information processing

5
Information processing 1 Information processing Information processing is the change (processing) of information in any manner detectable by an observer. As such, it is a process that describes everything that happens (changes) in the universe, from the falling of a rock (a change in position) to the printing of a text file from a digital computer system. In the latter case, an information processor is changing the form of presentation of that text file. Information processing may more specifically be defined in terms used by Claude E. Shannon as the conversion of latent information into manifest information (McGonigle & Mastrian, 2011). Latent and manifest information is defined through the terms of equivocation (remaining uncertainty, what value the sender has actually chosen), dissipation (uncertainty of the sender what the receiver has actually received), and transformation (saved effort of questioning - equivocation minus dissipation) (Denning and Bell, 2012). In cognitive psychology Within the field of cognitive psychology, information processing is an approach to the goal of understanding human thinking in relation to how they process the same kind of information as computers (Shannon & Weaver, 1963). It arose in the 1940s and 1950s, after World War II (Sternberg & Sternberg, 2012). The essence of the approach is to see cognition as being in essence computational in nature, with mind being the software and the brain being the hardware. The information processing approach in psychology is closely allied to the Computational theory of mind in philosophy; it is also related, though not identical, to cognitivism in psychology and functionalism in philosophy (Horst, 2011). Two types Information processing may be sequential or parallel, either of which may be centralized or decentralized (distributed). The parallel distributed processing approach of the mid-1980s became popular under the name connectionism. In the early 1950s, Friedrich Hayek was ahead of his time when he posited the idea that spontaneous order in the brain arises out of decentralized networks of simple units (neurons). However, Hayek is rarely cited in the literature of connectionism. The connectionist network is made up different nodes, and it works by a "priming effect," and this happens when a "prime node activates a connected node" (Sternberg & Sternberg, 2012). But "unlike in semantic networks, it is not a single node that has a specific meaning, but rather the knowledge is represented in a combination of differently activated nodes"(Goldstein, as cited in Sternberg, 2012). Models and theories There are several proposed models/theories that describe the way in which we process information. Sternberg's Triarchic Theory of Intelligence Sternberg's Theory of Intelligence is made up of three different components: creative, analytical, and practical abilities (Sternberg & Sternberg, 2012). Creativeness is the ability to have new original ideas, and being analytical can help a person decide whether the idea is a good one or not. "Practical abilities are used to implement the ideas and persuade others of their value" (Sternberg & Sternberg, 2012 p. 21). In the middle of Sternberg's theory is cognition and with that is information processing. In Sternbergs theory, he says that information processing is made up of three different parts, metacomponents, performance components, and knowledge-acquisition components (Sternberg & Sternberg, 2012). These processes move from higher-order executive functions to lower order functions. Metacomponents are used for planning and evaluating problems, while performance components follow the orders of the metacomponents, and the knowledge-acquisition component learns how to solve the problems (Sternberg & Sternberg, 2012). This theory in action would be like working on an art project. First you have to decide what you want to draw, and then plan and sketch it out. During this process you would be monitoring how it

Upload: antonio-ricardo

Post on 23-Oct-2015

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Information Processing

Information processing 1

Information processingInformation processing is the change (processing) of information in any manner detectable by an observer. Assuch, it is a process that describes everything that happens (changes) in the universe, from the falling of a rock (achange in position) to the printing of a text file from a digital computer system. In the latter case, an informationprocessor is changing the form of presentation of that text file. Information processing may more specifically bedefined in terms used by Claude E. Shannon as the conversion of latent information into manifest information(McGonigle & Mastrian, 2011). Latent and manifest information is defined through the terms of equivocation(remaining uncertainty, what value the sender has actually chosen), dissipation (uncertainty of the sender what thereceiver has actually received), and transformation (saved effort of questioning - equivocation minus dissipation)(Denning and Bell, 2012).

In cognitive psychologyWithin the field of cognitive psychology, information processing is an approach to the goal of understanding humanthinking in relation to how they process the same kind of information as computers (Shannon & Weaver, 1963). Itarose in the 1940s and 1950s, after World War II (Sternberg & Sternberg, 2012). The essence of the approach is tosee cognition as being in essence computational in nature, with mind being the software and the brain being thehardware. The information processing approach in psychology is closely allied to the Computational theory of mindin philosophy; it is also related, though not identical, to cognitivism in psychology and functionalism in philosophy(Horst, 2011).

Two typesInformation processing may be sequential or parallel, either of which may be centralized or decentralized(distributed). The parallel distributed processing approach of the mid-1980s became popular under the nameconnectionism. In the early 1950s, Friedrich Hayek was ahead of his time when he posited the idea that spontaneousorder in the brain arises out of decentralized networks of simple units (neurons). However, Hayek is rarely cited inthe literature of connectionism. The connectionist network is made up different nodes, and it works by a "primingeffect," and this happens when a "prime node activates a connected node" (Sternberg & Sternberg, 2012). But"unlike in semantic networks, it is not a single node that has a specific meaning, but rather the knowledge isrepresented in a combination of differently activated nodes"(Goldstein, as cited in Sternberg, 2012).

