innovations in energy use future information...

96
June 18, 2008 S. J. Ben Yoo S. J. Ben Yoo UC Davis Campus CITRIS Director UC Davis Campus CITRIS Director Dept of Electrical and Computer Engineering, UC Davis Dept of Electrical and Computer Engineering, UC Davis [email protected] [email protected] Innovations in Energy Use Future Information Technology

Upload: others

Post on 14-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

S. J. Ben YooS. J. Ben YooUC Davis Campus CITRIS DirectorUC Davis Campus CITRIS DirectorDept of Electrical and Computer Engineering, UC DavisDept of Electrical and Computer Engineering, UC [email protected]@ece.ucdavis.edu

Innovations in Energy Use

Future Information Technology

Page 2: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008Slide_2

Next Generation Data Center

Data Centers and Super Computers

MegaWatts of Power

100’s of racks

Page 3: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008Slide_3

$ for Power and Cooling in Data Centers

Courtesy: IBM research

Page 4: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Today’s Data Center:

> 10 MegaWatts of Power

100’s of racks

Data Center on a Cell Phone/PDA

Pico_DataCenter

1 – 4 Watt

200 W – 500 W example Pico_DataCenter Cluster

Data Center on a Chip

Page 5: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Power Consumption in Electronic IP routers (e.g. CISCO CRS-1)

7%

11%8.5%

25%

3.5%10%

10%25%

ASICs(assume ~12 x 90nm devices)

Memories in Forwarding Engine

Packet Buffer Memories(DRAM)

I/O (optics/framers/MACs/L2 functions)

Control Plane (2 x Route Processors & Control

Plane portion of linecardsincluded)

Switch Fabric(both the centralised components and the part on

the linecards)

Blowers(depends very much on box topology, could be

much higher)

Power Supply efficiency loss(both the 48V input supplies and

the linecard DC:DC included)

Capacity: 320 Gb/s(640 Gb/s LAN)

213 cm

91 cm 60 cm

Power: 10.8 kW

Physical Size: 213x91x60 cm3

Data by Garry Epps of CISCO

Page 6: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

1,152 slots of 40 Gb/s line cards in 80 shelves (72 linecard shelves and 8 fabric shelves)),

Power Consumption: ~0.85 MW

Weighs: 56,656 kg

Footprint: 50 m2

Each Port Protocol Specific up to OC-768

1024 x 1024One Semiconductor Chip Switching Fabric

Power Consumption: ~500 W (200W)

Weighs: 10 kg

Footprint: 0.1 m2

Each Port Protocol Independent up to OC-768Can achieve Packet /Burst /Circuit Switching

Conventional System All-Optical System on a Chip

MA

CM

AC

46 Tb/s optical routing system on a Chip

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

CBuffer

MemoryBuffer

MemoryMA

CBufferMemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

20 nJ/b system 10 pJ/b system

Page 7: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Overlay Photos: IEEE Spectrum, October 2006

Next Generation Health Care

Page 8: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Q&A

Page 9: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Incollaboration withProf. Bernd HamannUCD IDAVand Tom Nesbitt UCDMC

• Real-time 3-D Visualization will require ~1 Tb/sec

bandwidth in the future

1000

x 1000

x 1000 pixels/frame

x 28 bit/pixel

x 30 frames/sec

~ 1 Tb/sec

Real-time, On-line, Collaborative Healthcare

Page 10: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Chip-Scale Optical Router Micro-system

S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,925,257 B2 (2005).S. J. B. Yoo, “Integrated Optical Router,” U. S. Patent 6,768,827 (2004).S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,519,062 (2000).S. J. B. Yoo, “Wavelength Converter with Modulated Absorber,” U. S. Patent 6,563,627 (2001).S. J. B. Yoo, “Compact Optical Receiver with Optical Signal Processing Capabilities,” U. S. Patent pending (2001).S. J. B. Yoo, G. K. Chang, “High-Throughput, Low-Latency Next Generation Internet Using Optical Tag Switching,” U. S. Patent 6,111,673.(1997)

Page 11: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Moore’s law vs. Processor Performance

Page 12: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Center for Computing of the Future

Overview

Energy Efficient Large-Scale Computing with Nanophotonic Interconnects

Center for Computing of the FutureCenter for Computing of the Future

OverviewOverview

Energy EfficientEnergy Efficient LargeLarge--Scale Computing with Scale Computing with NanophotonicNanophotonic InterconnectsInterconnects

