influence of defects and traps in the scintillation process · influence of defects and traps in...

36
Influence of defects and traps in the scintillation process Anna Vedda University of MilanoBicocca, Italy LUMDETR 2009 – July 15th, 2009

Upload: others

Post on 20-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Influence of defects and traps in  the scintillation process

    Anna Vedda

    University of Milano‐Bicocca, Italy

    LUMDETR 2009 – July 15th, 2009

  • Outline•

    Trapping processes during ionizing irradiation

    De‐trapping and e‐h recombinations

    Thermoluminescence (TSL)

    Wavelength resolved TSL measurements

    TSL vs RL spectra 

    Examples of uncommon applications: amorphization, phase transitions

    TSL equations

    Data analysis: initial rise, variable heating rate method, curve

    fitting

    Role of traps in scintillation

    Prediction of RT trap lifetimes

    Slow tails in scintillation decay, afterglow, permanent trapping

    Examples: Lead tungstate, perovskites, crystalline silicates 

  • Scintillation:Scintillation: Physical processesPhysical processesHi

    gh E

    nerg

    y ph

    oton

    abs

    orpt

    ion

    h

    h hh

    eee

    e

    Conduction Band

    Valence Band

    Eg

    Luminescent Centre

    Lexc

    Lgnd

    Traps

    Photon( VIS-UV )

    CONVERSION TRANSPORT LUMINESCENCE

  • TRAPPING-DETRAPPING PROCESSES: case of electron traps

    Ionizing radiation

    (X, γ…)

    Valence band

    Conduction band

    Lground

    hνRadioluminescence

    A – direct process

    T

    B – delayed process

    ET

    Mean time spent in the trap

    = τ

    = C exp(ET

    /kT)According to the ET

    value (typically from 10-2

    up to 100

    eV) a very wide range of τcan be measured (of even less than1 s up to thousands years)

    e

    h

    Lexc

  • TSL-TSC process –

    simple scheme (electron traps)

    Heating

    Valence band

    Conduction band

    Lground

    hνTSL

    TET

    TSL signal measured by a photomultiplier, no information about the recombination centre

    Probability of escape from trap: P = K exp(-ET

    /kT)P increases very strongly with temperatureA luminescence peak appears (thermally stimulated luminescence)

    TSC

    Lexc

    0

    200

    400

    0 100 200 300 400 500

    Tem

    pera

    ture

    (°C

    )

    Time (s)

    1 104

    3 104

    5 104

    7 104

    9 104

    50 100 150

    TSL

    inte

    nsity

    (arb

    . uni

    ts)

    Temperature (°C)

  • Case of hole traps

    Valence band

    Conduction band

    hνTSL

    TET

    TSC

    1 104

    3 104

    5 104

    7 104

    9 104

    50 100 150

    TSL

    inte

    nsity

    (arb

    . uni

    ts)

    Temperature (°C)

    It is not possible to determine from a simple glow curve whether

    electron or holes are detrapped during heating

    In a TSL process, the name “trap”

    is attributed to the defect from which carriers are freed by heating

    The name “recombination centre”

    is attributed to the defect in which carriers are stably trapped, and in which carriers of opposite sign recombine radiatively

    The same defects can act as traps or recombination centres in different temperature intervals

  • V.B.

    C.B.

    Lg

    hνTSL

    TETT1.

    Classical recombination through conduction band

    2.

    Thermally assisted tunneling (trap-centre recombination)

    TSC

    LeETC

    T1 2

    Different kinds of recombination paths

  • Wavelength resolved TSL measurements

    Study of both traps and recombination centers

    link to photo-, radio-

    luminescence, and scintillation

    A wavelength resolved TSL measurement consists in a collection of emission spectra measured at constant temperature intervals (for example 1 K). Usually spectra are measured by a CCD.

