indholdsfortegnelse · web viewscreeningen viste at de vigtigste råvarer i miljømæssig henseende...

221
Miljøprojekt fra Miljøstyrelsen Nr. 488 1999 Livscyklusvurdering af 3 typer metalmaling COWI A/S Miljø- og Energiministeriet Miljøstyrelsen

Upload: others

Post on 01-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Miljøprojekt fra Miljøstyrelsen

Nr. 488 1999

Livscyklusvurdering af 3 typer metalmaling

COWI A/SMiljø- og Energiministeriet Miljøstyrelsen

Page 2: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

2

Page 3: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Indhold Side

1 Forord1.1 Projektets baggrund1.2 Projektets formål1.3 Rapportens opbygning

2 Resumé

3 Summary

4 Metodebeskrivelse4.1 Optimering af TEKNOS SCHOU A/S’ egne produkter4.1.1 Generelle betragtninger4.1.2 Afgrænsninger4.1.3 Fremstilling, brug og bortskaffelse4.1.4 Råvarer4.2 Malingens indflydelse på færdigvarens miljøbelastninger4.2.1 Levetid4.2.2 Materiale- og procesvalg

5 Fremstillingsfasen5.1 Referenceprodukterne5.1.1 Valg af referenceprodukter5.1.2 Sammensætning af referenceprodukterne5.2 Fremstilling af referenceprodukterne5.2.1 Pulvermaling5.2.2 Opløsningsmiddelbaseret maling5.2.3 Vandfortyndbar maling5.3 Emissioner og arbejdsmiljøpåvirkninger5.3.1 Energiforbrug5.3.2 Vandforbrug5.3.3 Affald5.3.4 Luftemissioner5.3.5 Spildevand5.3.6 Arbejdsmiljø

6 Brugsfasen6.1 Forudsætninger vedrørende emne og malemetoder6.2 Beregning af emissioner og arbejdsmiljøpåvirkninger6.2.1 Pulvermaling6.2.2 Opløsningsmiddelbaseret maling6.2.3 Vandfortyndbar maling

7 Bortskaffelsesfasen7.1 Forudsætninger vedrørende bortskaffelse af referenceprodukterne7.1.1 Fordeling af maling-mængder på bortskaffelsesveje7.1.2 Shredder-anlæg7.1.3 Klippe-anlæg7.1.4 Omsmeltning på stålvalseværker7.1.5 Affaldsforbrænding7.1.6 Direkte tab til deponier

3

Page 4: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

8 Miljøeffektpotentialer og prioritering

9 Handlingsplan

10 Screening af råvarer10.1 Vægt10.2 Materiale- og energiforbrug samt farlige stoffer10.2.1 Energiforbrug10.2.2 Ressourceforbrug10.2.3 Emission af miljøfarlige stoffer10.3 Rangordning af råvarerne10.4 Valg af råvarer til detaljeret livscyklusanalyse

11 Detaljeret livscyklusanalyse af TiO2

11.1 Udvinding af råmaterialer11.2 Fremstilling af Titandioxid11.2.1 Sulfatprocessen11.2.2 Chloridprocessen11.3 Fremstilling af hjælpestoffer11.3.1 Svovlsyre11.3.2 Chlor11.4 Emissioner ved fremstilling af TiO2

11.5 Miljøvurdering

12 Detaljeret livscyklusvurdering af TGIC-hærder og b-Hydroxyalky-lamid

12.1 TGIC12.1.1 Fremstilling af TGIC12.1.2 Miljøpåvirkninger ved fremstilling af TGIC12.2-Hydroxyalkylamid12.2.1 Fremstilling af b-hydroxyalkylamid12.2.2 Miljøpåvirkninger ved fremstilling af b-Hydroxyalkylamid12.3 Miljøvurdering12.3.1 Ressourceforbrug12.3.2 Ydre miljø12.3.3 Arbejdsmiljø12.3.4 Samlet konklusion vedrørende valg af hærder12.3.5 Følsomhedsvurdering

13 Teknisk evaluering13.1 Brug af UMIPs PC-værktøj13.2 Fremstillingsfasen13.3 Brugsfasen13.4 Bortskaffelsesfasen13.5 Råvarefasen

14 Proces evaluering14.1 Organisering af arbejdet14.2 TEKNOS SCHOU A/S', COWIs og Vejle Amts mål med projektet14.3 Roller og ansvarsområder

15 Referencer

Bilag

4

Page 5: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1: Resumé af UMIP-metoden 1492.1: Massebalance for 1 ton TGIC 1512.2: Energiforbrug for 1 ton TGIC 1532.3: Ressourceforbrug for 1 ton TGIC 155

2.4: Luftemissioner for 1 ton TGIC 1572.5: Vandforurening for 1 ton TGIC1592.6: Affaldsproduktion for 1 ton TGIC 1613.1: Massebalance for 1 ton b-hydroxyalkylamid 1633.2: Energiforbrug for 1 ton b-hydroxyalkylamid 1653.3: Ressourceforbrug for 1 ton b-hydroxyalkylamid 1673.4: Luftemissioner for 1 ton b-hydroxyalkylamid 1693.5: Vandforurening for 1 ton b-hydroxyalkylamid 1733.6: Affaldsproduktion for 1 ton b-hydroxyalkylamid 175

5

Page 6: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6

Page 7: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1Forord

I december 1995 fik TEKNOS SCHOU A/S, Vejle Amt og COWI et tilskud af Rådet vedrørende genanvendelse og renere teknologi til at gennemføre et projekt med titlen “livscyklusvurdering hos TEKNOS SCHOU A/S”.

Projektet er et lokalt demonstrationsprojekt, der skal vise hvordan arbejdet med miljøgennemgange og miljøstyring på mindre virksomheder naturligt kan udvides til også at omfatte livscyklusvurdering af produkterne ved brug af de værktøjer der er udviklet under UMIP-projektet.

Projektet skal også definere myndighedernes bidrag til livscyklusarbejdet, idet det er hensigten at demonstrationsprojektet skal bruges offensivt i Green Network samarbejdet og det miljøredegørelses-koncept der er udviklet her.

TEKNOS SCHOU A/S Schou A/S er en farve- og lakfabrik og de udvalgte referenceprodukter der livscyklusvurderes i projektet er derfor 3 typer maling, henholdsvis pulvermaling, opløsningsmiddelbaseret maling og vandfortyndbar maling.

