infineon ikw50n60t ds v02 06 en

Upload: basil-mathew

Post on 24-Feb-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    1/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 1 Rev. 2.6 20.09.2013

    Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft,

    fast recovery anti-parallel Emitter Controlled HE diode

    Features:

    Very low VCE(sat)1.5V (typ.)

    Maximum Junction Temperature 175C

    Short circuit withstand time 5s

    Designed for :- Frequency Converters- Uninterrupted Power Supply

    TRENCHSTOP and Fieldstop technology for 600V applications offers :

    - very tight parameter distribution- high ruggedness, temperature stable behavior- very high switching speed

    Positive temperature coefficient in VCE(sat) Low EMI

    Low Gate Charge

    Very soft, fast recovery anti-parallel Emitter Controlled HE diode

    Qualified according to JEDEC1

    for target applications

    Pb-free lead plating; RoHS compliant

    Complete product spectrum and PSpice Models :http://www.infineon.com/igbt/

    Type VCE IC VCE(sat),T j= 25C Tj,max Marking Package

    IKW50N60T 600V 50A 1.5V 175C K50T60 PG-TO247-3

    Maximum Ratings

    Parameter Symbol Value Unit

    Collector-emitter voltage,Tj 25C VC E 600 V

    DC collector current, limited by Tjmax

    TC= 25C

    TC= 100C

    IC 802)

    50

    APulsed collector current,tplimited byTjmax IC p u l s 150

    Turn off safe operating area, VCE = 600V,Tj= 175C,tp= 1s - 150

    Diode forward current, limited by Tjmax

    TC= 25C

    TC= 100C

    IF 100

    50

    Diode pulsed current, tplimited byTjmax IF p u l s 150

    Gate-emitter voltage VG E 20 V

    Short circuit withstand time3)

    VGE= 15V, VCC 400V, Tj150CtS C 5 s

    Power dissipationTC= 25C Pt o t 333 W

    Operating junction temperature Tj -40...+175

    CStorage temperature Ts t g -55...+150

    Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260

    1J-STD-020 and JESD-022

    2)Value limited by bond wire

    3)Allowed number of short circuits: 1s.

    G

    C

    E

    PG-TO247-3

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    2/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 2 Rev. 2.6 20.09.2013

    Thermal Resistance

    Parameter Symbol Conditions Max. Value Unit

    Characteristic

    IGBT thermal resistance,

    junction case

    Rt h J C 0.45 K/W

    Diode thermal resistance,

    junction case

    Rt h J C D 0.8

    Thermal resistance,

    junction ambient

    Rt h J A 40

    Electrical Characteristic,at Tj= 25C, unless otherwise specified

    Parameter Symbol ConditionsValue

    Unitmin. Typ. max.

    Static Characteristic

    Collector-emitter breakdown voltage V( B R ) C E S VG E = 0 V , IC = 0 . 2 m A 600 - - V

    Collector-emitter saturation voltage VC E ( s a t ) VG E = 1 5 V , IC = 5 0 A

    Tj =2 5C

    Tj = 1 7 5 C

    -

    -

    1.5

    1.9

    2

    -

    Diode forward voltage VF VG E = 0 V , IF = 5 0 A

    Tj =2 5C

    Tj = 1 7 5 C

    -

    -

    1.65

    1.6

    2.05

    -

    Gate-emitter threshold voltage VG E ( t h ) IC = 0 . 8 m A ,VC E = VG E 4.1 4.9 5.7

    Zero gate voltage collector current IC E S VC E = 6 0 0 V ,VG E = 0V

    Tj =2 5C

    Tj = 1 7 5 C

    -

    -

    -

    -

    40

    3500

    A

    Gate-emitter leakage current IG E S VC E = 0 V , VG E = 2 0 V - - 100 nA

    Transconductance gf s VC E = 2 0 V , IC = 5 0 A - 31 - S

    Integrated gate resistor RG i n t -

    Dynamic Characteristic

    Input capacitance Ci s s VC E = 2 5 V ,

    VG E = 0 V ,

    f= 1 M H z

    - 3140 - pF

    Output capacitance Co s s - 200 -

    Reverse transfer capacitance Cr s s - 93 -

    Gate charge Q G a t e VC C = 4 8 0 V , IC = 5 0 A

    VG E = 1 5 V

    - 310 - nC

    Internal emitter inductance

    measured 5mm (0.197 in.) from case

    L E - 13 - nH

    Short circuit collector current1)