  • TSL

    NO

    RM

    ALI

    ZE

    0

    ENERGY (eV)

    1.5 2.0 2.5 3.0 3.5 4.0 4.50

    4

    8

    12

    16

    20

    24

    (A)

    (B)

    (C)

    (D)

    TEMPERATURE (K)

    25 50 75 100TS

    L N

    OR

    MAL

    IZE

    D IN

    TEN

    SIT

    Y0

    20

    40

    60

    80

    100(C)

    (B)(A)

    An example: low T Thermally Stimulated Luminescence (TSL) of PbWO4

    3D TSL measurement after x-ray irradiation at 10 K

    After temperature integration

    TSL emission spectra

    After wavelength integration

    TSL glow curves

    10 K40 K

    60 K

    90 K

    RT decay times in the micro-milli second time scale

  • Comparison between TSL and radio-luminescence (RL) spectraOne would expect that they are the same…

    but the nature of traps as well as specific trap-centre spatial correlations makes them often different

    Case of Lu2

    SiO5 :RE

    Significant differences between RL and TSL:

    RL spectra are governed by the emissions of principal dopant ions

    TSL spectra display main

    ly emissions from RE which capture holes during irradiation (Ce3+,Tb3+___ Ce4+,Tb4+)

    even if they are present as trace impurities

    Evidence of the electronic nature of traps0

    1

    2

    3

    4

    5

    6

    1.5 2 2.5 3 3.5 4 4.5 5

    Nor

    mal

    ized

    TSL

    and

    RL

    ampl

    itude

    Energy (eV)

    undoped

    Ce

    Tb

    Tm

    Sm

    4G5/2

    - 6Hx

    3P0 - 3H

    4

    1D2 - 3H

    6

    3P0 - 3H

    5

    3 P0 -

    3 H6

    5D3 - 7F

    x5D

    4 - 7F

    x

    5d1 - 4f

    620 413 310 248

    Wavelength (nm)

    RL TSL

  • Spatial correlation between Gd3+ and  traps in silica

    0

    2

    4

    6

    8

    10

    2 2.5 3 3.5 4

    RL

    inte

    nsity

    (arb

    .uni

    ts)

    0.1 mol% Ce,3 mol% Gd

    Energy (eV)

    3 mol% Gd0.1 mol% Ce RL

    TSL

    Gd3+

    emission

    The difference between RL (where both Ce3+

    and Gd3+emissions are observed) and TSL spectra (featuring only Gd3+

    emission line) is due to the spatial correlation between Gd3+

    and oxygen-related electron traps.

    0.1 mol% Ce,3 mol% Gd

    5d-4f Ce3+

    6P7/2

    -

    8S7/2 Gd3+

  • TSL glow curves are sensitive to material amorphization

    Crystalline quartz

    Amorphous silica

    The amorphous structure o f a m a t e r i a l o f t e n

    induces broadening of

    T S L g l o w p e a k sdue to the presence of

    continuous distributions o f t r a p l e v e l s

    1.0

    1.2

    1.4

    1.6

    1.8

    50 100 150 200 250 300 350 400TR

    AP

    ENER

    GY

    (eV)

    Partial cleaning Temperature (°C)

    SiO2

    :500 ppmCe

    0

    2 105

    4 105

    6 105

    8 105

    1 106

    0 50 100 150 200 250 300 350

    TSL

    INTE

    NSI

    TY (

    Arb

    . Un.

    )

    T (°C)

  • TSL glow curves can also be sensitive to phase transitions

    P.D. Townsend et al., Rad. Meas. 27, 31 (1997)

    Example of Ammonium Bromide (NH4

    Br)

    Modifications of trap depths

    Increased effects in case of localized trap-centre recombinations

    Possibility to monitor temperature lags between heater and sample, which are a common error

    source in TSL measurements

  • T

    TdTkTTE

    skTTEsnTI

    0

    ''/expexp)/exp(0)(

    TSL equations

    1/

    0

    ''/exp/''11/)/exp(0'')(

    bbT

    TdTkTTEsbkTTEnsTI

    First order recombination: no retrapping

    General order recombination: non negligible probability of retrapping

  • 0.001

    0.01

    0.1

    1

    5 10 15 20 25

    Nor

    mal

    ized

    TSL

    Am

    plitu

    de

    1000/T (1/K)

    0.09

    eV

    0.15

    eV

    0.23

    eV

    0.26

    eV

    0.40

    eV

    0.53

    eV

    0.62

    eV

    AG F E D C B

    kTEsnTI o exp)(

    Data analysis:

    partial cleaning and initial rise method

    This procedure allows to evaluate the trap depth independently upon the kinetic order

    Case of YALO3

    RT X-RAY IRRADIATION

    PRE-HEATING T=TSTOP

    TSL GLOW CURVE

    RAPID COOLINGTO RT

  • 100

    1000

    104

    105

    106

    50 100 150 200 250 300 350 400

    TSL

    inte

    nsity

    (arb

    . uni

    ts)