Projektet er gennemført af en arbejdsgruppe med følgende sammensætning: Arbejdsgruppe:Kim Harreskov, TEKNOS SCHOU A/S (projektansvarlig)Dorthe Bramsen Clausen, Vejle AmtFinn Thoft Jensen, Vejle AmtClaus W. Nielsen, COWI Der har desuden været en styregruppe for projektet med følgende sammen-sætning:

Styregruppe:Jeanne Eghoff/Lise Fogh Pedersen, Miljøstyrelsen, formandKim Harreskov, TEKNOS SCHOU A/SPeter Nissen, Vejle AmtDorthe Bramsen Clausen, Vejle Amt, sekretærKristian B. Lauritsen/Claus W. Nielsen, COWILars Søborg, Direktoratet for ArbejdstilsynetHenrik Wenzel, Institut for ProduktudviklingVibeke Plambeck, Foreningen af Danmarks Farve- og Lakindustri

Page 8: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1.1Projektets baggrund

I forbindelse med miljøindsatsen på virksomhederne er det forebyggende element blevet styrket. Tidligere var renseløsninger mest almindelige. Herefter blev det til renere teknologi i produktionen - og nu til renere teknologi i udformning og planlægning af produktet. Livscyklusvurderinger er blevet centrale.

For virksomheder og myndigheder er livscyklusvurderinger vigtige fordi de sikrer at miljødiskussionen retter sig mod de reelle miljøproblemer - uanset grænser. For virksomhederne er de også et vigtigt værktøj til at være "klædt på" i diskussionen med kunder og konkurrenter.

Livscyklusvurderinger er til gengæld en meget stor udfordring, fordi de er komplicerede at udføre. Det har været svært at finde brugbare værktøjer, der med en (for en producerende virksomhed) overkommelig ressourceindsats gav forståelige og anvendelige resultater.

I forbindelse med UMIP-projektet er der foretaget en omfattende metodeudvikling og udarbejdet beskrivelser af hvordan livscyklusvurderinger kan gennemføres (et kort resume af UMIPs metode er givet i bilag 1). UMIP henvender sig imidlertid mest til virksomheder med stor vægt på produktudvikling. Der er derfor behov for:

- at vise hvordan UMIP-metoden kan tilpasses og anvendes i en konkret situation

- at integrere metoden i miljøstyrings- og miljøregnskabsarbejde, f.eks. i henhold til EMAS

- at definere myndighedernes bidrag til livscyklusarbejdet

1.2Projektets formål

Formålet med projektet er:

- at fremme brugen af UMIP’s metode til livscyklusvurderinger decentralt i små og mellemstore virksomheder,

- at beskrive metoder for videreførelse af arbejdet med miljøgennemgang af produktionen til livscyklusvurdering af produkterne,

- at skabe et lokalt demonstrationsprojekt for livscyklusvurdering. Demonstrationsprojektet skal senere bruges offentsivt i det regionale miljøsamarbejde Green Network,

- at definere myndighedernes bidrag til livscyklusarbejdet med udgangspunkt i Green Networks miljøredegørelses-koncept,

- at give TEKNOS SCHOU A/S kendskab til og mulighed for at arbejde med livscyklusvurdering af udvalgte produkter

Page 9: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1.3Rapportens opbygning

Afsnit 4 indeholder en overordnet metodebeskrivelse, der forklarer fremgangsmåden i projektet og hvordan resultaterne kan anvendes af TEKNOS SCHOU A/S.

I afsnittene 5, 6 og 7 kortlægges miljø- og arbejdsmiljøbelastninger pr. tons maling ved henholdsvis fremstilling, brug og bortskaffelse af de 3 referencemalinger. Afsnittene er opbygget så hovedresultaterne af hver livscyklusfase er sammenfattet i starten af afsnittet. Herefter følger en detailleret beskrivelse af arbejdet.

Afsnit 8 og 9 indeholder en samlet miljøvurdering af de 3 livscyklusfaser samt en prioritering og udpegning af indsatsområder. Til dette arbejde er UMIPs PC-værktøj UMIPTOOL anvendt. Endelig er der opstillet forslag til løsning af de miljøproblemer der er udpeget som de vigtigste i disse 3 livscyklusfaser.

I afsnit 10 foretages en overordnet screening af miljøbelastninger fra råvarer til de 3 malinger vha. MEKA-princippet, med henblik på udvælgelse af 1 til 2 råvarer til nærmere analyse.

I afsnit 11 og 12 udføres en detaljeret livscyklusvurdering af 2 udvalgte råvarer (TiO2 og hærderen TGIC) og deres alternativer.

Endelig indeholder afsnittene 13 og 14 en samlet evaluering af hele projektet både med hensyn til de tekniske aspekter og selve arbejdsprocessen i projektet.

Page 10: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

2Resumé

I rapporten er der foretaget en kortlægning og vurdering af miljø- og arbejdsmiljøbelastninger samt ressourceforbrug over hele livscyklus for henholdsvis en pulvermaling, en opløsningsmiddelbaseret maling og en vandfortyndbar maling.

Der er ikke valgt malinger med en specifik recept, men derimod gennemsnitsmalinger hvor "recepten" består af et gennemsnit af alle recepter fremstillet over et år af hver af de 3 hovedtyper af maling på virksomheden TEKNOS SCHOU A/S.

Fremstillingsfasen Kortlægningen af miljøbelastningerne i fremstillingsfasen er baseret på en miljøgennemgang af TEKNOS SCHOU A/S foretaget i perioden 23 januar 1995 til 6 februar 1996.

Miljødata fra denne gennemgang er fordelt på processer knyttet til fremstillingen af de 3 typer maling og kan derfor direkte omregnes til miljøbelastninger pr. tons produkt. Generelle miljøbelastninger som elforbrug til belysning og administration er dog fordelt på de 3 typer maling efter værdien af produkterne.

Brugsfasen Da de undersøgte malinger alle er ovnhærdende vil miljøbelastninger i brugsfasen primært være belastninger fra selve påføringsprocessen, idet ovntørringen sikrer, at der ikke sker en efterfølgende afdampning af flygtige opløsningsmidler mv. hos brugeren af det malede produkt.

Kortlægning af miljøbelastninger fra påføringsprocessen er sket ved at bede om oplysninger om energiforbrug og spildprocenter hos forskellige producenter af sprøjtemalingsudstyr og tørreovne. Desuden er foretaget beregning af afdampning af opløsningsmidler og en beregning af energiforbruget til opvarmning af erstatningsluft ved ventilation.

Bortskaffelsesfasen Tekno Schous malinger anvendes primært på danske metalprodukter der bortskaffes til lokale produkthandlere (schredning) og derfra til Stålvalseværket i Frederiksværk (omsmeltning). Noget bortskaffes dog også med almindeligt affald til enten forbrænding eller deponering.

I rapporten er der opstillet et sandsynligt scenarie for hvordan den procentvise fordeling på disse bortskaffelsesmåder er i Danmark.

Der er desuden foretaget et skøn over skæbnen af maling ved henholdsvis schredning, omsmeltning, forbrænding og deponering af malede metalprodukter, idet det er vurderet hvor stor en del af malingen der ender som henholdsvis gasformige emissioner, slagge/aske, volumenaffald og kemikalieaffald.