    IC ( S C ) VG E = 1 5 V , tS C5 sVC C = 4 0 0 V ,

    Tj 1 50C

    - 458.3 - A

    1)Allowed number of short circuits: 1s.

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    3/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 3 Rev. 2.6 20.09.2013

    Switching Characteristic, Inductive Load, at Tj=25C

    Parameter Symbol Conditions

    Value

    Unitmin. Typ. max.

    IGBT Characteristic

    Turn-on delay time td ( o n ) Tj = 2 5 C,VC C = 4 0 0 V ,IC = 5 0 A ,

    VG E = 0 / 1 5 V ,rG = 7 ,

    L

    = 1 0 3 n H , C

    = 3 9 p F

    L

    , C

    f r o m F i g . EEnergy losses includetail and diode reverserecovery.

    - 26 - ns

    Rise time tr - 29 -

    Turn-off delay time td ( o f f ) - 299 -

    Fall time tf - 29 -

    Turn-on energy Eo n - 1.2 - mJ

    Turn-off energy Eo f f - 1.4 -

    Total switching energy Et s - 2.6 -

    Anti-Parallel Diode Characteristic

    Diode reverse recovery time tr r Tj =2 5C ,

    VR = 4 0 0 V , IF = 5 0 A ,

    d iF/ d t= 1 2 8 0 A /s

    - 143 - ns

    Diode reverse recovery charge Q r r - 1.8 - C

    Diode peak reverse recovery current Ir r m - 27.7 - A

    Diode peak rate of fall of reverserecovery current duringtb

    d ir r/d t - 671 - A/s

    Switching Characteristic, Inductive Load, at Tj=175C

    Parameter Symbol ConditionsValue

    Unit

    min. Typ. max.IGBT Characteristic

    Turn-on delay time td ( o n ) Tj = 1 7 5 C ,VC C = 4 0 0 V ,IC = 5 0 A ,

    VG E = 0 / 1 5 V ,rG = 7 ,

    L

    = 1 0 3 n H , C

    = 3 9 p F

    L

    , C

    f r o m F i g . EEnergy losses includetail and diode reverserecovery.

    - 27 - ns

    Rise time tr - 33 -

    Turn-off delay time td ( o f f ) - 341 -

    Fall time tf - 55 -

    Turn-on energy Eo n - 1.8 - mJ

    Turn-off energy Eo f f - 1.8 -

    Total switching energy Et s - 3.6 -

    Anti-Parallel Diode Characteristic

    Diode reverse recovery time tr r Tj = 1 7 5 C

    VR = 4 0 0 V , IF = 5 0 A ,

    d iF/ d t= 1 2 8 0 A /s

    - 205 - ns

    Diode reverse recovery charge Q r r - 4.3 - C

    Diode peak reverse recovery current Ir r m - 40.7 - A

    Diode peak rate of fall of reverserecovery current duringtb

    d ir r/d t - 449 - A/s

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    4/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 4 Rev. 2.6 20.09.2013

    IC,

    COLLECTORCURRENT

    100H z 1kH z 10kH z 100kH z

    0A

    20 A

    40 A

    60 A

    80 A

    00 A

    20 A

    40 A

    TC

    =110C

    TC

    =80C

    IC,

    COLLECTORCURRENT

    1V 10V 100V 1000V

    1A

    10 A

    100A

    10s

    1m s

    DC

    tp=2s

    50s

    10ms

    f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 1. Collector current as a function ofswitching frequency

    (Tj175C,D =0.5,VCE= 400V,

    VGE= 0/15V, rG= 7)