S. J. Ben Yoo (UC Davis), Venkatesh Akella (UCDavis), Raj Amirtharajah (UCDavis), Bevan Baas (UCDavis), Keren Bergman

(Columbia), Van Carey (UC Berkeley), Shanhui Fan (Stanford), Soheil Ghiasi (UC Davis), James Harris (Stanford), Saif Islam (UC

Davis), Michal Lipson (Cornell), Kai Liu (UCDavis), David Miller (Stanford), James Shackelford (UC Davis), and many others

UCDavis, Stanford, UCBerkeley, Cornell, Columbia [email protected]

530-752-7063

http://sierra.ece.ucdavis.edu

Page 13: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Data Centers and Super Computers

MegaWatts of Power

100’s of racks

Page 14: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

$ for Power and Cooling in Data Centers

Courtesy: IBM research

Page 15: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Moore’s Law : density not performance

Ref. “Cramming more components onto integrated circuits” by Gordon Moore, Electronics, Vol. 38. April 19, 1965

Page 16: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Ideal vs. Actual Scaling

Courtesy: IBM research

Page 17: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

‘Power Cliff’ and Opportunities

Courtesy: IBM research

Page 18: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Key Challenges

• Performance/watt is the riding the Moore’s law curve

• Gap between peak versus averageperformance

• Pins limits the I/O bandwidth• Leakage and process variation are get worse

as we go to 32nm and beyond• Parallelism is way forward but interconnect

becomes the key - both onchip and offchip

Page 19: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

The Rise of Chip Multiprocessors (CMPs)• Emerging trend replicate computational logic: maintain

processing throughput while lowering clock frequencies and supply voltages.

• Parallel architectures:

– better processing performance per watt

• Power– The GHz race is grinding to a halt

Pdyn ∝ Vdd2⋅ fPleak ∝ Vdd ⋅ exp(-qVt/(kT))

– 2 cores at and

– ~4x reduction in dynamic power – equal performance

• As number of cores grows, key is to performance: scalable, fast, and power-efficient:

interconnection networks

2ddV

2f

Page 20: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Balancing Computing and Communications

• Amdahl’s rule => match computation and communications for best operation.– Currently, growing gap between actual computer

performance and the theoretical maximum performance rating.

– Current trends in decreasing Bytes/FLOP• 10 TeraFLOPS chip will need 10 TB/sec or ~100

Tb/s communications !! (US wide Internet traffic is ~3 Tb/s today)

• Electronic communications on-chip will no longer keep up with the demand and power efficiency requirement

Page 21: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Balancing Bandwidth and FLOPS

Figure: Courtesy Robert Drost,

Stanford IFC Meeting, Dec 2006

Design Space

1 byte per flop

Amdahl’s rule => match computation and communications for best operation.

10 TeraFLOPS chip will need 10 TB/sec or ~100 Tb/s communications !! (US wide Internet traffic is ~3 Tb/s today)

Page 22: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Bandwidth versus Memory Capacity

Figure: Courtesy Robert Drost,

Stanford IFC Meeting, Dec 2006

PicoBlade Design Space

1 byte per flop

Page 23: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Electrical interconnects => local interconnects

Courtesy: IBM research

Page 24: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Optical Interconnects => High-way interconnects

Source: IBM

Page 25: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Issues-Next Generation Computing Systems

• Performance/power ratio is a real issue• Memory I/O bottleneck, Power bottleneck• Optics and Electronics can help each other• Optics is especially good at interconnecting

in parallel without impedance, crosstalk, and timing-jitter concerns

• Parallel processing is good, but software, virtualization, and resource management must work.

• We need a systematic approach

Page 26: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Imagine:

• Next Generation Computing System with– Massively parallel ‘pico-blades’ optically

interconnected with massive number of multiple wavelength

– 3-D integration of the above on a very compact ‘chip’by nanophotonics & nanoelectronics

– Intelligent virtualization and resource managementPhase I Phase II

Today

Page 27: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

What is Proposed:• 10 year project aiming at x100~x1000

improvement in power efficiency and miniaturization

• New Computing Architecture combining optics, electronics, and embedded intelligence

• New Virtualization and Resource Management• Hardware

– Micro/Nano Photonics– Nano Electronics– Non-volatile nano memory

• Thermal Engineering• Systems Integration• Emulation and Experimental Testbed Studies

Page 28: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Proposed Center Thrusts• Thrust 1: Next Generation Computing System Architecture• Thrust 2: Resource Management and Virtualization• Thrust 3: Computing System EnablingTechnologies

– Nano-photonics– Nano-electronics– Nano-memory– Novel Materials

• Thrust 4: Systems Integration - Picoblade Cluster Data Center - 3-D Chip Integrated Multicore.- Hardware-Software Integration

• Thrust 5: Testbed and Application Studies– Emulation & Simulation studies– Learn from research data center testbeds and try prototypes

• Partnership with HP Data Center Research Testbed, UC Berkeley Data Center Testbed, LBL Data Center, etc.