De gasformige emissioner er yderligere specificeret ved hjælp af analyser af malingen for at bestemme indholdet af bl.a. kulstof, kvælstof, chlor, svovl og tungmetaller.

Page 11: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Miljøvurdering Miljøvurderingen af de indsamlede data er foretaget ved hjælp af en demoversion af UMIPTOOL som er et EDB-værktøj udviklet i forbindelse med UMIP-projektet.

Vurderingen omfatter:

· klassificering af emissioner efter miljøeffekttype (drivhuseffekt, ozonnedbrydning, eutrofiering etc.),

· normalisering af de klassificerede emissioner i forhold til danske gennemsnitstal, hvorved emissionerne omregnes til personækvivalenter

og endelig

· vægtning hvor der ganges en vægtningsfaktor på de normaliserede emissioner efter miljømæssig prioritering.

Vurderingen er foretaget både pr. tons maling og pr. funktionel enhed. Den funktionelle enhed er valgt som:

"Den mængde maling, der skal anvendes for at dække 1 m2 metalflade"

hvilket svarer til ca. 135 g pulvermaling, 90 g opløsningsmiddelbaseret maling og 90 g vandfortyndbar maling.

Levetiden er ikke medtaget i den funktionelle enhed, idet TEKNOS SCHOU A/S udviklingsafdeling ikke har kunnet identificere forskelle i levetid på de malede metaloverflader når malingen påføres med de anførte lagtykkelser.

Resultatet af miljøvurderingen er vist i afsnit 8 og man kan for de 3 undersøgte malinger pege på følgende som de højst prioriterede indsatsområder:

Processer: Reduktion af mængden af farligt affald og elforbruget i brugsfasen for opløsningsmiddelbaseret og vandfortyndbar maling.

sen for opløsningsmiddelbaseret og vandfortyndbar maling.

Stoffer: Reduktion/substitution af xylen i opløsningsmiddelbaseret maling og TGIC-hærder i pulvermaling.

ling og TGIC-hærder i pulvermaling

Handlingsplan I projektet er der ikke opstillet en detaljeret handlingsplan, men snarere en liste over de miljøtemaer der skal arbejdes videre med for at løse nogle af ovenstående problemer. Disse temaer er:

· fokus på råvarer der bør substitueres

· minimere miljøbelastninger i brugsfasen (reducere indholdet af opløsningsmidler og indholdet af stoffer der ender som kemikalieaffald)

· fremstilling af ovntørrende malinger med mindre energiforbrug

Miljøvurdering af fremstilling, brug og bortskaffelse

Page 12: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

· fokus på genanvendelse af maling

Der er i denne rapport kun arbejdet videre med det første problem, dvs. substitution af miljøbelastende råvarer.

Screening af råvarer Da der er tale om et meget stort antal råvarer (20-40 pr. maling) har det været nødvendigt at foretage en begrundet udvælgelse af de miljømæssigt vigtigste råvarer. Denne udvælgelse er foretaget ved en rangordning af råvarerne ud fra:

1) et vægtkriterie

2) en overordnet vurdering af materiale- og energiforbrug samt evt. udledning af farlige stoffer til luft og vand ved fremstilling af råvarerne

3) en vurdering af om råvaren medfører særlige miljøproblemer ved fremstilling, brug og bortskaffelse af malingen

Screeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2.

Xylen Det er muligt at substituere xylen i de opløsningsmiddelbaserede malinger til f.eks. parafiner eller andre kulbrinter, men de vil være langt dyrere (ca. 10 gange) og vil medfører andre problemer med arbejdsmiljømærkning mv. Et mere realistisk alternativ vil derfor være at skifte til en helt anden type maling som f.eks. vandbaseret maling eller pulvermaling som netop er de alternativer der er undersøgt i dette projekt. Der er derfor ikke foretaget yderligere undersøgelser af alternative opløsningsmidler i denne rapport.

TiO2 Da TiO2 er temmelig enestående som hvidt pigment på grund af dets evne til at reflektere lys er der reelt ikke andre alternativer. TiO2 kan dog fremstilles efter 2 metoder, henholdsvis sulfatmetoden og chloridmetoden som er sammenlignet i denne rappport. Da TiO2 har en meget udbredt anvendelse, findes der mange undersøgelser og data vedrørende miljøbelastninger over hele livscyklus fra dette stof, og der er her primært anvendt data fra Buwal /8/, Tioxide /17/ og KRONOS TITAN A/S /22/ foruden almindelig håndbogslitteratur.

Ved en sammenligning af miljøbelastningerne over hele livscyklus har det dog ikke været muligt at se markante forskelle i de 2 fremstillingsmetoder. Der er en tendens til at sulfatmetoden generelt giver lidt højere belastninger end chloridmetoden, men dette vil fuldstændig kunne overskygges af variationer i ganske små udledninger af f.eks. kviksølv ved en af metoderne.

TGIC-hærder TGIC finder i dag udbredt anvendelse som hærder i pulvermaling. TGIC har imidlertid forskellige uheldige arbejdsmiljømæssige egenskaber som f.eks. allergifremkaldende egenskaber. Fra 31. maj 1998 skal TGIC endvidere klassificeres som T-mærket (giftigt) iflg. EUs mærkningsregler.

Dette har medført at TEKNOS SCHOU A/S er interesseret i at finde alternativer til TGIC og det mest lovende stof pt. er b-hydroxyalkylamid. Det er derfor disse 2 stoffer der er undersøgt og sammenlignet i rapporten.

Page 13: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Da der ikke som for TiO2 ovenfor findes "færdige" livscyklusanalyser, har det været nødvendigt at lave en detaljeret gennemgang af fremstillingsmetoder, kemiske reaktionsligninger, ressourceforbrug og emissioner for hvert trin helt tilbage til udvinding af de primære råstoffer for begge hærdere.

En sammenligning af miljøbelastningerne ved at udskifte TGIC med b-hydroxyalkylamid har vist at der er både fordele og ulemper:

Fordelene er:

- Fjernelse af arbejdsmiljøbelastninger (som skyldes at TGIC er et allergifremkaldende og kommende T-mærket stof) ved fremstilling og brug af pulvermaling

- Klassifikation af pulveraffald ændres fra farligt affald til almindeligt affald forudsat at alt TGIC i pulvermaling erstattes af b-hydroxyalkylamid

- Reduktion af udledningerne af chlorforbindelser ved bortskaffelse af pulvermaling

Ulemperne er:

- en lille forøgelse af ressourceforbruget (naturgas, olie og kul).

- en lille forøgelse af drivhuseffekten (pga. emission af N2O).

Totalt set vurderes det dog at være en fordel at udskifte TGIC med b-hydroxyalkylamid, idet der formentlig er muligheder for at reducere N2O -emissionen. Samtidig prioriterer TEKNOS SCHOU A/S fjernelse af T-mærkede stoffer i produktionen højt.

