claude Bernard de Physique N ucleaire

V sAld middotZ Il faxnoJgtna ~ aJn~~

Counts ~ ~ N N

~ N UI UI o Ul o o o o oo = o o o o o o =gt o o = ~ 146 [(372+)-(352+)]

~ UI o

164 [(352+)-3312+]

== N ~ o c=

__

1_1

-===========J 213 [272+-252+] ~

224 N UI=

268

I 2 tH

- 311 [2712+-252+]rgJ~~ 326

~ ~tH ~UI ~ = -lt ~- 382

J rshy = = UI = 463 [332+-3112+]

UI o o 520 [212+-172+]

146 [(372+)(352+)]

========~amp~= 148 164 [(3512+)-332+]

197 [(412)-(3912+)]

213 [2712+-2512+]

232

~~======r== 292

311 [272+2512+]

=~===~==--=== 365

-========~===- 390

- 416

~ 431 426

463 [332+-312+]

==~ c t)

520 [212+-172+]

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 21: Institut Universite Claude Bernard de Physique N ucleaire

70

60

50- gt ~ 40 -

ca ~ 30 ~

20

10

00

ABEIFIIABCII

ABCAll

I I bull bull I

A

193 195 197 199 201 A (Z=82)

Figure 4 Ducroux et aI Z Phys A

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 22: Institut Universite Claude Bernard de Physique N ucleaire

35

30

25

20

15

10

~

~ 50

~ 35-(

30

25

-20 shy

15

10

bull Pb 193 band 1 - 1 a

bull Pb 195 band 1 A 11 -ABC11 APb 197 band 2 A11-ABC11

Pb 199 band 1 A 11 -ABC 11

a)

02 04 06

bull Pb 193 band 3 ABF11 A Pb 197 band 3 ABF 11

Pb 199 band 3 ABF11

c)

02 04 06

35

30

25

20

15

10

50

35

30

25

20

15

10

bull Pb 193 band 2 ABE 11

bull Pb 195 band 2 ABE11

A Pb 197 band 2 ABE11

Pb 199 band 2 ABE 11

b)

02 04 06

bull Pb 193 band 1-1 a

oPb 193 band 1-1b

d)

02 04 06 Rotational frequency lim (MeV)

Figure 5 DUCfOllX et aI z Phys A

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 23: Institut Universite Claude Bernard de Physique N ucleaire

200 I I I I

0middotmiddot---------0 194Pb band c (ABll) ~ o-4

193Pb band 2 (ABEll) shyz 150 - -----------

~ middot middot

middot middot

~

shy

middot

SO

shyrshy

0 bullbull

bull ~Q_0-bull bull 0 middotmiddotmiddot6 o I I I I

00 01 02 03 04 05 Rotational frequency boo (MeV)

Figure 6 Ducroux et aI Z Phys A

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 24: Institut Universite Claude Bernard de Physique N ucleaire

-7 ~--------~--------~----------

112

-11 h92

-12 __J~~5~2~-----~71 f72

-1~16 -14 -12 -10 -8 -6 -4 -2 0 (barn)QOm

Figure 7 Ducroux et aI Z PhysA

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 25: Institut Universite Claude Bernard de Physique N ucleaire

52 (h92) 14 1112 (iI32)

12 32 (h92) 112 (h92)

92 (iI32)10 ~

~ ~ 08 ~

~06 ~ 72 (iI32)

04

02 52 (iI32) 32 (i132) 12 (iI32)00

192 196 198 200 A (Z=82)

Figure 8 Ducroux et aL Z Phys A

----- shy

194

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A

Page 26: Institut Universite Claude Bernard de Physique N ucleaire

x j=132

(A)

K=ll z

Figure 9 Ducroux et al~ Z Phys A