– Healthcare Applications

Page 29: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

UC DavisElectrical Engineering

S.J. Ben Yoo

UC BerkeleyMechanical Engineering

Van Carey

UC DavisComputer Engineering

Bevan Baas

UC DavisComputer Engineering

Rajeevan AmirtharajahProject Leaders:

Columbia Univ.

Electrical Engineering

Keren BergmanCo-Thrust Leader:

UC DavisComputer Engineering

Venkatesh AkellaThrust Leader:

Thrust 1: Next Generation Data-Center Architecture

Thrust 1: Next Generation Computing System/ Data Center Architecture

Page 30: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

What’s in a blade?

Page 31: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

High Level System View

• PicoBlade composition explorationa) Multi-core CPUs + DRAMb) Multi-core CPUs + DRAM + Flash c) Multi-core CPUs + DRAM + Flash

+ energy-efficient hard disk (distributed disk farm, or for caching)

• Example system cluster– PicoBlades interconnected with optical interconnect– Energy-efficient computation

balanced with high-speed communication

– Hierarchical Optical Networking

1 – 4 Watt PicoBlade

200 W – 500 W example cluster of PicoBlades

Page 32: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Optical vs Electrical Interconnects

Delay distribution of 1 cm optical

Connect (Chen et. al SLIP 2005)PDP comparison of electrical And optical interconnect for a1 cm wire

Power consumption (mw) 1 CM

optical datapath

(source: Chen et. al SLIP 2005) Comparison of BW density today

Page 33: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

PicoBlade – Rationale • Goal: performance/watt ~ 2000 (100x better than HS21 @ the

same technology node)• System Architecture - integrated and balanced approach to

blade design: – processor+I/O+memory with focus on energy per transaction

• Heterogeneous compute engines• Codesign of Electrical and Optical Interconnect

– Electrical local interconnets and Optical high-way interconnects– Where to draw the line with between electrical and optical

interconnect in the context of 3D chips– Optical interconnect between layers in 3D– Use of multiple wavelengths – Optical Clock Distribution

• Codesign of Interconnect and Processor Cores– Do we need large L2 caches if low latency, high bandwidth

interconnect is available via optical links?– Heterogeneous cores including FPGA fabrics for some cores.– Simple cores communicating to a large memory (DRAM) via 3D

interconnect technology.

Page 34: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Supporting Evidences1. ASAP (ISSCC 2006, HotChips 2006) - UC Davis

• 36 processor, 180 nm, scalable GALS array• 600+ MHz @ 2.0V, 600+ MOPS in 0.66 mm^2• 5-10x performance and 10-75x lower energy than

8-way VLIW TI C62X• 167 processor, 1.1 GHz, 65 nm chip in development: working!

2. 3D-Die Stacking (MICRO 2006) - Intel• 32MB stacked DRAM reduces cycles/memory access

(latency) by 15% to 55% with 0.08 degree rise in peak temp

• Off-chip BW is reduced by 66% on average• 3D scaling with 3D partitioning of a Pentium can increase

performance by 8% and reduce power by 34% • RMS workloads

3. PicoServer (ASPLOS 2006) - Michigan• 10x improvement in performance/watt over Pentium-4• On the same die area, 12 CPU with no L2 outperforms 8CPU with a

on-chip cache by 15% with 55% lower power• Tier1 Servers (Webservers workload)

4. MICRO 2006 - Cornell• On chip optical buses (2D, 4-12 wavelengths, Si waveguides, 64

core CMP in 32nm)• Effectively latency is reduced by 26%• 26% - 39% improvement in latency

SingleProcessor

OSC FIFOs

DMemIMem

Page 35: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Example: Optical Switch FabricExample: Optical Switch Fabric

Rapid Tuning (~ 1 nsec) of T_WC to achieve switching in

Wavelength, Time, Space domainsScalable to 42 Petabit/sec capacity32*(2562x2562) connectivity

T_WC

T_WC

T_WC

T_WC

F_WC

F_WC

F_WC

F_WC

switch control

Tunable Wavelength Converters

λ-router(AWGR)

controller

TIME

WAVELENGTH

SPACE

Fixed Wavelength Converters

Page 36: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Chip-Scale Optical Router Micro-system