Miljøvurdering af alternative råvarer

Page 14: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

3Summary

This report contains an inventory and an assessment of environmental impacts and occupational health impacts at manufacturing, use and end disposal of a powdered paint, a solvent based paint and a water based paint.

Paints with a specific recipe have not been chosen. On the contrary, average paints were selected, where the "recipe" consists of an average of all recipes produced for each of the 3 main types over 1 year, at the factory Technos Schou A/S.

Manufacturing phase The inventory of the environmental impact in the manufacturing phase is based on an environmental screening of TEKNOS SCHOU A/S made in the period from January 23, 1995 till February 6, 1996.

As the environmental data from this screening are allocated to processes connected to the manufacturing of the 3 types of paint, they can be converted to environmental impact per each tonne of product. Environmental impacts, such as consumption of electricity for lighting and administration, are allocated on the 3 types of paint according to the value of the product.

Utility phase As the examined paints are all hardened in an oven, the environmental impact in the utility phase will primarily be impacts from the painting process, as drying in the oven ensures that no volatility of solvents will follow when the painted product is being used.

The inventory of the environmental impact from the painting process has been made by asking various producers of equipment for spray-painting and kiln-drying for information concerning energy consumption and waste percentages. Furthermore, a calculation of volatility of solvents and a calculation of the energy consumption for heating the substitution air at the ventilation has been done.

Disposal phase The paints from TEKNOS SCHOU A/S are primarely used on Danish products of metal which are disposed to local product dealers (schredning) and from here to Staalvalsevaerket in Frederiksvaerk (remelting). Some products are also disposed with normal waste for either incineration or deposit.

The report discloses a plausible distribution in percentages of the ways of disposal in Denmark. Subject to an assessment of the quantity of paint ending up as gas emissions, incineration ash, volume waste and chemical waste, respectively, an estimation of the destiny of paints at schredning, remelting, incineration and deposit respectively, of painted metal products has been made.

In order to decide the content of carbon, nitrogen, chlorine, sulphur and heavy metals, the gas emissions have further been specified by means of analysing of the paint.

Page 15: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

The environmental assessment of the collected data has been made by means of a demo version of UMIPTOOL. This is an electronic tool developed in connection with the UMIP-project.

The assessment includes:

•1 classification of emissions according to type of environmental effect (greenhouse effect, erosion of the ozone layer, eutrophication, etc.),

•2 normalisation of the classified emissions compared to the Danish average figures, hereby recalculating the emissions to person equivalents

and finally,

•3 weighting, where a factor of weight for the normalised emissions according to environmental importance is subject to a multiplication.

The assessment has been made per tonne paint and per functional unit. The functional unit has been chosen as:

"The quantity of paint needed to cover 1m2 of metal plate"

which corresponds to approx. 135 g. of powdered paint, 90 g of solvent based paint and 90 g of water based paint.

The durability of the painted metal plates are not included in the functional unit, because TEKNOS SCHOU A/S has not been able to identify differences in durability of the painted metal sufaces when the mentioned thickness of paint layers are used.

The result of the environmental assessment is shown in chapter 8. For the 3 examined paints the following areas are given the highest priority:

Processes: Reduction of the quantity of hazardous waste and the consumption of electricity in the utility phase for paints based on solvents and on water.

Substances: Reduction/substitution of xylene in solvent based paint and TGIC-hardener in powdered paint.

Plan of action In the project a detailed plan of action has not been made. A list of the environmental topics which are to be worked with, to solve some of the problems mentioned above, has been made. The topics are:

•4 focus on the raw materials, which ought to be replaced

•5 minimisation of environmental impact in the utility phase (reduction of the content of solvents and of substances ending up as chemical waste

•6 manufacturing of kiln-dried paints with a small consumption of energy

•7 focus on reuse of paint

•8 Only the first subject are selected to be further elaborated in this report, i.e. replacement of hazardous raw materials.

Environmental assessment of manuafacturing, use and disposal

Page 16: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Screening of raw materials Due to the big number of raw materials (20 - 40 for each type of paint ), it has been necessary to select the most important from an environmental point of view. This selection is based on evaluation of:

1) a weight criterion

2) Overall materials- and energy consumption, and emission of hazard-ous substances to air or water in manufacturing the raw material

3) Environmental problems in manufacturing, use and disposal of the paint caused by the raw material

The screening disclosed that the essential raw materials, in an environmental point of view, were the solvent xylene, the hardener TGIC and the white pigment TiO2.

Xylene It is possible to substitute xylene in the solvent based paints with e.g. par-affin's or other hydrocarbons, but they are much more expensive (a factor 10) and will impose other problems with occupational health e.g. Con-sequently, a more realistic alternative will be to change to a total new paint-ing system as e.g. water based paint or powdered paint, which are exactly the alternatives investigated in this report. Thus it has been decided not to do any further investigations concerning alternative solvents in this report.

TiO2 TiO2 is a supreme white pigment because of its refractive index and in real world experience, there are no practical alternatives. However, TiO2 can be manufactured by two alternative process routes called the sulphate process and the chloride process which are compared in this report. Due to the very widespread use of TiO2, there are a lot of investigations and data concerning environmental impacts through the total life cycle of this substance. Apart from general literature from handbooks, data from Buwal /8/, Tioxide /17/ og KRONOS TITAN /22/ have mostly been used in this report.

By comparing the environmental impacts during the whole life cycle of TiO2

it has not been possible to encounter any substantial differences in the two process routes. Compared to the chloride process the sulphate process tends to cause higher impacts. However, this is hidden by variations in the emis-sion of small amounts of e.g. mercury by both processes.

TGIC-hardener TGIC is today widely used as hardener in manufacturing powdered paints. Unfortunately TGIC has some problematic occupational health characterist-ics, as e.g. allergen effects. According to EU-rules for chemicals, TGIC must be marked with the symbol T (toxic) as of May 31 1998.

Therefore, Technos Schou A/S wants to substitute TGIC with a more environmentally correct substance and the most promising candidate pt. is b-hydroxyalkylamide. These two substances are the ones investigated and compared in this report.

As no final LCA's have been made in advance for hardeners as it was the case for TiO2, it has been necessary to make a detailed inventory of the man-ufacturing processes, chemical reactions, resource consumption and emis-sions for each step back to extraction of the primary raw materials.

Environ-mental assessment of alternative rawmater-ials

Page 17: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Comparing the environmental impacts by substituting TGIC with b-hydroxyalkylamide showed both improvements and recessions:

Improvements:

- Reduction of occupational health impacts (related to TGIC as allergen and toxic substance)

- Classification of powder waste are changed from hazardous waste to common waste, under the assumption that all TGIC in powder paints are substituted with b-hydroxyalkylamid.