    Figure 2. Safe operating area

    (D =0, TC= 25C,Tj175C;VGE=0/15V)

    Ptot,POWERDISSIPATION

    2 5 C 5 0C 7 5C 1 00 C 1 25 C 1 50 C0W

    50 W

    100W

    150W

    200W

    250W

    300W

    IC,

    CO

    LLECTORCURRENT

    25C 75C 125C0A

    20 A

    40 A

    60 A

    80 A

    TC, CASE TEMPERATURE TC, CASE TEMPERATURE

    Figure 3. Power dissipation as a function ofcase temperature

    (Tj175C)

    Figure 4. Collector current as a function ofcase temperature

    (VGE15V,Tj175C)

    Ic

    Ic

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    5/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 5 Rev. 2.6 20.09.2013

    IC,

    COLLECTORCURRENT

    0V 1V 2V 3V

    0A

    20A

    40A

    60A

    80A

    100A

    120A

    15 V

    7V

    9V

    11V

    13 V

    VGE

    =20V

    IC,

    COLLECTORCURRENT

    0V 1V 2V 3V 4V

    0A

    20 A

    40 A

    60 A

    80 A

    100A

    120A

    15 V

    13 V

    7V

    9V

    11 V

    VGE

    =20V

    VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 5. Typical output characteristic(Tj= 25C)

    Figure 6. Typical output characteristic(Tj= 175C)

    IC,

    CO

    LLECTORCURRENT

    0V 2V 4V 6 V 8 V0A

    20A

    40A

    60A

    80A

    25C

    TJ= 175C

    VCE(sat),

    COLLECTO

    R-EMITTSATURATIONVOLTAGE

    0C 50C 100C 150C0.0V

    0.5V

    1.0V

    1.5V

    2.0V

    2.5V

    IC

    =50A

    IC

    =100A

    IC

    =25A

    VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE

    Figure 7. Typical transfer characteristic(VCE=10V)

    Figure 8. Typical collector-emittersaturation voltage as a function ofjunction temperature(VGE= 15V)

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    6/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 6 Rev. 2.6 20.09.2013

    t,SWITCHINGTIMES

    0A 20A 4 0 A 60A 80 A

    10ns

    100ns tr

    td(on)

    tf

    td(off)

    t,SWITCHINGTIMES

    10ns

    100ns

    tr

    td(on)

    tf

    td(off)

    IC, COLLECTOR CURRENT RG, GATE RESISTOR

    Figure 9. Typical switching times as afunction of collector current(inductive load,TJ=175C,VCE = 400V, VGE = 0/15V,rG = 7,Dynamic test circuit in Figure E)

    Figure 10. Typical switching times as afunction of gate resistor(inductive load,TJ = 175C,VCE= 400V, VGE = 0/15V,IC = 50A,Dynamic test circuit in Figure E)

    t,S

    WITCHINGTIMES

    2 5C 5 0C 7 5C 1 00 C 1 2 5C 1 50 C1 0 n s

    1 0 0 n s

    tr

    td(on)

    tf

    td(off)

    VGE(th),GATE-EMITTTRSHOLDVOLTAGE

    -50C 0 C 5 0 C 1 0 0C 150 C0V

    1V

    2V

    3V

    4V

    5V

    6V

    7V

    min.

    typ.

    ma x.

    TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE

    Figure 11. Typical switching times as afunction of junction temperature(inductive load,VCE = 400V,VGE = 0/15V,IC = 50A,rG=7,

    Dynamic test circuit in Figure E)

    Figure 12. Gate-emitter threshold voltage asa function of junction temperature(IC= 0.8mA)

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    7/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 7 Rev. 2.6 20.09.2013

