infn-mi: status mi.pdf · hippi05 4 28-30 september 2005 – hippi05 meeting cavity a...

16
INFN-MI: Status INFN-MI: Status Angelo Bosotti, Nicola Panzeri, Paolo Pierini Angelo Bosotti, Nicola Panzeri, Paolo Pierini

Upload: others

Post on 08-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

INFN-MI: StatusINFN-MI: StatusAngelo Bosotti, Nicola Panzeri,

Paolo PieriniAngelo Bosotti, Nicola Panzeri,

Paolo Pierini

Page 2: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 2

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gPlanning

• Milestones :– Report on final tuner design by end 2005– Tuner construction and testing by mid 2006

• Parallel “historical” tuner activity– Started within TTF, now ILC/XFEL – In CARE/JRA1/WP8

• Report in preparation for 1.3 GHz β=1 cavities (Angelo Bosotti)

Page 3: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 3

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gLFD compensation at high gradients (Δν = KL E2)

Stroke

Force

Displ

Structure

Piezo

δmax

Fmax

Evolution of the tuner concept, with integration of the fast LFD action1.3 GHz system under fabrication right now

Page 4: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 4

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gCavity A characterization

JLAB Z501 Tests

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Eacc

Q

Test #1Test #2Test #3Design

Multipacting Cable failures...

0.177 N/(MV/m)2Lorentz reaction force at boundary

3.7 Hz/(MV/m)2Lorentz coefficient (constrained)

3.7 N/mbarVacuum reaction force at boundary

84.7 Hz/mbarVacuum freq. coeff. (constrained)

-353.4 kHz/mmFrequency sensitivity (longitudinal)

1.248 kN/mmCavity longitudinal stiffness (Kcav)

70 mmStiffening ring radial position

5.88 mT/(MV/m)Bpeak/Eacc

3.57Epeak/Eacc

160 OhmG

180 OhmR/Q

1.34 %Cell to cell coupling

40 mmIris radius

0.47Geometrical β

704.4 MHzDesign Frequency

ValueParameter

Previous estimation [7 Hz/(MV/m)2] only on half-cell geometry, but also, mechanical load condition was overestimated by a factor of 2. Present calculation on the full geometry.

1

X

YZ

-2841

-2453-2066

-1678-1290

-902.697-515.087

-127.477260.133

647.743

JUN 21 200513:45:48

ELEMENTS

PRES

X

YZ

Page 5: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 5

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gWhere did we stand in tests with cavity A?

• Vertical tests: 3 at Saclay, 3 at JLAB

0 20 40 60 80 100 120 140 160 180 200

-3000

-2000

-1000

0

KL = -31

KL = -24

KL = -47

KL = -35

KL = -20

KL = -32

Δν[Hz]

E2acc [(MV/m)2]

Z502 Test #1 Z502 Test #2 Z502 Test #3 Z501 Test #1 Z501 Test #2 Z501 Test #3

Huge spread in static measurements!And off by a factor 10

Page 6: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 6

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gInfluence of boundary conditions

cavext

accLL KK

EFzfKK

+∂∂

+=∞

∞2 • Linear superposition of 2 effects:

Shape deformation (fixed boundary)Cavity shortening (cavity+boundarycombined stiffness)

Analytical derivation of full behavior requires solution of only 2 load cases

-60

-50

-40

-30

-20

-10

0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06K ext [N/mm]

K L [

Hz/

(MV

/m)2 ]

AnalyticalANSYS

KL = -3.7Hz/(MV/m)2

KL = -54Hz/(MV/m)2

Cavity stiffness, Kcav

Page 7: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 7

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gCavity frequency response under arbitrary b.c.

• Frequency response of the cavity can be then understood as a function of the external boundary condition

• Using values from the cavity mechanical characterization and Slater perturbation theorem

( )

( )⎪⎪⎩

⎪⎪⎨

+−=

+−−=

Hz/mbarin248.1

58.13077.84

Hz/(MV/m)in248.1

55.627.3 2

extextP

extextL

KKK

KKK

Page 8: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 8

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gThe RF test frames

Saclay tests in 2004Jlab tests in 2003/2005

Q: Are they sufficiently stiff?

Page 9: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 9

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gJLAB frame

• Cavity is held at He tank disks with a bar– Dish stiffness is greatly reduced!