    T (°C)

    55

    6575

    250260

    270

    340

    350

    10

    100

    1000

    104105106

    1.8 2 2.2 2.41000/T (1/K)

    Tstop

    =260 °C

    E = 1.60 eV

    EVALUATION OF TRAP DEPTHSpartial cleaning of glow curves and initial rise

    (104

    ppm

    Ce, 50 ppm

    Zr)-doped LuAG

    I=c·exp(-E/kb

    T)

    E1

    =1.05 eVτRT

    ≈5.5 h

    E2

    =1.60 eVτRT

    ≈106

    yE3

    =1.92 eVτRT

    ≈1011

    y

  • 102

    104

    50 150 250 350

    LYSO:Ce dose dependence

    TSL

    inte

    nsity

    (arb

    . uni

    ts)

    Temperature (oC)

    1

    300

    60

    The presence of first order kinetics can be tested by verifying if TSL peak maxima do not vary with increasing dose. In this case,

    mkTEs

    mkT

    E exp2

    Evaluation of the frequency factor (s).

    Simple case of first order kinetics

    If E is already known, s can be evaluated (often only its order of magnitude due to s e v e r a l e r r o r s o u r c e s )

    0

    5 104

    1 105

    1,5 105

    2 105

    2,5 105

    200 300 400 500 600 700 800

    Lu3Ga(x)Al(1-x)

    5O

    12:Ce

    15s 20cm 10mA

    150s 20cm10mA

    300s 20cm 20mA

    300s 10cm 20mA

    TSL

    inte

    nsit

    y (a

    rb. u

    n.)

    Temperature (K)

  • Variable heating rate method

    0

    2 104

    4 104

    6 104

    8 104

    1 105

    1,2 105

    300 350 400 450

    LuGaG

    1°C/s1,5°C/s2°C/s2,5°C/s3°C/s

    TSL

    int

    ensi

    ty (a

    rb.u

    n.)

    Temperature (K)

    mkTEs

    mkT

    E exp2

    From:

    Plotting lnTm2/β

    vs 1/Tm

    10,6

    10,8

    11

    11,2

    11,4

    11,6

    11,8

    2,68 10-3 2,7 10-3 2,72 10-3 2,74 10-3 2,76 10-3 2,78 10-3 2,8 10-3

    ln(T

    m2 /

    ß)

    1/Tm

    (1/K)

    Slope = E/k

    Intercept = ln (E/sk)

    E = 0.92 eVs = 3x1010 s-1

    Possibility to extend to general order kineticsNeed of good separation between different peaks

  • Glow Curve Fit

    50 100 150 200 250 300

    TSL

    Ampl

    itude

    T (K)

    x 100 x 3

    TSL glow curve of YAP:0.1%Eu (full circles). The continuous red line represents the numerical fit of the glow curve in the framework of first order kinetics.

    Made in the framework of first or general order kinetics

    Difficult: E,s, and b (order of kinetic) are implicit parameters

    If several overlapping peaks are present, the number of parameters can be very high

    Need of preliminary information by other methods

  • Role of traps in scintillation If the RT decay time

    is of the order of micro-

    or milli-

    seconds

    Slow tails in the scintillation decay

    Traps can be studied by heating at a constant rate after irradiation (slow scintillation tails correspond to TSL peaks at cryogenic temperatures, while afterglow and permanent trapping are related to peaks above RT)

    The determination of trap parameters by some method of analysis alows the

    evaluation of the order of magnitude

    of the RT lifetime

    (higher precision is

    commonly prevented by several error sources and by the temperature dependence of the frequency factor, which is hardly predictable)

    Longer

    (minutes, hours)

    AfterglowVery long

    (days, years)

    Permanent trapping

  • The investigation of the role of traps in scint i l lat ion involves the fol lowing steps:

    Evidence of slow scintillation tails or afterglow

    Need to understand the nature of responsible defects

    Study of defects by an independent technique giving information about thermal stability of defects and their r a d i a t i v e r e c o m b i n a t i o n p r o p e r t i e s ( T S L )

    Correlation of TSL data with other techniques which allow structural information about traps (e.g. EPR)

    Tuning of material synthesis to reduce the investigated defects

  • 100

    101

    102

    103

    104

    50 100 150 200 250 300

    YALO3:Ce

    Lu2-x

    YxSiO

    5:Ce

    Lu3Al

    5O

    12:Ce

    TSL

    Inte

    nsity

    (arb

    . uni

    ts)

    Temperature (K)

    Role of traps in scintillation time decayComparison between silicates, garnets, and perovskites

    The presence of fewer shallow traps in silicates with respect to other scintillators

    (very low TSL intensity below RT) is in agreement with th

    e absence of slower

    components in th

    e scintillation decay.