- Reduction of emissions of chlorine compounds by disposal of powdered paints

Recessions:

- Small increases in consumption of resources (natural gas, oil and coal)

- Small increases in greenhouse effects (caused by emission of N2O)

Due to the possibilities to abate the emission of N2O it is in total evaluated as an improvement to substitute TGIC with b-hydroxyalkylamide. Removal of T-marked substances are additionally a high priority subject at TEKNOS SCHOU A/S.

Page 18: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

4Metodebeskrivelse

Et vigtigt delmål med projektet er at give TEKNOS SCHOU A/S et værktøj til at vurdere livscykluspåvirkninger således, at

•9 TEKNOS SCHOU A/S kan optimere egne produkter med hensyn til mindst mulige miljøpåvirkninger

•10TEKNOS SCHOU A/S kan rådgive sine kunder med hensyn til valg af maling, der giver mindst mulige livscykluspåvirkninger for det produkt, hvori malingen indgår.

For at opfylde det første formål er der gennemført et modelarbejde på de tre udvalgte typer maling for at belyse de materialer og processer, der betinger de væsentligste miljøpåvirkninger fra malingerne. På baggrund af modelarbejdet (ved hjælp af UMIPTOOL) er der valgt nogle indsatsområder for hver malingstype for nedbringelse af miljøpåvirkninger i malingens livscyklus. Denne del af opgaven er i det følgende omtalt i afsnit 4.1.

Det andet formål er ikke opfyldt i nærværende projekt, da det kræver et snævert samarbejde med TEKNOS SCHOU A/S’ kunder om udvikling af produkttilpassede malinger. Dette arbejde vil være en naturlig fortsættelse af nærværende projekt og der er derfor i afsnit 4.2 givet en kort beskrivelse af hvad et sådant projekt kunne omfatte.

4.1Optimering af TEKNOS SCHOU A/S’ egne produkter

4.1.1Generelle betragtningerSom grundlag for Tekno Schous LCA-arbejde er det langsigtede mål, at der produceres en pulje af “bundkort” for de vigtigste typer af råvarer, fremstillingsprocesser, malemetoder, produkter der males og bortskaffelsesmetoder som illustreret i fig. 4.1.

Page 19: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 4.1 Eksempler på bundkort

Hvert bundkort beskriver miljø- og arbejdsmiljøbelastninger knyttet til en lille del af livscyklus for en maling, hvor alle miljøbelastninger er ført “tilbage til jord”. Bundkortene kan kombineres til samlede livscyklusbeskrivelser af forskellige malinger.

“Råvarekortene” består af 1 kort pr. råvare, der indeholder oplysninger om alle miljøbelastninger knyttet til råvaren frem til TEKNOS SCHOU A/S, incl. transport.

“Proceskortene” består af 1 kort pr. malingstype, der indeholder oplysninger om miljøbelastninger fra processer på TEKNOS SCHOU A/S knyttet til fremstilling af malingen.

“Brugskort (1)” består af 1 kort pr. malemetode for hver type maling. Det antages her at disse kort kan laves stort set uafhængigt af, hvilke produkter der males.

“Brugskort (2)” består af 2 kort for hver færdigvare der males. Et kort der indeholder en samlet model for færdigvaren til brug for levetidsvurderinger og et kort der beskriver miljøbelastninger fra malingen i brugsfasen for færdigvaren.

Malemetode 3

Malemetode 2

Malemetode 1

Brug (1)

Transport

Genanven-delse

Deponering

Forbrænding

Bortskaffelse

Transport

Mejetærsker

Lampe

Stol

Brug(2)

Transport

Transport

Processer

Pulver-maling

Opl.mid.bas.malin

gVandbase

-ret maling

Pigment

Butanol

Xylen

Binder yy

Binder xx

Råvarer

Page 20: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

“Bortskaffelseskortene” består af 1 kort pr. bortskaffelsesmetode for hver type maling. Det antages, at miljøbelastningerne kan opgøres stort set uafhængigt af hvilket produkt malingen sidder på.

4.1.2AfgrænsningerI forbindelse med projektet har det været nødvendigt at foretage en række afgrænsninger for at overholde den økonomiske projektramme. Disse afgrænsninger er til dels beskrevet i det oprindelige projektoplæg, men er præciseret yderligere her.

· der er valgt 3 proceskort for produktserier der repræsenterer pulvermaling, opløsningsmiddelbaseret maling og vandbaseret maling

· der er valgt en typisk malemetode for hver af de valgte typer maling

· der vælges ingen konkret færdigvare, blot overfladebehandling af “1 m2 stålplade”, idet TEKNOS SCHOU A/S malinger typisk anvendes på metalprodukter.

· der er valgt et typisk bortskaffelsesscenarie for metalprodukter, der omfatter shredning eller klipning med henblik på omsmeltning og genanvendelse, eller forbrænding i kommunalt forbrændingsanlæg.

· da der er et meget stort antal forskellige råvarer (20-40 pr. maling), vil en begrundet udvælgelse af de væsentligste råvarekort være nødvendig. Denne udvælgelse er foretaget ved en rangordning af råvarerne ud fra 1) overordnet vurdering af materiale- og energiforbrug, 2) evt. indhold og udledning af farlige stoffer, 3) råvaren medfører særlige miljøproblemer ved fremstilling, brug og bortskaffelse af malingen.

4.1.3Fremstilling, brug og bortskaffelseFørst er der opstillet en model for fremstilling, brug og bortskaffelse af hver af de 3 typer maling bestående af proceskortet, brugskort og bortskaffelseskortet for hver type maling, som illustreret i fig. 4.2.

Fig. 4.2 Model 1

1 tonsvandfortynd-bar maling

maling

1 tonsopl.mid.bas.

maling

1 tonspulvermaling

Processer

Brug (1)

Brug (2)

Bortskaffelse

Page 21: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Ved hjælp af denne model 1 blev de processer og råvarer, som medfører de største miljøbelastninger under fremstilling, brug og bortskaffelse af de 3 typer maling, identificeret.

I model 1 negligeres bidrag fra transport, idet de ikke er en “indbygget” egenskab i denne del af livscyklus for malingen, men afhænger af hvilken færdigvare malingen anvendes til.

Funktionel enhed Som funktionel enhed er valgt:

"Den mængde maling, der skal anvendes for at dække 1 m2 metalplade"

Hvilket svarer til ca. 135 g pulvermaling, 90 g opløsningsmiddelbaseret maling og 90 g vandfortyndbar maling.

En funktionel enhed der inddrager levetiden kunne f.eks. være “1 m2 stålplade malet i 10 år”. Det forudsættes her at en stålplade malet med henholdsvis pulvermaling, opløsningsmiddelbaseret maling eller vandfortyndbar maling vil have forskellige levetider alt andet lige. En nærmere vurdering af dette spørgsmål foretaget af TEKNOS SCHOU A/S udviklingsafdeling har dog ikke kunnet identificere nogle væsentlige forskelle i levetiden, således at anvendelig funktionel enhed stadig vil være “Den mængde maling der skal anvendes for at dække 1m2 metalplade”.