S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,925,257 B2 (2005).S. J. B. Yoo, “Integrated Optical Router,” U. S. Patent 6,768,827 (2004).S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,519,062 (2000).S. J. B. Yoo, “Wavelength Converter with Modulated Absorber,” U. S. Patent 6,563,627 (2001).S. J. B. Yoo, “Compact Optical Receiver with Optical Signal Processing Capabilities,” U. S. Patent pending (2001).S. J. B. Yoo, G. K. Chang, “High-Throughput, Low-Latency Next Generation Internet Using Optical Tag Switching,” U. S. Patent 6,111,673.(1997)

Page 37: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

1,152 slots of 40 Gb/s line cards in 80 shelves (72 linecard shelves and 8 fabric shelves)),

Power Consumption: ~0.85 MW

Weighs: 56,656 kg

Footprint: 50 m2

Each Port Protocol Specific up to OC-768

1024 x 1024One Semiconductor Chip Switching Fabric

Power Consumption: ~500 W (200W)

Weighs: 10 kg

Footprint: 0.1 m2

Each Port Protocol Independent up to OC-768Can achieve Packet /Burst /Circuit Switching

Conventional System All-Optical System on a Chip(scalable to 2 million x 2 million,

42 Petabit/sec interconnection)MA

CM

AC

46 Tb/s optical routing system on a Chip

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

CBuffer

MemoryBuffer

MemoryMA

CBufferMemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

Page 38: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

High Level System View

• PicoBlade composition explorationa) Multi-core CPUs + DRAMb) Multi-core CPUs + DRAM + Flash c) Multi-core CPUs + DRAM + Flash

+ energy-efficient hard disk (distributed disk farm, or for caching)

• Example system cluster– PicoBlades interconnected with optical interconnect– Energy-efficient computation

balanced with high-speed communication

– Research topics: clustersize and inter-clustercommunication topology

1 – 4 Watt PicoBlade

200 W – 500 W example cluster of PicoBlades

Page 39: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Modulator

Tunable Filterλ1

PD

λ2

λ3

λ4

Off-chip optical comb light source

Bus waveguide

Hierarchical Ring Interconnect Architecture

Page 40: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Mesh Interconnect Architecture

Page 41: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

3-D nanophotonic-electronic multi-core architectures

CPU array + caches

Optical Interconnect+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Flash DiskCPU array + caches

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Page 42: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Hierarchically Networked Pico-Blade Clusters

200 W – 500 W example cluster of PicoBlades

1 – 4 Watt PicoBlade

~1000 core processor

Optically Interconnected multi-chip PicoBlade

Optically Interconnected PicoBlade cluste

Page 43: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

UC DavisComputer Engineering

Venkatesh AkellaProject Leaders:

UC DavisComputer Engineering

Soheil GhiasihafeziThrust Leader:

Thrust 2: Data Center Resource Management and Virtualization

Thrust 2Computing System Resource Management and Virtualization

Page 44: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Overall Goal

• Energy efficient operation– Derived by architectures

• Key architectural features– Integrated O/E for energy efficient high-throughput

» Inter-processor» Memory access (static, dynamic, non-volatile)

– Rethinking power hungry memory hierarchy» Distributed storage » flattened memory hierarchy

Proc ProcProcProc

Proc ProcProcProc

SingleProcessor

OSC FIFOs

DMemIMem

AsAP 1.0 [Baas et al.] Optically integrated building blocks

Page 45: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

• Optical interconnect– High throughput– Energy efficient

• Eliminate energy hungry L2 and L3

– Local non-volatile memory

– Flattened memory hierarchy

• Distributed data storage and discovery?

• Moving data or task migration?

Distributed Data Storage

0 10 20 30 4012345678

Pow

er e

ffici

ency

(mW

/Gbp

s)

Bit Rate (Gbps)

2.26 1.96

Page 46: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Modulator

Tunable Filter

λ1

PD

λ2λ3

λ4

Off-chip light source

Bus waveguide

Proc ProcProcProc

Proc ProcProcProc

Wavelength Assignment and Scheduling

• Technology limitations of optical interconnects

– Full range “tuning” is expensive in terms of area, energy and practicality

• Wavelength is a new resource

– Should be managed judiciously

– Impact task assignment and application partitioning

• Does it really restrict applications we can realize?

– Minimum wavelengths to admit a given app

Page 47: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Power management

• Energy management– State transitions model– Markov chain analysis

• Scaling – to many processors

• Distributed version– Little global information– Throttle voltage locally or assign

to a remote processor?

idle

working

standby

[De-Micheli et al.][Pedram et al.]