    100 200 300 400 500 600 700 800

    lum

    . int

    ensi

    ty [a

    rb.u

    nits

    ]

    time [ns]

    Photoluminescencedecay time = 54 ns

    Lu3Al

    5O

    12:Ce (0.12%)

    a - scintillationb - PL

    60 ns

    600-1000 ns

    Ifast

    = 40%

    1000

    100

    10 10

    100

    1000

    100 200 300 400 500 600 700 800

    YAlO3:Ce

    Lum

    . Int

    ensi

    ty [a

    rb. u

    nits

    ]

    time [ns]

    I(t) = 954exp(-t/24ns) + 110exp(-t/60ns) + 17exp(-t/329ns)+7.89

    Ifast

    = 65%

    10

    100

    1000

    100 200 300 400 500 600 700 800

    Lu2-x

    YxSiO

    5:Ce

    Lum

    . Int

    ensi

    ty [a

    rb. u

    nits

    ]time [ns]

    I(t)=459exp(-t/45ns) + 4.1exp(-t/714ns)+ 14.2

    Ifast

    = 88%

  • 10-9

    10-7

    10-5

    10-3

    10-1

    101

    103

    0 50 100 150 200 250 300 350

    293

    K tim

    e de

    cay

    (s)

    Tmax (K)

    Pb+ - V0

    WO4

    3 - - La3+

    WO4

    3 -

    WO3

    - - APb

    MO4

    3-

    Present only in Mo-doped samples

    Example of lead tungstate (PbWO4

    – PWO)

    Suppressed by trivalent ion doping

    Room temperature time decays

    a 460 ppm Lab 80 ppm Lac undoped

    Doping with La3+

    reduces slow components in the scintillation decay, as well as TSL glow

    peaks at cryogenic temperatures

    La3+

    favours the reduction of intrinsic lattice defects

    TSL of undoped PWO

    Scintillation time decay

    Defect structures determined by EPR measurements

    Intrinsic RT scintillation decay time

  • S c i n t i l l a t i o n decays o f a )undopedPWO and b)PWO(2750Mo,500Nb,50Y) at RT.

    TSL glow curves of differently doped PWO samples

    Effect of different ion dopings in very slow decay components in

    PWO

    Alpha coefficient: normalized difference between the signal level before the excitation pulse and the true background (It measures the level of very slow components)

    Good correlation between alpha coefficients of differently doped

    samples and TSL integral intensities below RT

  • YAlO3

    undoped crystals

    Wavelength (nm)

    Tem

    pera

    ture

    (K)

    1 2 3 4 5 60

    0.2

    0.4

    0.6

    0.8

    1

    Nor

    mal

    ized

    TS

    L A

    mpl

    itude

    Energy (eV)

    10-50 K

    130-260 K

    50-130 K

    5d1-4f Ce3+

    defects

    intrinsic emissions

    50 100 150 200 250 300

    TSL

    Am

    plitu

    de

    Temperature (K)

    154

    K

    190

    K

    232

    K

    66 K

    89 K

    110

    K

    30 K

    Wavelength integration

    Temperature integration

    Several emission centres for each glow peak

    Recombinations involving valence/conduction bands

  • 50 75 100 125 150 175 200 225 250 275 3000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0 50 ppm Ce 5000 ppm Ce

    EPR

    , TSL

    inte

    nsity

    (arb

    . uni

    ts)

    T (K)

    OI

    OII

    OIII

    OIVTSL

    Structural nature of trapsCorrelation with EPR signals

    The TSL peaks at 154 K, 190 K, and 232 K are due to the de-trapping of holes from O-

    centres followed by recombination with electrons stored in oxygen vacancies

  • 50 100 150 200 250 300

    Nor

    mal

    ized

    TS

    L A

    mpl

    itude

    Temperature (K)