Miljøbelastningerne er opgjort for henholdsvis 1 tons maling og for 1 funktionel enhed.

Opgørelse Fremstillingensfasens miljøbelastninger, for de 3 typer maling, er kortlagt på grundlag af de data der i forvejen findes om virksomhedens processer og miljøbelastninger fra miljøstyringsarbejdet på TEKNOS SCHOU A/S og ud fra dette er foretaget en beregning af miljøbelastninger og arbejdsmiljøbelastninger pr. tons produkt.

Brugsfasens miljøbelastninger som er knyttet til maleoperationen hos TEKNOS SCHOU A/S´ kunder er opgjort for alle 3 typer maling ved at vælge en relevant maleproces.

I praksis er der lavet en teoretisk opgørelse af miljøbelastningerne fra et maleanlæg, hvor man opgør el-, vand- og gasforbrug samt emissioner, affald og arbejdsmiljø, alt pr. tons forbrugt maling.

Miljøbelastningerne er beregnet/skønnet ved at vurdere, hvilket procesudstyr der kunne være relevant og ved at bruge kendskab til malingens sammensætning og leverandørdata for det relevante procesudstyr.

Opgørelsen af miljøbelastninger hos brugeren som skyldes den anvendte maling vil være helt afhængig af, om der foreligger nogle undersøgelser af f.eks. afdampning, allergi eller lignende hos brugerne, f.eks. i forbindelse med en evt. klassificering efter Dansk Indeklima Mærkning.

Problemet med sådanne undersøgelser er imidlertid, at de kun identificerer et problem ved selve færdigvaren, f.eks. allergi, men ikke om årsagen er malingen eller f.eks. anvendte skæreolier. Hvis der er mistanke om, at et problem skyldes malingen, skal dette yderligere dokumenteres

Page 22: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

f.eks. gennem oplysninger fra leverandører om, hvilke stoffer der kan tænkes at afdampe fra de enkelte komponenter i malingen, samt modelberegninger af afdampningen.

For de valgte typer maling, der alle er ovnhærdende, vil afdampning fra færdigvaren i princippet være 0, så man kan tillade sig at se bort fra en påvirkning fra malingen i brugsfasen.

Bortskaffelsesfasens miljøbelastninger kortlægges ved at antage et typisk bortskaffelsesscenarie for metalprodukter der fordeler bortskaffelsen på henholdsvis schredning/klipning med henblik på omsmeltning/genanvendelse eller afbrænding i et kommunalt forbrændingsanlæg. Miljøeffekten er vurderet ved at analyserer grundstofindholdet i de 3 typer malinger samt ved at vurdere hvordan disse stoffer vil fordele sig ved schredning/ klipning/omsmeltning eller ved afbrænding i et forbrændingsanlæg.

Vurdering Vurderingen er udført ved hjælp af UMIP’s værktøj, idet de vægtede miljøeffektpotentialer er beregnet fordelt på livscyklusfaser og kilderne:

materialeforbrughjælpestofforbrugproces elproces termisk energiproces overhead ogmaterialebortskaffelse

En given miljøbelastning kan imidlertid ikke direkte føres tilbage til f.eks. en proces eller et bestemt stof.

Identifikation af hvilke processer, emissioner eller råvarer der medfører miljøbelastningen er derfor foretaget rent manualt ved at 0-stille emissionen af et bestemt stof fra en proces og vha. modellen se miljøeffekten. Herved kan man identificere, hvilken miljøeffekt det aktuelle stof i den aktuelle proces giver.

Herefter er der foretaget en konkret vurdering af den aktuelle proces og emission med henblik på at lokalisere årsagen i form af en bestemt råvare eller selve procesopbygningen.

Resultatet af vurderingen i første trin er således en identifikation af processer og råvarer der er problematiske i livscyklusfaserne fremstilling, brug og bortskaffelse.

4.1.4RåvarerModel 2 I andet trin fokuseres på råvarersubstitutioner, hvor man ændrer

malingernes sammensætning for at opnå miljøforbedringer.

Som illustreret i fig. 4.3 består model 2 af en beskrivelse af miljøbelastningerne ved fremstilling af udvalgte råvarer og deres alternativer samt miljøbelastningerne fra fremstilling, brug og bortskaffelse af malingerne(kortene fra model 1, dog med evt. modifikationer når råvarerne udskiftes).

Page 23: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Model 2 er ikke en komplet model over en malet flade, fordi der mangler data for en række råvarer, der ikke er beskrevet. De råvarer, der er medtaget i modellen er udvalgt efter de principper, der er nævnt under afgrænsningen.

Fig. 4.3 Model 2

Funktionel enhed Ændring af malingens sammensætning kan have konsekvenser for malingens holdbarhed. For at kunne foretage vurdering af ændringerne ville det derfor være ønskeligt at kunne vurdere om råvaresubstitutionerne ænderer levetiden af produktet.

I praksis er det ikke muligt at give en kvantitativ vurdering af hvordan holdbarheden af malingen ændrer sig, selvom det er muligt at få en ide om størrelsesordenen ved accelerede laboratorieforsøg. Miljøbelastningerne før og efter substitution af råvarerne er derfor kun opgjort pr tons maling. Der er dog givet enkelte kvalitative kommentarer vedrørende ændring af malingens holdbarhed i rapporten.

Hvis levetiden af malingen er uændret, efter substitution af en råvare, kan model 2 direkte bruges til at vurdere forskellen i miljøbelastning over hele livscyklus.

Hvis levetiden ændres ved substitutionen, vil modellen kun delvist beskrive forskellene, idet der stadig mangler miljøbelastninger fra en række råvarer i opgørelsen. Med tiden vil antallet af råvarer der er beskrevet dog øges og beslutningsgrundlaget ved substitution kan forbedres.

Et eksempel Hærder a udskiftes med hærder b i pulvermaling, hvorved problemet med allergi fjernes, men levetiden af malingen reduceres til f.eks. det halve.

Alle miljøbelastninger i malingen med hærder b skal derfor ganges med en faktor 2 ved sammenligning med malingen med hærder a.

Da man kun kender miljøbelastningerne fra nogle af råvarerne vil miljøbelastningerne fra malingen med hærder b blive undervurderet.

Alternativ til råvare A

Alternativ til råvare B

1 m2

Maling: Råvare a

Maling: Råvare b

ProcesserBrug (1)

Brug (2)Bortskaffelse

Page 24: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Livscyklusvurderingen af råvarerne til de 3 referenceprodukter er opdelt på en overordnet screening og en mere detaljeret livscyklusvurdering af udvalgte råvarer (udvalgt på baggrund af screeningen).

