infrared spectroscopy

47
Infrared spectroscopy

Upload: suman-gv

Post on 15-Aug-2015

144 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Infrared spectroscopy

Infrared spectroscopy

Page 2: Infrared spectroscopy

The IR Spectroscopic Process◦As a covalent bond oscillates – due to the oscillation of the dipole of the

molecule – a varying electromagnetic field is produced

◦The greater the dipole moment change through the vibration, the more intense the EM field that is generated

Page 3: Infrared spectroscopy

The IR Spectroscopic Process8. When a wave of infrared light encounters this oscillating EM field generated by

the oscillating dipole of the same frequency, the two waves couple, and IR light is absorbed

9. The coupled wave now vibrates with twice the amplitude

IR beam from spectrometer

EM oscillating wavefrom bond vibration

“coupled” wave

Page 4: Infrared spectroscopy

Types of Molecular Vibrations (called modes of vibration).

• Stretching– change in bond length– Symmetric / asymmetric

• bending– change in bond angle– symmetric scissoring– asymmetric wagging– rocking– twisting/torsion

Page 5: Infrared spectroscopy

The IR Spectroscopic Process5. There are two types of bond vibration:

• Stretch – Vibration or oscillation along the line of the bond

• Bend – Vibration or oscillation not along the line of the bond

H

H

CH

H

C

scissor

asymmetric

H

H

CCH

H

CCH

HCC

H

HCC

symmetric

rocktwist wag

in plane out of plane

Page 6: Infrared spectroscopy

Fewer and more experimental peaks than calculated

Fewer peaks◦ Symmetry of the molecule (inactive)◦ degenracy

◦ Energies of two or more vibrations are identical◦ Or nearly identical

◦ Undetectable low absorption intensity◦ Out of the instrumental detection range

More peaks◦ Overtone◦ Combination bands

Page 7: Infrared spectroscopy

Infrared radiation

λ = 2.5 to 17 μm

υ = 4000 to 600 cm-1

 These frequencies match the frequencies of covalent bond stretching and bending vibrations. Infrared spectroscopy can be used to find out about covalent bonds in molecules.

IR is used to tell:

1. what type of bonds are present

2. some structural information

Page 8: Infrared spectroscopy

toluene

Page 9: Infrared spectroscopy

Some characteristic infrared absorption frequencies BOND COMPOUND TYPE FREQUENCY RANGE, cm-1

 C-H alkanes 2850-2960 and 1350-1470 

alkenes 3020-3080 (m) and 

RCH=CH2 910-920 and 990-1000 

R2C=CH2 880-900 

cis-RCH=CHR 675-730 (v) 

trans-RCH=CHR 965-975 

aromatic rings 3000-3100 (m) and 

monosubst. 690-710 and 730-770 

ortho-disubst. 735-770 

meta-disubst. 690-710 and 750-810 (m) 

para-disubst. 810-840 (m) 

alkynes 3300  O-H alcohols or phenols 3200-3640 (b)  C=C alkenes 1640-1680 (v) 

aromatic rings 1500 and 1600 (v)  C≡C alkynes 2100-2260 (v)  C-O primary alcohols 1050 (b) 

secondary alcohols 1100 (b) 

tertiary alcohols 1150 (b) 

phenols 1230 (b) 

alkyl ethers 1060-1150 

aryl ethers 1200-1275(b) and 1020-1075 (m)  all abs. strong unless marked: m, moderate; v, variable; b, broad

Page 10: Infrared spectroscopy

IR spectra of ALKANES

C—H bond “saturated”

(sp3) 2850-2960 cm-1

+ 1350-1470 cm-1

-CH2- + 1430-1470

-CH3 + “ and 1375

-CH(CH3)2 + “ and 1370, 1385

-C(CH3)3 + “ and 1370(s), 1395 (m)

Page 11: Infrared spectroscopy

n-pentane

CH3CH2CH2CH2CH3

3000 cm-1

1470 &1375 cm-1

2850-2960 cm-1

sat’d C-H

Page 12: Infrared spectroscopy

CH3CH2CH2CH2CH2CH3

n-hexane

Page 13: Infrared spectroscopy

2-methylbutane (isopentane)

Page 14: Infrared spectroscopy

2,3-dimethylbutane

Page 15: Infrared spectroscopy

cyclohexane

no 1375 cm-1

no –CH3

Page 16: Infrared spectroscopy

IR of ALKENES

=C—H bond, “unsaturated” vinyl

(sp2) 3020-3080 cm-1

+ 675-1000

RCH=CH2 + 910-920 & 990-1000

R2C=CH2 + 880-900

cis-RCH=CHR + 675-730 (v)

trans-RCH=CHR + 965-975

C=C bond 1640-1680 cm-1 (v)