    2% Yb

    Undoped

    0.1% Eu

    x 10

    x 100 x 2

    Doping of YAlO3

    with Yb3+, Eu3+, and Tm3+Trapping of electrons during irradiation

    0.1% Tm

    1 2 3 4 5 6

    TSL

    Am

    plitu

    de

    Energy (eV)

    2% Yb

    Undoped

    0.1% Eu

    x 1025-100 K

    140-160 K260-290 K

    10-310 K

    10-50 K

    130-260 K

    50-130 K

    2F5/2

    - 2F7/2

    CT emissions

    5D0-7F

    x

    defects

    5d1-4f Ce3+

    intrinsicemissions

    0.1% Tm10-310 K

    1D2 - 3H

    6

    3P0 - 3H

    5

    3P0 - 3H

    6

    3P0 - 3H

    4

    Hole traps are similar to those observed in undoped crystals. Rare earth ions compete with oxygen vacancies in electron trapping (becoming temporarily Yb2+, Eu2+, Tm2+) and act as recombination centres in the TSL process

    TSL emissions

  • TSL peak E (eV) ν

    (1/s)

    at RT (s)

    45 K 0.09 107 10-7

    66 K 0.15 1010 10-8

    89 K 0.23 1011 10-8

    110 K 0.26 1010 10-6

    154 K (O-) 0.40 1011 10-5

    190 K (O-) 0.53 1012 10-3

    232 K (O-) 0.62 1011 10-1

    Detrapping and recombination: Case of YAlO3

    :Yb

    232

    K

    154

    K

    190

    K

    Due to their long RT decay times, traps responsible for the TSL peaks above 100 K (mostly O-

    centres) cause slow tails in the scintillation time decay

  • Doping with Ce3+, Pr3+, and Tb3+Trapping of holes during irradiation –

    a TSL pattern different from that occurring with Yb3+, Eu3+, Tm3+

    doping is expected

    50 100 150 200 250 3000

    1

    2

    3

    4

    Nor

    ma

    lized

    TSL

    Inte

    nsity

    Temperature (K)

    0.1% Tb

    0.1% Pr

    Undoped

    0.5% Ce

    Tunneling emissionTunneling emission

    Evidence of one or two dominant Evidence of one or two dominant TSL peaks, similar to those TSL peaks, similar to those observed in the cases of undoped, observed in the cases of undoped, Yb, Eu, and Tm doped crystalsYb, Eu, and Tm doped crystals

    TSL spectral emissions of rareTSL spectral emissions of rare-- earth ions trapping holesearth ions trapping holes

    O-O- O-

    CeCe3+ 3+ emissionemission

    TbTb3+ 3+ emissionemission

    PrPr3+ 3+ emissionemission

  • 1 2 3 4 5 6

    TSL

    Ampl

    itude

    Energy (eV)

    0.1% Tm

    Undoped

    0.1% Tb

    defectsintrinsicemissions

    5D4 - 7F

    x

    5D3 - 7F

    x

    5d1-4f

    Ce traces

    3P0 - 3H

    4

    1D2 - 3H

    6

    3P0 - 3H

    5

    3P0 - 3H

    6

    RE-doped YAPTSL spectra Example: 190 K peak

    Emissions from electron and hole trapping RE ions observed in the same TSL peaks.

    0.5% Ce5d

    1-4f

    1 2 3 4 5 6TS

    L Am

    plitu

    deEnergy (eV)

    2% Yb

    Undoped

    0.1% Eu

    x 10

    2F5/2

    - 2F7/2

    CT emissions

    defectsintrinsicemissions

    5d1-4f

    Ce traces

    5D0-7F

    x

    0.1% Pr 5d1-3H

    4,5

    3P0-3H

    4,51D2-3H

    4

  • In RE-doped YAP, traps and recombination centres do not act like separate entities, but rather as parts of defect complexes in which carriers can be transferred from intrinsic levels (O-

    centres and oxygen vacancies) to the rare earth ion levels.

    The observation of a nearly temperature independent TSL emission

    suggests that tunnelling driven recombination processes occur in addition

    to the

    temperature driven recombination, supporting the existence of such complexes w i t h c l o s e s p a t i a l c o r r e l a t i o n b e t w e e n t r a p s a n d c e n t r e s .