Screening Hver af de 3 referenceprodukter er fremstillet af et meget stort antal forskellige råvarer (20-40 pr. maling) og det vil være ikke være muligt at lave en komplet livscyklusvurdering af alle disse råvarer indenfor rammerne af dette projekt. Det er derfor nødvendigt at foretage en begrundet udvælgelse af de væsentligste råvarer til livscyklusvurderingen.

Denne udvælgelse foretages ved en rangordning af råvarerne ud fra:

1. et vægtkriterie

2. en overordnet vurdering af materiale- og energiforbrug samt evt. udledning af farlige stoffer til luft og vand knyttet til fremstillingen af råvarerne

3. en vurdering af om råvaren medfører særlige miljøproblemer ved fremstilling, brug og bortskaffelse

Vægt Vægtkriteriet anvendes sådan at råvarer der indgår i meget lille mængde simpelthen frasorteres helt. Der er dog foretaget en vurdering af om der blandt de frasorterede råvarer er komponenter med en særlig miljøbelastning ud fra den viden der findes i branchen.

Herefter er det søgt at fremskaffe oplysninger om materialeforbrug, energiforbrug og indhold/udledning af farlige stoffer ved fremstillingen af de resterende råvarer helt tilbage til udvinding af de primære råvarer (dvs. tilbage til "jord"). Oplysningerne er søgt i:

•11UMIPs enhedsprocesdatabase

•12SigmaPro/IWAM databasen fra Holland

•13COWIs interne bibliotek

•14direkte forespørgsel til TEKNOS SCHOU A/S' råvareleverandører

•15søgning på internettet

Udpegning af de råvarer der medfører de største miljøproblemer ved fremstilling, brug og bortskaffelse er sket i første del af rapporten.

Den samlede vurdering af de indsamlede oplysninger er herefter blevet fremlagt på et møde hos TEKNOS SCHOU A/S med henblik på valg af de råvarer, der skal analyseres nærmere. Ved dette møde deltog projektets arbejdsgruppe samt folk fra produktions- og udviklingsafdelingerne på TEKNOS SCHOU A/S.

Detaljeret livscyklusvurdering Da der kun i sjældne tilfælde findes "færdige" livscyklusvurderinger af råvarer er det som regel nødvendigt at udføre vurderingen ved at sammenstykke oplysninger om de underliggende produktionstrin helt tilbage fra udvindingen af primærråvarer frem til den undersøgte råvare (f.eks. TGIC).

Materiale- og energiforbrug samt farlige stoffer

Miljøbelastninger i fremstilling, brug og bortskaffelse

Page 25: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fremstillingen af kemiske produkter omfatter ofte et stort antal produktionstrin, f.eks. som illustreret i nedenstående figur 4.4.

Fig. 4.4 Procestræ for fremstilling af hærderen TGIC

Den detaljerede livscyklusvurdering af de udvalgte råvarer starter med at opstille et sådant procestræ ud fra de oplysninger om fremstillingsmetoder der kan findes i almindelig kemisk håndbogslitteratur /14/,/15/,/16/ og /18/.

Screeningsmatrix Med denne beskrivelse som grundlag foretages der en kvalitativ vurdering af ressourceforbrug, emissioner til ydre miljø og arbejdsmiljøpåvirkninger ved hver enkelt proces. Resultatet af denne vurdering er sammenfattet i en screeningsmatrix. Formålet med screeningsmatricen er at få et første overblik over hvilke forbrug og emissioner der teoretisk set kan forekomme. Screeningsmatricen kan bruges som en form for "checkliste" der sikrer at man ikke overser vigtige emissioner, når de kvantitative oplysninger skal sammenstykkes.

Massebalance For at finde de mængdemæssige sammenhænge mellem de enkelte trin i procestræet opstilles de kemiske reaktioner der binder kasserne i figuren sammen, f.eks.:

N2 + 3 H2 2 NH3

Ud fra disse sammenhænge kan forbruget af hver enkelt stof pr. 1000 kg TGIC beregnes i mol og kg ved hjælp af massebalancer.

Dataindsamling For en del af stofferne i procestræet er det muligt at finde data om forbrug og emissioner, evt. i form af komplette LCA- vurderinger. F.eks. viste analysen af TGIC at det var muligt at finde næsten færdige LCA-vurderinger af chlor, propylen og calciumcarbonat. Derimod var det kun muligt at finde oplysninger om luftemissioner for fremstillingen af ammoniak og urea. Kilder til disse oplysninger er f.eks. /8/, /10/, /12/, /14/, /17/ og /19/

Beregning pr. tons råvarer Disse oplysninger om emissioner er normalt givet som emission pr. kg af det aktuelle stof og skal derfor omregnes til emission pr. 1000 kg undersøgt råvare (f.eks. TGIC) ved hjælp af massebalancen. Disse omregninger er foretaget i bilag 1.1-1.6 og 2.1-2.6. Af disse bilag fremgår også de grundliggende oplysninger om hvert enkelt stof og kilden til disse oplysninger.

Procestræ

Air

Nitrogen

Natura l Gas

Hydrogen

Am m onia Ca rbon diox ide

Urea

Cyanuric a cid

Sodium chloride

Chlo rine

M ineral o il Na tu ra l G as W ater

Propylene

Allylchloride

Sodium ch loride

Chlo rine Ca lc ium c arbonate W ater

Hypochlorous a cid

Epichlorhyd rine

TGIC

Page 26: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Arbejdsmiljø Det har ikke været muligt at finde kvantitative oplysninger om arbejdsmiljø ved gennemgang af de enkelte stoffer. Arbejdsmiljøoplysninger er derfor kun givet som en tabel der sammenfatter kvalitative informationer om de enkelte stoffers faremærkning og egenskaber.

Miljøvurdering Den sammenlignende miljøvurdering er udført ved hjælp af UMIPs metode (bilag 1).

4.2Malingens indflydelse på færdigvarens miljøbelastninger

Malingens egenskaber vil have betydning for et produkts levetid, materialevalg og den måde et produkt fremstilles på, og vil derved inddirekte kunne påvirke miljøbelastninger fra produktet som ikke stammer fra malingen i sig selv.

4.2.1LevetidForestiller man sig et produkt, f. eks. en lampe, der kasseres, når malingen er blevet slidt eller skrammet, vil malingens levetid bestemme levetiden for det samlede produkt. Dette vil ofte være tilfældet fordi produkter sjældent er konstrueret så hensigtsmæssigt at det samlede materialevalg, samlinger og finish afspejler en bestemt levetid (når malingen er slidt, så er lampens skærm også bulet, samlingerne er blevet løse og el-installationen er måske defekt).