Models and theoriesThere are several proposed models/theories that describe the way in which we process information.

Sternberg's Triarchic Theory of Intelligence

Sternberg's Theory of Intelligence is made up of three different components: creative, analytical, and practical abilities (Sternberg & Sternberg, 2012). Creativeness is the ability to have new original ideas, and being analytical can help a person decide whether the idea is a good one or not. "Practical abilities are used to implement the ideas and persuade others of their value" (Sternberg & Sternberg, 2012 p. 21). In the middle of Sternberg's theory is cognition and with that is information processing. In Sternberg’s theory, he says that information processing is made up of three different parts, metacomponents, performance components, and knowledge-acquisition components (Sternberg & Sternberg, 2012). These processes move from higher-order executive functions to lower order functions. Metacomponents are used for planning and evaluating problems, while performance components follow the orders of the metacomponents, and the knowledge-acquisition component learns how to solve the problems (Sternberg & Sternberg, 2012). This theory in action would be like working on an art project. First you have to decide what you want to draw, and then plan and sketch it out. During this process you would be monitoring how it

Page 2: Information Processing

Information processing 2

is going, and if it is what you really wanted to accomplish. All these steps fall under the metacomponent processing,and the performance component would be the actual painting. The knowledge-acquisition portion would be learninghow to draw what you want to draw.

Information processing model: The Working Memory

According to thefreedictionary.com, the definition of information processing is, "the sciences concerned withgathering, manipulating, storing, retrieving, and classifying recorded information".It suggests that for information tobe firmly implanted in memory, it must pass through three stages of mental processing; sensory memory, short-termmemory, and long-term memory. An example of this is the working memory model. This includes the centralexecutive, phonologic loop, episodic buffer,visuospatial sketchpad, verbal information, long term memory, andvisual information (Sternberg & Sternberg, 2012). The central executive is like the secretary of the brain. It decideswhat needs attention and how to respond.The central executive then leads to three different subsections. The first isphonological storage, subvocal rehearsal, and the phonological loop. These sections work together to understandwords, put the information into memory, and then hold the memory. The result is verbal information storage. Thenext subsection is the visuospatial sketchpad which works to store visual images. The storage capacity is brief butleads to understanding of visual stimuli. Finally, there is an episodic buffer. This section is capable of takinginformation and putting it into long-term memory. It is also able to take information from the phonological loop andvisuospatial sketchpad, combining them with long-term memory to make "a unitary episodic representation(Sternberg & Sternberg, 2012). In order for these to work, the sensory register takes in via the five senses: visual,auditory, tactile, olfactory, and taste. These are all present since birth and are able to handle simultaneous processing(e.g., food – taste it, smell it, see it). In general, learning benefits occur when there is a developed process of patternrecognition. The sensory register has a large capacity and its behavioral response is very short (1–3 seconds). Withinthis model, sensory store and short term memory or working memory has limited capacity. Sensory store is able tohold very limited amounts of information for very limited amounts of time. This phenomena is very similar to havingyour picture taken with the flash on. For a few brief moments after the flash goes off, the flash is still there. Soonafter, though, it is gone and you would have never known it was there (Sternberg & Sternberg, 2012). Short termmemory holds information for slightly longer periods of time, but still has a limited capacity. According to Linden(2007), "The capacity of STM had initially been estimated at “seven plus or minus two” items (Miller 1956), whichfits the observation from neuropsychological testing that the average digit span of healthy adults is about seven(Cowan and others 2005). However, it emerged that these numbers of items can only be retained if they are groupedinto so-called chunks, using perceptual or conceptual associations between individual stimuli." Its duration is of5–20 seconds before it is out of the subject's mind. This occurs often with names of people newly introduced to.Images or information based on meaning are stored here as well, but it decays without rehearsal or repetition of suchinformation. On the other hand, long-term memory has a potentially unlimited capacity (Sternberg & Sternberg,2012) and its duration is indefinite. Although sometimes it is difficult to access, it encompasses everything learneduntil this point in time. One might become forgetful or feel as if the information is on the tip of the tongue.

Cognitive development theory

Another approach to viewing the ways in which information is processed in humans was suggested by Jean Piaget in what is called the Piaget’s Cognitive Development Theory (Presnell, 1999). Piaget developed his model based on development and growth. He identified four different stages between different age brackets characterized by the type of information and by a distinctive thought process. The four stages are: the sensorimotor (from birth to 2 years), preoperational (2–6 years), concrete operational (6–11 years), and formal operational periods (11 years and older). During the sensorimotor stage, newborns and toddlers rely on their senses for information processing to which they respond with reflexes. In the preoperational stage, children learn through imitation and remain unable to take other people’s point of view. The concrete operational stage is characterized by the developing ability to use logic and to consider multiple factors to solve a problem. The last stage is the formal operational, in which preadolescents and