λ1

λ2

λ3

λ4

Page 48: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Managing Heterogeneous Cores

Courtesy of IDF2006

Page 49: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Intelligent Resource Management

Courtesy of IDF2006

Page 50: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Resilient and Load-Balanced Operation

Courtesy of IDF2006

Page 51: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

UC DavisEES.J. Ben YooStanfordEEDavid MillerUC DavisPhysicsKai LiuCornellEEMichal LipsonUC DavisEEM. Saiful IslamStanfordEEJames HarrisUC DavisCEBevan BaasProject Leaders:UCDavisCERajeevan AmirtharajahCo-Thrust Leader:StanfordEEShanhui FanThrust Leader:

Thrust 3: Co-Designed Nano Photonics and Nano Electronics Technology

Thrust 3: Co-Designed Nano Photonics and NanoElectronics Technology

Page 52: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

3-D nanophotonic-electronic multi-core architectures

CPU array + caches

Optical Interconnect+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Flash DiskCPU array + caches

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Page 53: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

31 Optical Comb Source

Flattest optical comb with 22 modes above -1.7 dBc. 31 modes above -20 dBc

Wavelength (nm)1548 1549 1550 1551 1552 1553 1554

Rel

ativ

e P

ower

(dB

)

-25

-20

-15

-10

-5

0

31 optical comb lines above -20 dBc

Page 54: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

~Continuum (>1000 ch) Optical Comb Generation

1350 1400 1450 1500 1550 1600 1650

10-5

100

Wavelength (nm)

Inte

nsity

(a.u

.)

1520 1525 1530 1535 154010-4

10-3

10-2

10-1

Wavelength (nm)

Inte

nsity

1545 1550 1555 1560 156510-4

10-3

10-2

10-1

100

Wavelength (nm)

Inte

nsity

1570 1575 1580 1585 1590 159510-4

10-3

10-2

10-1

Wavelength (nm)

Inte

nsity

Page 55: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

10μm

Return bend±2dB loss

Racetrack resonator

10μmPhotonic wire1E

1Y

2Y

2E

Si Wire Ring Resonator for low-power switching/routing

⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦1 1

2 2

Y EY

ad Eb

c

R. Baets et. al., LEOS Annual Meeting 2004

Page 56: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Low drive power optical modulators

Prof. Lipson’s Group: Si Nano PICs with 58 µA @ 1.8 V switching

Page 57: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Courtesy of Axel Scherer, Caltech

Nano Photonic Crystal Waveguides1E 1Y

2Y 2E

Page 58: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Plasmonic Devices—matching optics and electronics

-50 0 50-1

-0.5

0

0.5

nm

E x Fie

ld

ε =

1

ε =

= -1

25.9

15ε

= 10

.24

ε =

-125

.915

ε =

1

ε =

1

neff = 9.744

Page 59: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Matching Photonic and Electronic Scales

• Optical power in, electrical data imprinted on waveform by modulator (CMOS Mach-Zender or MQWM)

• Plasmonics couple optical length scale to nanodevice scale• Multiwavelength optical clock delivery can simplify Tx/Rx architecture

– Multiple phases Φ1-ΦN, one on each wavelength, with very low jitter may eliminate local PLL and clock recovery

Courtesy Mark BrongersmaStanford

Page 60: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Courtesy of

M. Saif Islam

UCDavis, HP

Massively Parallel Nanowire Interconnection

•Good Ohmic Contacts

•Not labor intensive or costly

•Mass-manufacturable

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

A/R

Si Nanowire

Carbon Nanotube

Reza, Bosman, Islam, Kamins, Sharma and Williams, Submitted to IEEE Trans.

Nanotechnology, 2005

Nanotube

Nano-bridge

Hooge parameter 10-3

Low Noise Contacts

Page 61: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

MRAMS

www.lbl.gov/.../sabl/2005/March/03-polarons.html

Page 62: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

NanomagnetsNanomagnets

Nanoscale Architecture

Magnetic fingerprints

R. K. Dumas, et al, PRB 75, 134405 (2007).Leo Falicov Award, 2006 AVS;1st place Margaret Brubidge Award, 2005 APS-CA

Jared Wong 1st place Steven Chu Award, 2006 APS-CA

Prof. Kai Liu (U. C. Davis)

100nm

2D Multilayer 2D+1D 1D Nanowire 0D Nanodots 0D Antidots 0D Core/Shell NanoparticlesMultilayered Nanowire