    Due to the formation of defect complexes, the kind of recombination centre (capturing holes or electrons, e.g. Ce

    or Yb) is not always a proof of the nature

    (electron-

    or hole-kind) of a trap

    The comparison of the TSL patterns of crystals doped with a variety of rare earth ions

    proved to be essential in order to highlight this phenomenology,

    which nevertheless could be more common in TSL experiments than expected.

  • 50 100 150 200 250 3000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Nor

    mal

    ized

    TS

    L A

    mpl

    itude

    Temperature [K]

    Undopedx 10

    Pr-0.1%

    Ce-0.1%

    (RT) ~ 10-3s

    (RT) ~ 10-4s

    Sample Concentr.Melt (%)

    Growth method

    &Crucible

    Nphels /MeV(phels per

    MeV)

    FWHM (%) at

    662 keV

    Nphels% of

    standard

    RL_intens.% of

    standardYAP:Ce Ce-0.05 CZ - Ir 1978 7.3 71 81YAP:CeCzech

    Ce-0.5 CZ –

    Mostandard

    2803 4.8 100 100

    YAP:Pr Pr - 0.05 CZ - Ir 2280 7.1 81 147YAP:Pr Pr – 1.0 CZ - Ir 1026 8.9 37 113YAP:PrCzech

    Pr – 0.5 CZ - Mo 975 10.3 35 130

    YAP:PrCzech

    Pr – 1.1 CZ - Mo 1127 9.1 40 n.m.

    Consequences of trap levels RT decay times on scintillation efficiency

    Ligh

    t yie

    ld (

    1 μs

    )

    Stea

    dy s

    tate

    RL

    As the glow curve peak occurs at a much higher temperature in the case of Pr doping, the RT

    lifetime of it main trap is a b o u t o n e o r d e r o f

    magnitude larger with

    respect to that of Ce-

    d o p e d Y A P .

    This can be one of the reasons why delayed radiative recombination processes in YAP:Pr are more pronounced and its photoelectron yield is lower with respect to that of YAP:Ce in spite of its higher steady state RL efficiency.

  • 0

    1

    2

    0 100 200 300 400

    TSL

    inte

    nsity

    (arb

    . uni

    ts)

    Temperature (oC)

    x 20 LSO:Ce

    LYSO:Ce

    Lu2

    SiO5

    :Ce and Lu1.96

    Y0.04

    SiO5

    :Ce –

    identification of the nature of traps thanks to their localized recombination mechanism

    LSO:Ce

    Recombination mechanism:Ce4+

    + e (freed from the electron trap) →

    Ce3+*

    (excited state) →

    Ce3+

    + hν

    (TSL emitted light)Evidence of the electronic nature of TSL traps

    0.5

    1.0

    1.5

    50 100 150 200 250 300 350

    LSO:CeLYSO:Ce

    Trap

    dep

    th (e

    V)

    Tstop (oC)

    78 °C 300 °C236 °C181°C135 °C

    Constant trap depth for all glow peaks except the 300 °C one

  • No dependence of maximum

    temperatures from dose

    No retrapping

    rs expIn the case of a thermally assisted tunneling processWhere “s”

    is the frequency factor and “r”

    is the distance between the trap and the recombination centre

    mm kTEs

    kTE exp2

    106107108109

    1010101110121013

    2 2.5 3 3.5 4

    LSO

    LYSO

    Freq

    uenc

    y fa

    ctor

    (1/s

    )

    O-Lu distance (Angstrom)

    2.0

    3.0

    4.0

    0 2 4 6 8

    Lu1-

    O d

    ista

    nce

    (A)

    oxygen site no.

    LSO structure

    78 °

    C

    236

    °C

    181

    °C

    135

    °C

    Exponential dependence of the frequency factors from Lu1(Ce)-Oxygen distances

    Oxygen vacancies act as electron traps responsible for TSL peaks

  • Conclusions

    TSL is a powerful technique for the study of luminescent materials; especially when performed in wavelength resolved mode, it can really provide a deep insight in the t r a p p i n g - r e c o m b i n a t i o n p r o c e s s e s o c c u r r i n g i n a s c i n t i l l a t o r .

    Several types of recombination mechanisms between traps and luminescent centres exist. Their comprehension needs very often the possibility to vary sample parameters like kind of doping, dopant concentration, synthesis and annealing conditions, and to probe their influence on TSL features. Anyway, in some cases only qualitative descriptions of the recombination processes remain possible.