    E,

    SWITCHINGENERGYLOSSES

    0A 20A 40A 60A 80A0.0mJ

    2.0mJ

    4.0mJ

    6.0mJ

    8.0mJ

    Ets

    *

    Eoff

    *) Eon

    and Ets

    include losses

    due to diode recovery

    Eon

    *

    E,

    SWITCHINGENERGYLOSSES

    0.0mJ

    1.0mJ

    2.0mJ

    3.0mJ

    4.0mJ

    5.0mJ

    6.0mJE

    ts*

    Eoff

    *) Eon

    an d Ets

    include losses

    due to diode recovery

    Eon

    *

    IC, COLLECTOR CURRENT RG, GATE RESISTOR

    Figure 13. Typical switching energy lossesas a function of collector current(inductive load,TJ = 175C,VCE = 400V, VGE = 0/15V,rG = 7,Dynamic test circuit in Figure E)

    Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load,TJ = 175C,VCE = 400V, VGE = 0/15V,IC = 50A,Dynamic test circuit in Figure E)

    E,

    SWITC

    HINGENERGYLOSSES

    25C 50C 7 5C 10 0C 12 5C 1 50C0.0mJ

    1.0mJ

    2.0mJ

    3.0mJ

    Ets

    *

    Eoff

    *) Eon

    and Ets

    include losses

    due to diode recovery

    Eon

    *E

    ,SWITC

    HINGENERGYLOSSES

    300V 35 0V 4 00 V 4 50V 5 00V 55 0V0m J

    1m J

    2m J

    3m J

    4m J

    Ets

    *

    Eon

    *

    *) Eon

    a nd Ets

    include losses

    due to diode recovery

    Eoff

    TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 15. Typical switching energy lossesas a function of junctiontemperature(inductive load,VCE = 400V,

    VGE = 0/15V,IC = 50A,rG = 7,Dynamic test circuit in Figure E)

    Figure 16. Typical switching energy lossesas a function of collector emittervoltage(inductive load,TJ = 175C,

    VGE = 0/15V,IC = 50A,rG = 7,Dynamic test circuit in Figure E)

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    8/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 8 Rev. 2.6 20.09.2013

    VGE,

    GATE-EMITTERVOLTAGE

    0 nC 1 0 0 n C 2 0 0n C 3 0 0 n C0 V

    5 V

    1 0 V

    1 5 V

    4 8 0 V

    1 2 0 V

    c,

    CAPACITANCE

    0V 10V 20V 30V 40V

    100pF

    1n F

    Crss

    Coss

    Ciss

    QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 17. Typical gate charge(IC=50 A)

    Figure 18. Typical capacitance as a functionof collector-emitter voltage(VGE=0V,f= 1 MHz)

    IC(sc),shortcircuitCOLLECTORCURRENT

    12V 14V 16V 18V0A

    100A

    200A

    300A

    400A

    500A

    600A

    700A

    800A

    tSC,

    SHORT

    CIRCUITWITHSTANDTIME

    10V 11V 12V 13V 14V0 s

    2 s

    4 s

    6 s

    8 s

    10s

    12s

    VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITETR VOLTAGE

    Figure 19. Typical short circuit collectorcurrent as a function of gate-emitter voltage

    (VCE400V,Tj150C)

    Figure 20. Short circuit withstand time as afunction of gate-emitter voltage(VCE=400V,start at TJ=25C,TJmax

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    9/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 9 Rev. 2.6 20.09.2013

    ZthJC,

    TRANSIENTTHERMALIMPEDANCE

    1 s 1 0 s 1 00 s 1 ms 10 ms 1 00 ms

    10-2

    K/ W

    10-1

    K/ W

    single pulse

    0.01

    0.02

    0.05

    0. 1

    0.2

    D=0.5

    ZthJC,

    TRANSIENTTHERMALIMPEDANCE

    1 s 1 0 s 1 00 s 1 ms 1 0m s 1 00 ms

    10 -2K/ W

    10-1

    K/ W

    single pulse

    0.01

    0.02

    0.05

    0. 1

    0. 2

    D=0.5

    tP, PULSE WIDTH tP, PULSE WIDTH

    Figure 21. IGBT transient thermalimpedance(D = tp/ T)