SynthesisSmaller size; Higher density; Periodic arrayTunable geometry; Orientation; Distribution controlPotential applications in spintronics, magneticrecording media, MRAM…Single

domainVortexState

Page 63: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Task 3 Summary

• Nanophotonic interconnection plane– Si-nanowire switches/routers/modulators– Plasmonic waveguide Interfaces– Plasmonic Photonic Crystals, AWGs, Lasers– Nanowire interconnects, lasers, and

interconnects• 3-D interconnects

– Plasmonic vias– Nanowire vias

• Next Generation Nonvolatile Memories– MRAMs– Negative Index imaging memory

Page 64: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

UC DavisEES.J. Ben YooStanfordEEDavid MillerUC DavisPhysicsKai LiuUCBerkeleyMEVan CareyUC DavisCERajeevan AmirtharajahProject Leaders:UC DavisEEM. Saiful IslamCo-Thrust Leader:UC DavisCEBevan BaasThrust Leader:

Thrust 4: System-on-Chip Integration

Thrust 4 System-on-Chip Integration

Page 65: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

3-D nanophotonic-electronic multi-core architectures

CPU array + caches

Optical Interconnect+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Flash DiskCPU array + caches

CPU array + caches

Optical coherent ring+ modulators+ offchip

Laser+ detectors

Memory

HEAT SINK

Page 66: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Thrust 5 Testbed and Application Studies

• Emulation studies of the next generation data center/supercomputer

• Simulation studies of the next generation data center/supercomputer

• Learn from research data center testbedsand try out new prototypes

Page 67: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Incollaboration withProf. Bernd HamannUCD IDAVand Tom Nesbitt UCDMC

• Real-time 3-D Visualization will require ~1 Tb/sec

bandwidth in the future

1000

x 1000

x 1000 pixels/frame

x 28 bit/pixel

x 30 frames/sec

~ 1 Tb/sec

Page 68: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Overlay Photos: IEEE Spectrum, October 2006

Data Centers for Health Care and Telemedicine

Page 69: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Bird’s Eye View of the Schedule

Overlay Photos: IEEE Spectrum, October 2006

Page 70: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Workplans and Deliverables-Phase I• Phase I: April 2008-March 2013• Phase II: April 2013- March 2018• Year 1:

– Next Generation Data Center Architecture Comparisons and Full Simulations

– Virtualization and Resource Management Plans– Pico Blade I architecture design– Plasmonic, AWGs, Ring Photonic Device Operational

• Year 2: – Next Generation Data Center Architecture Refinement– Virtualization and Resource Management Implementation– Pico Blade I architecture prototyping– Plasmonic, AWGs, Ring Photonic Device with Electronic Interface

Operational• Year 3:

– Pico Blade I completion– Ring based interconnects operational

• Year 4:– Pico Blade I cluster with virtualization operational – Optical Interconnect Plane – ASAP II Integration operational

Page 71: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Workplans and Deliverables-Phase II

• Year 5: – Pico Blade II completion– Plasmonic, AWGs, Ring Photonic Device with Electronic Interface

Integration with Vertical Vias to ASAP III

• Year 6: – Next Generation Architecture x100 performance/watt completion

• Year 7: – Optical Interconnect- Memory-Processor Plane Design– Testbed with Pico Blade II cluster operational

• Year 8: – Medical Application with Pico Blade II cluster operational– Optical Interconnect- Memory-Processor Plane Co-Design– Pico Blade III design

• Year 9:– Optical Interconnect- Memory-Processor Plane Integration

• Year 10: – Next Generation Architecture x1000 performance/watt completion

NanoPhotonic Interconnect Memory Processor Plane Integration

Page 72: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

Next Generation Data Centers and Computing SystemsS. J. B. Yoo, V. Akella, R. Amirtharajah, B. Baas, K. Bergman, V. Carey, S. Fan, S. Ghiasi,

J. S. Harris Jr., M.S. Islam, M. Lipson, K. Liu, D.A.B.Miller, J. Shackelford, and many others

Figure: J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature, vol. 386, pp. 143 (1997)

10 year team efforts towardsX100~1000 improved performance/power

We appreciate your Partnership

Page 73: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

What is Proposed:10 year project aiming at x100~x1000 improvement in power efficiency and miniaturizationNew Computing Architecture combining optics, electronics, and embedded intelligence New Virtualization and Resource ManagementHardware

Micro/Nano PhotonicsNano ElectronicsNon-volatile nano memory

Thermal EngineeringSystems IntegrationEmulation and Experimental Testbed Studies

Page 74: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

CITRIS NeT on CalREN-XD

Page 75: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

NCSA/UIUC

ANL

UICMultiple Carrier Hubs

Starlight / NW Univ

Ill Inst of Tech

Univ of ChicagoIndia(Abi

I-WIRE

Pasadena

San Diego

DTF Backplane(4xλ: 40 Gbps)