Page 3: Information Processing

Information processing 3

adolescents begin to understand abstract concepts and to develop the ability to create arguments and counterarguments.Furthermore, adolescence is characterized by a series of changes in the biological, cognitive, and social realms. Inthe cognitive area, it is worth noting that the brain’s prefrontal cortex as well as the limbic system undergoesimportant changes. The prefrontal cortex is the part of the brain that is active when engaged in complicated cognitiveactivities such as planning, generating goals and strategies, intuitive decision-making, and metacognition (thinkingabout thinking). This is consistent with Piaget’s last stage of formal operations (McLeod, 2010). The prefrontalcortex becomes complete between adolescence and early adulthood. The limbic system is the part of the brain thatmodulates reward sensitivity based on changes in the levels of neurotransmitters (e.g., dopamine) and emotions.In short, cognitive abilities vary according to our development and stages in life. It is at the adult stage that we arebetter able to be better planners, process and comprehend abstract concepts, and evaluate risks and benefits moreaptly than an adolescent or child would be able to.

In computingIn computing, information processing broadly refers to the use of algorithms to transform data—the definingactivity of computers; indeed, a broad computing professional organization is known as the International Federationfor Information Processing (IFIP). It is essentially synonymous with the terms data processing or computation,although with a more general connotation.

References

Bibliography• Denning, P. J., & Bell, T. (2012). The Information Paradox. American Scientist, 100(6), 470-477.• Horst, Steven, "The Computational Theory of Mind", The Stanford Encyclopedia of Philosophy (Spring 2011

Edition), Edward N. Zalta (ed.), URL =<http://plato.stanford.edu/archives/spr2011/entries/computational-mind/>.

• Lehrl, S., and Fischer, B. (1990). A Basic Information Psychological Parameter (BIP) for the Reconstruction ofConcepts of Intelligence. European Journal of Personality, 4, 259-286. Eprint (http:/ / www. v-weiss. de/lehrl-full. html)

•• Linden, D. E. (2007). The working memory networks of the human brain. The neuroscientist, 13(3), 257-269. doi:10.1177/1073858406298480

• McGonigle, D., & Mastrian, K. (2011). Introduction to information, information science, and informationsystems. (2 ed., p. 22). Jones & Bartlett Retrieved from http:/ / samples. jbpub. com/ 9781449631741/92367_CH02_017_032. pdf

• McLeod, S. A. (2010). Formal operational - piagetian stage. Retrieved from http:/ / www. simplypsychology. org/formal-operational. html

• Nake, F. (1974). Ästhetik als Informationsverarbeitung. (Aesthetics as information processing). Springer. ISBN3-211-81216-4, ISBN 978-3-211-81216-7

• Presnell, F. (1999). Jean piaget. Retrieved from http:/ / www. muskingum. edu/ ~psych/ psycweb/ history/ piaget.htm

• Shannon, C., & Weaver, W. (1963). The mathematical theory of communication. Urbana, IL: University ofIllinois Press.

• Steinberg, L. (2010). Adolescence. 9th. ed. New York, NY: McGraw Hill.• Sternberg, R. J., & Sternberg, K. (2012). Cognitive psychology. (6th ed., pp. 21, 193-205, 212-213). Belmont,

California: Wadsworth.

Page 4: Information Processing

Information processing 4

• (2012). The Free Dictionary. Princeton University: Retrieved from http:/ / www. thefreedictionary. com/information processing

Page 5: Information Processing

Article Sources and Contributors 5

Article Sources and ContributorsInformation processing  Source: http://en.wikipedia.org/w/index.php?oldid=586158267  Contributors: AdjustShift, Alan ffm, Amichaelnoll, Ancheta Wis, Angela, ArielGold, Arjayay,Benjamin.willhoite, Bgwhite, Bility, Bobo192, Bscotland, Buridan, CBDroege, CMSimons, COMPATT, Chris the speller, Christian Storm, Correogsk, Darth mavoc, Derek farn, Diego Moya,Drphilharmonic, Eagles247, Elisaida, Eu.stefan, Evil saltine, Fabian Steeg, Fleabox, Gailtb, Galoubet, Gruzd, Hersfold, I dream of horses, J04n, JaGa, Jarble, JimVC3, Jimothytrotter, Jiskastya,Johnkarp, Jon Awbrey, Jusdafax, Kamots, Kenny sh, Kimberleyporter, Knotwork, KrugerOtto, Libcub, M4gnum0n, MIT Trekkie, Magioladitis, Matthew Yeager, Mattisse, Mayumashu,Megalibgwilia, Middayexpress, Mikeo, Mintleaf, Mix338, Movementarian, N5iln, Nael AlHomsee, Octahedron80, Oicumayberight, Pascal yuiop, Pascal.Tesson, Pcap, Plantpower89,Prabagarwal, Retired user 0001, RichardF, Rjwilmsi, Rklawton, Robocoder, Robofish, Sam Hocevar, SchreiberBike, SchreyP, Skittleys, Stefania75, Tbhotch, Tedder, TenPoundHammer,Thesmatestguy, Tiptoety, Tmh, Vanished user 90345uifj983j4toi234k, Vanwhistler, Yardimsever, 㓟, 120 anonymous edits

LicenseCreative Commons Attribution-Share Alike 3.0//creativecommons.org/licenses/by-sa/3.0/