    Figure 22. Diode transient thermalimpedance as a function of pulsewidth(D=tP/T)

    trr,

    REVER

    SERECOVERYTIME

    700A/ s 800A/ s 900A / s 1000A/ s0ns

    50ns

    100ns

    150ns

    200ns

    250ns

    300ns

    TJ=25C

    TJ=175C

    Qrr,

    REVERS

    ERECOVERYCHARGE

    7 00 A/ s 8 00 A/s 9 00 A/s 1 00 0A /s0.0C

    0.5C

    1.0C

    1.5C

    2.0C

    2.5C

    3.0C

    3.5C

    4.0C

    TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

    Figure 23. Typical reverse recovery time asa function of diode current slope(VR=400V,IF=50A,

    Dynamic test circuit in Figure E)

    Figure 24. Typical reverse recovery chargeas a function of diode currentslope

    (VR = 400V,IF = 50A,Dynamic test circuit in Figure E)

    R, ( K / W ) , ( s )

    0.18355 7.425*10-

    0.12996 8.34*10-

    0.09205 7.235*10-

    0.03736 1.035*10-

    0.00703 4.45*10-

    C1 =1 / R1

    R1 R2

    C2 =2 / R2

    R, ( K / W ) , ( s )

    0.2441 7.037*10-

    0.2007 7.312*10-

    0.1673 6.431*10-

    0.1879 4.79*10-

    C1 =1 / R1

    R1 R2

    C2 =2/ R2

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    10/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 10 Rev. 2.6 20.09.2013

    Irr,

    REVERSERECOVERYCURRENT

    7 00 A/ s 8 00 A / s 9 0 0A / s 1 00 0A / s0A

    10 A

    20 A

    30 A

    40 A

    TJ=25C

    TJ=175C

    d

    irr/

    dt,DIODEPEAKRATEOFFALL

    O

    FREVERSERECOVERYCURRENT

    7 00 A/ s 8 00 A/ s 9 00 A/ s 1 00 0A/ s0A/s

    -150A/s

    -300A/s

    -450A/s

    -600A/s

    -750A/s

    TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

    Figure 25. Typical reverse recovery currentas a function of diode currentslope(VR = 400V,IF = 50A,Dynamic test circuit in Figure E)

    Figure 26. Typical diode peak rate of fall ofreverse recovery current as afunction of diode current slope(VR=400V,IF=50A,Dynamic test circuit in Figure E)

    IF,

    FOR

    WARDCURRENT

    0V 1V 2V0A

    20 A

    40 A

    60 A

    80 A

    00 A

    20 A

    175C

    TJ=25C

    VF,

    FORWARDVOLTAGE

    0C 50C 100C 150C0.0V

    0.5V

    1.0V

    1.5V

    2.0V

    50 A

    IF

    =100A

    25 A

    VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE

    Figure 27. Typical diode forward current asa function of forward voltage

    Figure 28. Typical diode forward voltage as afunction of junction temperature

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    11/13

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    12/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 12 Rev. 2.6 20.09.2013

    Ir r m

    90%Ir r m

    10%Ir r m

    di /dtF

    tr r

    IF

    i,v

    tQS

    QF

    tS

    tF

    VR

    di /dt r r

    Q =Q Qr r S F

    +

    t =t t r r S F

    +

    Figure C. Definition of diodes

    switching characteristics

    p(t)1 2 n

    T (t)j

    1

    1

    2

    2

    n

    n

    TC

    r r

    r

    r

    rr

    Figure D. Thermal equivalentcircuit

    Figure A. Definition of switching times

    Figure B. Definition of switching losses

  • 7/25/2019 Infineon IKW50N60T DS v02 06 En

    13/13

    IKW50N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 13 R 2 6 20 09 2013

    Published byInfineon Technologies AG

    81726 Munich, Germany 2013 Infineon Technologies AGAll Rights Reserved.

    Legal Disclaimer

    The information given in this document shall in no event be regarded as a guarantee of conditions or

    characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or

    any information regarding the application of the device, Infineon Technologies hereby disclaims any and all

    warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual

    property rights of any third party.

    Information

    For further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

    Warnings

    Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.