Abilene

Chicago

Indianapolis

Urbana

Source: Charlie Catlett, Argonne

StarLight: Int’l Optical Peering Point(see www.startap.net)

CITRIS-net, Calren-XD,..Global Grid

UCDUCDMC

UCB

LBL

UCSCStanford

SLAC

LLNL

NASA

Res. Park

UCSB

UCLA

USC

ISIUCI

UCSD

SDSCSPAWAR

SDSU

JPL

Caltech

UCR

UCM

Page 76: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Networking Topics

Optical NetworkingHeterogeneous NetworkingData Center NetworkingCITRIS TestbedsHealthcare IT

Page 77: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Photonic Networking Trends

Optical Internetworking

Router

RouterSONET

NESONET

NE SONETNE

SONETNE

Optical Network

Switch

Switch

Router

Switch

WDM WDM

WDM

OXCOXC

OXC

DWDM &Optical Label

SwitchingDWDM

SONETATM

IP

DWDM

SONET

IP & MPLS

DWDM &Optical Switching

Thin SONETIP & GMPLS IP & GMPLS Optical

Label

Page 78: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Progress in Optical NetworksProgress in Optical Networks

Capacity

Function

Ring Mesh

Dynamic

Static

Optical Packet

Pt-to-PtSingle Channel

WDM

Optically Amplified

Optical Add/Drop

Topology

Optical Circuit Switching

Optical Burst Switching

Optical Packet Switching

Optical

Label

Switching

Page 79: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008Client networksClient networks

All-Optical Label Switching Router All-Optical Label Switching Router

fiberdelay

Label reader

DEM

UX

NC&M

SwitchingFabric

Label Processing Module-TI(LP-TI)

OLS Edge Router

CI CICI

OLE OLR OLE OLR OLE OLR

IP Router ATM Client Machine

500 psec/div

500 psec/divUNAS

...

Switch Controller w/ ForwardingLook-up Table

EN ADDR5ADDR4

ADDR3ADDR2

ADDR1ADDR0

RS232Connector

Micro-Controller

Tunable LaserCurrent Driver TEC Controller

Power Connector

SRAMs Buffers

RS232Driver

s

Page 80: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Chip-Scale Optical Router Micro-system

S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,925,257 B2 (2005).S. J. B. Yoo, “Integrated Optical Router,” U. S. Patent 6,768,827 (2004).S. J. B. Yoo, “Ultra-Low Latency Multi-Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,519,062 (2000).S. J. B. Yoo, “Wavelength Converter with Modulated Absorber,” U. S. Patent 6,563,627 (2001).S. J. B. Yoo, “Compact Optical Receiver with Optical Signal Processing Capabilities,” U. S. Patent pending (2001).S. J. B. Yoo, G. K. Chang, “High-Throughput, Low-Latency Next Generation Internet Using Optical Tag Switching,” U. S. Patent 6,111,673.(1997)

Page 81: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

1,152 slots of 40 Gb/s line cards in 80 shelves (72 linecard shelves and 8 fabric shelves)),

Power Consumption: ~0.85 MW

Weighs: 56,656 kg

Footprint: 50 m2

Each Port Protocol Specific up to OC-768

1024 x 1024One Semiconductor Chip Switching Fabric

Power Consumption: ~500 W (200W)

Weighs: 10 kg

Footprint: 0.1 m2

Each Port Protocol Independent up to OC-768Can achieve Packet /Burst /Circuit Switching

Conventional System All-Optical System on a Chip

MA

CM

AC

46 Tb/s optical routing system on a Chip

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

CBuffer

MemoryBuffer

MemoryMA

CBufferMemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

BufferMemory

BufferMemoryM

ACBuffer

MemoryMA

C

MA

CM

AC

20 nJ/b system 10 pJ/b system

Page 82: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Today’s Internet– Success and Failure

Distributed ManagementHeterogeneous ScalabilityTransparent Hourglass

But…it Fails oftenRequires human interventionsVulnerable to security attacksDoes not work towards team resultsNever learns and prone to make the same mistakes

Future Internet will face more security attacks, more diverse physical layers, and more demanding applications

Page 83: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Example– Denial of ServiceMalicious attacks

Each network element only sees his/her perspective (surge in traffic) and fails to see a pattern

Vulnerability and failures

Restores only after patches are developed days later (too late)