~ 2.1 kN/mmJLAB load case

40 kN/mmNominal KDsmall

Large tube (FPC) side

~ 2 kN/mmJLAB load case

26 kN/mmNominal KDbig

Large tube (FPC) side

( ) 1kN/mm93.01111 −≈++=DsmallDbigframejlab KKKK

0.93 kN/mmOverall stiffness

~ 2.1 kN/mmHe tank dish, opposite side

~ 2 kN/mmHe tank dish, coupler side

11 kN/mmSupport plates (2)

142 kN/mmTi rods (4)

StiffnessComponent

Page 10: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 10

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gSaclay frame

kN/mm39.2≈saclayK

2.39 kN/mmkframe

Average frame stiffness

0.444 mmMax δz

1.000 kNApplied force

Force load condition

2.536 kNReaction force

1 mmδz

Displacement load condition

A: NO, both are not stiff enough

Page 11: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 11

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gCorrelation with measured KL

-60

-50

-40

-30

-20

-10

0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06K ext [N/mm]

KL

[Hz/

(MV

/m)2 ]

Semianalytical modelJLABSaclay

• Mechanical models assume perfect joints and no slack contacts between components– In reality: joints, screws, etc.

Page 12: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 12

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gAlternative check

• From the Saclay data at low temperatures (2.2 to 1.7 K, where the bath pressure is more stable), an average value of Δν/ΔP of -462 Hz/mbar can be evaluated– Kext of 1.15 kN/mm can be estimated, coherent with the model

discussed before

• From the JLab data an average of Δν/ΔP of -1020 Hz/mbar in the same temperature range can be estimated. – Comparable to a nearly “free” cavity behavior (nominal -966

Hz/mbar), with a negligible external stiffness condition with respect to the cavity stiffness, again, coherent with the model discussed before

Page 13: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 13

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gSummary on static KL

• RF test data is understood– Weak constraints for the cavity length– Low beta geometry very sensible to external boundary condition

(low cavity stiffness)

• Behavior of KL agains Kext allows to set tuner stiffness requirements under operating conditions

• Interaction with CEA (GD) has shown a nearly perfect agreement of static LFD modeling– both calculation modes based on Slater perturbation theorem, but

different and independent implementations, especially concerningthe mechanical part of the codes (ANSYS vs CASTEM)

• Planning for dynamic LFD calculations– harmonic analysis + Slater for cavity transfer function and piezo tf– time dependent analysis: overelongation?– need time for the development and check the procedures

Page 14: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 14

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gRequirements for 704.4 MHz

• One of the uncertainties of the piezo materials is still their stroke capabilities at the low operating temperatures

• Assuming a 3 μm stroke to cavity (long piezos)– [safe? SRF/WP8 work in progress]

• a ~1000 Hz frequency offset can be compensated during the fast tuning action

• With a design accelerating field of 8.5 MV/m, this implies that the overall KL in the operating condition should be limited to around -10 Hz/(MV/m)2

– We took a 50% margin for dynamic LFD? [M.Liepe: factor 2]

• In order to achieve this condition with these rather soft cavities the combined stiffness of the He Tank and tuner system needs to provide ~ 10 kN/mm– At 20 kN/mm we are hitting limit with He tank dish stiffness

Page 15: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 15

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gTuner requirements

• Extracting out the Tank and end dish stiffness contribution (total of 15 kN/mm), the requirement for the tuner becomes about 20 kN/mm

15 20 30

ktuner A kNÅÅÅÅÅÅÅÅÅÅÅÅÅmm

E

-12

-11

-10

-9

-8

LK

Actual experimental stiffness including leverage (TTF)

Page 16: INFN-MI: Status MI.pdf · HIPPI05 4 28-30 September 2005 – HIPPI05 Meeting Cavity A characterization JLAB Z501 Tests 1.0E+08 1.0E+09 1.0E+10 1.0E+11 0 1 2 3 4 5 6 7 8 9 10 11 12

HIPPI05 16

28-3

0Se

ptem

ber2

005

–H

IPPI

05 M

eetin

gOn the road to finalize tuner design

Will ask for bids in late 2005 andOrder main tuner mechanical components before end of year(INFN contribution is available)Then fabrication time will take 4-6 months

Now we are fine-tuning the tuner stiffness by slight adjustments of the blade number length and slope for final optimization before emitting final drawings for Cavity A