Page 17: Infrared spectroscopy

1-decene

910-920 & 990-1000 RCH=CH2

C=C 1640-1680

unsat’dC-H

3020-3080 cm-1

Page 18: Infrared spectroscopy

4-methyl-1-pentene

910-920 & 990-1000 RCH=CH2

Page 19: Infrared spectroscopy

2-methyl-1-butene

880-900

R2C=CH2

Page 20: Infrared spectroscopy

2,3-dimethyl-1-butene

880-900

R2C=CH2

Page 21: Infrared spectroscopy

IR spectra BENZENEs

=C—H bond, “unsaturated” “aryl”

(sp2) 3000-3100 cm-1

+ 690-840

mono-substituted + 690-710, 730-770

ortho-disubstituted + 735-770

meta-disubstituted + 690-710, 750-810(m)

para-disubstituted + 810-840(m)

C=C bond 1500, 1600 cm-1

Page 22: Infrared spectroscopy

ethylbenzene

690-710, 730-770 mono-

1500 & 1600

Benzene ring

3000-3100 cm-1

Unsat’d C-H

Page 23: Infrared spectroscopy

o-xylene

735-770

ortho

Page 24: Infrared spectroscopy

p-xylene

810-840(m)

para

Page 25: Infrared spectroscopy

m-xylene

meta

690-710, 750-810(m)

Page 26: Infrared spectroscopy

styrene

no sat’d C-H

910-920 & 990-1000

RCH=CH2mono

1640C=C

Page 27: Infrared spectroscopy

2-phenylpropene

mono880-900

R2C=CH2

Sat’d C-H

Page 28: Infrared spectroscopy

p-methylstyrene

para

Page 29: Infrared spectroscopy

IR spectra ALCOHOLS & ETHERS

C—O bond 1050-1275 (b) cm-1

1o ROH 1050

2o ROH 1100

3o ROH 1150

ethers 1060-1150

O—H bond 3200-3640 (b)

Page 30: Infrared spectroscopy

1-butanol

CH3CH2CH2CH2-OH

C-O 1o

3200-3640 (b) O-H

Page 31: Infrared spectroscopy

2-butanol

C-O 2o

O-H

Page 32: Infrared spectroscopy

tert-butyl alcohol

C-O 3oO-H

Page 33: Infrared spectroscopy

methyl n-propyl ether

no O--H

C-O ether

Page 34: Infrared spectroscopy

Carbonyls Carbonyl stretches are generally strong:

◦ Aldehyde ~1710 cm-1

◦ Ketone ~1710 cm-1

◦ Carboxylic acid ~1710 cm-1

◦ Ester ~1730 - 1740 cm-1

◦ Amide ~1640-1680 cm-1

Conjugation shifts all carbonyls to lower frequencies.

Ring strain shifts carbonyls to higher frequencies.

OH3C

1745 cm-1

Page 35: Infrared spectroscopy

NH Bend A broad, round peak may be observed around 1600 cm-1 for the N – H bend, especially with primary amines.

NH2

stretch

N-H bend

N-H bend has a different shape than an aromatic ring or C=C

Page 36: Infrared spectroscopy

Esters◦ C=O stretch at ~ 1730-1740 cm-1

and◦ C-O stretch at 1000-1300 cm-1 (broad)

(Note: other functional groups may have peaks in the 1000-1300 cm-1 region too!)

1743 1245

strong

O

O

Page 37: Infrared spectroscopy

Amides C=O stretch at 1640-1680 cm-1 (sometimes a double peak) N-H stretch (if 1o or 2o) around 3300 cm-1

Page 38: Infrared spectroscopy

Nitriles C N absorbs just above 2200 cm-1 (med – strong)

The alkyne C C signal is much weaker and is just below 2200 cm-1

Page 39: Infrared spectroscopy

2-butanone

C=O

~1700 (s)

Page 40: Infrared spectroscopy

C9H12

C-H unsat’d & sat’d

1500 & 1600benzene

monoC9H12 – C6H5 = -C3H7

isopropylbenzene

n-propylbenzene?

Page 41: Infrared spectroscopy

n-propylbenzene

Page 42: Infrared spectroscopy

isopropyl split 1370 + 1385

isopropylbenzene

Page 43: Infrared spectroscopy

C8H6

C-H unsat’d

1500, 1600benzene

mono

C8H6 – C6H5 = C2H

phenylacetylene

3300

C-H

Page 44: Infrared spectroscopy

C4H8

1640-1680

C=C

880-900

R2C=CH2

isobutylene CH3

CH3C=CH2

Unst’d

Page 45: Infrared spectroscopy

Which compound is this?a) 2-pentanoneb) 1-pentanolc) 1-bromopentaned) 2-methylpentane

1-pentanol

Page 46: Infrared spectroscopy

What is the compound?a) 1-bromopentaneb) 1-pentanolc) 2-pentanoned) 2-methylpentane

2-pentanone

Page 47: Infrared spectroscopy

Thank youFROM SUMAN GVJS ACADEMY