Page 84: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Learn from Biological Systems• Biological Systems work remarkably well through coordination between Brain, Reflex, Sensors, and Actuators.• Brain reasons from partial and conflicting informationfrom sensors by extracting Spatio-Temporal patterns• Reflex provides rapid hard-wired responses • Brain-Reflex provides rapid yet reasonable responses• Cognitive Learning capabilities• Homeostasis -- excellent control of critical functions • Immunization and Vaccination (anti-body)• Teamwork– Colony of ants and bees capable of locating source of food, finding the best path to that source and transmitting that information to other members of their team

Page 85: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Cognitive Network Control and Management:Brain-Reflex like Signaling and Control

Brain: Interelement Control Slow but elaboratePerformance monitoring based on labelsAnomaly detectionOverall view of network (topology)Listens and instructs the Reflex

Reflex: Distributed ControlRapid and reflex-likePacket forwardingAnomaly detection Communicates with the Brain

Network Control and Management

Page 86: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

SensorNetwork

Storage Area Network

Core RouterIPNE

DATA

LABEL

Legacy IP Network

WirelineMPLSIPNE

DATA

LABEL

Optical Label SwitchingNetwork

WirelineO-CDMA LAN

SatelliteNetwork

ReconfigurableWirelessNetwork

Next Generation Heterogeneous Networking

• Internet becoming more and more diverse in application and technology

• Any application on IP, IP on any networking technology

• End-to-end principle

Page 87: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

100G serial transport

•Use single wavelength (can be multi-level)• Needs 100 G (or 2x50G) electronics• Better spectral efficiency but more sensitive to dispersion and PMD

• Use multiple wavelengths & modulators• Needs 10 G electronics with possible synchronization• Manageable dispersion and PMD but poorer spectral efficiency

(b)

lase

rla

ser

lase

rla

ser

lase

rla

ser

lase

rla

ser

lase

rla

ser

100G parallel transport (OTN VCAT)

Pros and Cons of Serial vs. Parallel 100 G

Page 88: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Universal 100 G ~10 G transmitter with built-in dispersion equalization

At a glance, this isuseful for parallel 40G/100G Trx/Rcv with independent ASK, PSK, DPSK, QPSK, DQPSK, etc.

AM PM

AM PM

AM PM

DEM

UX M

UX

Page 89: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

-300 -200 -100 0 100 200 300-60

-40

-20

0

Frequency (GHz)

Inte

nsity

(dB

)

-300 -200 -100 0 100 200 3000

0.5

1

Time (ps)

Inte

nsity

(au)

-300 -200 -100 0 100 200 300Time (ps)

Pha

se (1

rad/

div)

Pre-chirping 100 Gb/s OOK signal for 1000 km transmission

Page 90: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

-300 -200 -100 0 100 200 3000

0.5

1

Time (ps)

Inte

nsity

(au)

-300 -200 -100 0 100 200 3000

0.5

1

Time (ps)

Inte

nsity

(au)

-300 -200 -100 0 100 200 300Time (ps)

Pha

se (1

rad/

div)

Real

Imag

Real

Imag

OOK constellation at transmitter OOK constellation at receiver

Prechirped 100 Gb/s OOK signal at receiver after 1000 km transmission (simulated)

Page 91: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Peebles Africa• Fixed or mobile platform wireless mesh networking• Rapidly reconfigurable and self-forming cognitive networking• Low-cost, high-performance delivery of:

• ~54 Mb/s for current 802.11 technology (~200 km)• ~ 1 Gb/s Ethernet for current GigE (10 km=> 200 km)• ~ 10 Gb/s Ethernet for optical wireless (~100km)• ~ 1 Tb/s (100 x 10 Gb/s) for WDM optical wireless (~100km)

Wireless Mesh Telemedicine and Emergency Response

Page 92: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Wireless Mesh Networks

Multipath wireless meshwith Network Coding

Hierarchical wireless meshnetworking

Example: On-Demand Ambulance NetworkingCognitive Ad Hoc Wireless Mesh Networking with Mobility

Management and Intelligent Beam Forming

Page 93: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

CITRIS NeT

Page 94: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Page 95: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008

Intelligent Network Elements

Observe-Analyze-ActCognitive Learning

Supervised LearningUnsupervised LearningReinforcement Learning

Neural Net PDPSpatio-Temporal data miningStatistical SummaryLabel and Tag switchingHiearchical Intelligence(Genetic Programming)

w/ Profs. Vemuri, Wu, Katz

Page 96: Innovations in Energy Use Future Information Technologycitris-uc.org/files/11-Ben-Yoo-Innovations-in-Energy-Use.pdf · Innovations in Energy Use Future Information Technology. June

June 18, 2008