    Data analyses are delicate; the handling of trap parameters needs a clear consciousness of the error sources linked to experimental data and numerical methods. This is important especially if a comparison with similar parameters obtained by other techniques has to be performed. Such consciousness of the limits of the technique doesn’t lower, but increases its potential allowing to handle data in a critical and therefore constructive way.

  • References1.

    M. Martini, F. Meinardi, G. Spinolo, A. Vedda, M. Nikl, Y. Usuki, “Shallow traps in PbWO4 by wavelength resolved thermally stimulated luminescence”, Phys. Rev. B 60, 4653 (1999).

    2.

    Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal, M. Dusek, G.

    Ren, C.R. Stanek, K. J. McClellan, D.D. Byler, “Thermally stimulated tunneling in rare-earth doped Lu-Y oxyorthosilicates”, Phys. Rev. B 78, 195123 (2008).

    3.

    A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, L. Griguta, F. Moretti, E. Rosetta, “Thermally stimulated luminescence of Ce and Tb doped SiO2 sol-gel glasses” , Journal of Non-Cryst. Solids 351, 3699 (2005).

    4.

    Vedda, D. Di Martino, M. Martini, V.V. Laguta, M. Nikl, E. Mihokova, J. Rosa, K. Nejechleb, K. Blazek, “Thermoluminescence of Lu3 Al5 O12 :Ce crystals”, Physica Status Solidi A 195, R1 (2003).

    5.

    P.D. Townsend, A.P. Rowlands, G. Corradi, “Thermoluminescence during a phase transition”, Rad. Meas. 27, 31 (1997).

    6.

    M. Nikl, K. Nitsch, P. Bohacek, M. Martini, E. Mihokova, A. Vedda, S. Croci, G.P. Pazzi, P. Fabeni, S. Baccaro, B. Borgia, I. Dafinei, M. Diemoz, G. Organtini, E. Auffray, P. Lecoq, M. Kobayashi, M. Ishii, Y. Usuki, "Decay kinetics and thermoluminescence of PbWO4 :La3+", Appl. Phys. Lett. 71, 3755, (1997).

    7.

    V.V. Laguta, M. Martini, A. Vedda, E. Rosetta, M. Nikl, E. Mihokova, Y. Usuki, “Electron traps related to oxygen vacancies in PbWO4 ”, Phys. Rev. B 67, 205102 (2003).

    8.

    M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, A. Vedda, M. Martini, G.P.Pazzi, P. Fabeni, M. Kobayashi, M. Ishii, “Enhanced efficiency of PbWO4 :Mo,Nb scintillator”, J. Appl. Phys. 91, 5041 (2002).

    9.

    A. Vedda, M. Fasoli, M. Nikl, V.V. Laguta, E. Mihokova, J. Pejchal, A. Yoshikawa, M. Zhuravleva, “Trap-centre recombination processes by rare earth activators in YAlO3 single crystal host” , Phys. Rev. B 80, 045113 (1)-(9) (2009).

    10.

    V.V. Laguta, M.

    Nikl, A.

    Vedda, E. Mihokova, J. Rosa, K. Blazek, “Hole and electron traps in the YAlO3 single crystal scintillator”, Phys. Rev. B 80, 045114 (1)-(10) (2009).

    11.

    A. Vedda, M. Martini, F. Meinardi, J. Chval, M. Dusek, J.A. Mares, E. Mihokova, M. Nikl, “Tunneling process in Thermally Stimulated Luminescence of mixed Lux (Y3+)1-x AlO3 :Ce crystals”, Phys. Rev. B 61, 8081 (2000).

    Influence of defects and traps in the scintillation processOutlineSlajd numer 3Slajd numer 4Slajd numer 5Slajd numer 6Slajd numer 7Slajd numer 8Slajd numer 9Slajd numer 10Spatial correlation between Gd3+ and traps in silicaSlajd numer 12Slajd numer 13TSL equationsSlajd numer 15Slajd numer 16Slajd numer 17Variable heating rate methodGlow Curve FitSlajd numer 20Slajd numer 21Slajd numer 22Slajd numer 23Slajd numer 24Slajd numer 25Slajd numer 26Slajd numer 27Slajd numer 28Slajd numer 29Slajd numer 30Slajd numer 31Slajd numer 32Slajd numer 33Slajd numer 34Slajd numer 35Slajd numer 36