•16I praksis betyder det, at der i model 2 i det foregående afsnit også skal indsættes et produktkort, der beskriver de samlede miljøbelastninger fra produktet, udover de miljøbelastninger der kan tilskrives malingen.

4.2.2Materiale- og procesvalgFor at undersøge de mulige konsekvenser for materiale- og procesvalg, er der herunder set på de forskellige faser i livscyklus. De viste tænkte eksempler skal illustrere, at sådanne indirekte koblinger kan forekomme.

Råvarefasen:Kan forskellige valg af maling muliggøre anvendelsen af materialer, der er mere gunstige set ud fra et miljøsynspunkt?

Fx: Anvendelse af stål i stedet for aluminium ved benyttelse af en rustbeskyttende lak forudsat, at lampens vægt ikke er en designspecifikation.

Fremstillingsfasen:Kan forskellige valg af maling muliggøre anvendelsen af processer, der er mere gunstige set ud fra et miljøsynspunkt?

Fx: Ved anvendelse af en lak, der tåler påfølgende formgivning af pladen, kan lampens dele presses og bukkes af lakeret plade. Herved reduceres arbejdsmiljøpåvirkningerne, materialetabene og emissionen ved lakeringen, da lakering af store plane flader kan gennemføres med mindre miljøpåvirkninger.

Forbrugsfasen:Kan forskellige valg af maling medføre mindre miljøpåvirkninger i forbrugsfasen, der ikke direkte hidhører fra malingen?

Page 27: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fx: Ved anvendelse af en lak til reflektoren, der reflekterer en større del af det synlige lys, vil effektbehovet til lyskilden kunne nedsættes, og dermed reduceres den største miljøpåvirkning i lampens livscyklus: Emissionerne som følge af elforbruget.

Bortskaffelsesfasen:Kan forskellige valg af maling medføre ændrede miljøpåvirkninger i bortskaffelsesfasen, der ikke direkte hidhører fra malingen?

Fx: Samme eksempel som ved råvarefasen. Stål som materiale medfører andre miljøpåvirkninger i bortskaffelsesfasen end aluminium.

Som tidligere nævnt er dette aspekt dog ikke behandlet yderelige i denne rapport.

Page 28: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5Fremstillingsfasen

Formål Formålet med denne del af projektet har været, at opgøre miljø- og arbejdsmiljøbelastningerne knyttet specielt til fremstilling af de 3 valgte referenceprodukter på TEKNOS SCHOU A/S. Opgaven bestod i at “vende” miljødata fra miljøgennemgang af hele virksomheden til produktrelaterede miljødata.

Fremgangsmåde For at undgå en teoretisk fordeling af de samlede miljøbelastninger ud fra produktmængde, produktværdi eller andre allokeringskriterier, er det valgt at opgøre miljøbelastningerne direkte fra de enkelte processer der indgår ved fremstilling af referenceprodukterne. Dette er mere tidskrævende men er i overensstemmelse med principperne beskrevet i UMIP-projektet og i øvrigt nødvendigt for at kunne identificere, hvor miljøbelastningerne stammer fra - og en forudsætning for at kunne lave miljøforbedringer.

Det har dog kun været muligt til en vis grad, idet:

· det er muligt at skelne mellem produktionsudstyr og miljøbelastninger til henholdsvis pulvermaling, opløsningsmiddelbaseret og vandbaseret maling, men det har ikke været muligt at skelne mellem miljøbelastningerne fra forskellige serier af f.eks. pulvermaling, idet dette ville kræve detaljerede opgørelser af hvor lang tid en given proces har været anvendt til de forskellige serier og disse opgørelser var det ikke muligt at lave i praksis.

· fælles miljøbelastninger som f.eks. el til belysning, sanitært vandforbrug og spildevand osv. (“overhead”) kan ikke relateres direkte til produkter og er derfor fordelt på referenceprodukterne ud fra værdien af produkterne.

Opgørelsen omfatter energiforbrug (el, naturgas), vandforbrug, affald (volumenaffald og farligt affald), luftemissioner (VOC og støv), spildevand (COD) og kemisk arbejdsmiljø (allergi og neurotoxiske påvirkninger).

Resultat Resultatet af opgørelsen er sammenfattet i tabel 5.1, der viser nøgletal for miljøbelastningerne pr. tons af de 3 referenceprodukter.

Afsnit 5.3 indeholder en detaljeret beskrivelse af, hvordan data er fremkommet for de enkelte miljø- og arbejdsmiljøpåvirkninger samt en vurdering af usikkerheden på data. Usikkerhedsvurderingen er angivet i tabel 5.1 som en skønnet variationskoefficient for hver type miljøpåvirkning.

Page 29: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.1 Nøgletal for fremstillingsfasen

Page 30: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

I nedenstående fig. 5.1 er de vægtede effektpotentialer for ydre miljø og arbejdsmiljø og det vægtede ressourceforbrug vist ved fremstilling af alle 3 typer maling. Det fremgår tydeligt at mængden af farligt affald er den dominerende ydre miljø effekt i fremstillingsfasen for alle 3 typer maling. Det er dog vigtigt at pointere at dette til dels skyldes den normalisering og politiske vægtning der foretages i UMIPs værktøj. Mængden af farligt affald pr. tons maling er af samme størrelsesorden som mængden af volumenaffald pr. tons maling, men set i forhold til den samlede produktion af affald i Danmark (normalisering) er mængden af kemikalieaffald pr. tons stor, hvorimod mængden af volumenaffald pr. tons ikke er specielt stor.

Arbejdsmiljøprofilen er vægtet efter antallet af anmeldte arbejdsskader pr. belastningstime, og talværdien udtrykker dermed antallet af forventede anmeldelser pr. tons maling. Den dominerende potentielle arbejdsmiljøeffekt er nerveskade som især skyldes en mulig påvirkning fra xylen ved fremstilling af den opløsningsmiddelbaserede maling. En noget mindre potentiel effekt er allergipåvirkning fra TGIC-hærderen ved fremstilling af pulvermaling.

Ressourceforbruget er primært forbrug af naturgas til opvarmning og forbrug af stenkul til produkton af elektricitet. Fremstilling af pulvermaling medfører det største ressourceforbrug.

Følsomhedsanalyse Usikkerhederne på de opgjorte forbrug og emissioner er vist i tabel 5.1.

For ydre miljø vil konklusionen om at farligt affald er det største problem kun være korrekt hvis man ser de 3 referenceprodukter under et, idet den samlede mængde af farligt affald er bestemt ved vejning indenfor +/- 5%. Fordeling af mængden på produkter er derimod forbundet med stor usikkerhed (+/- 100 %) og mængden af farligt affald fra det enkelte produkt kan derfor teoretisk være 0 (-100%).

En anden stor usikkerhed optræder i forbindelse med klassificeringen af farligt affald fra TEKNOS SCHOU A/S, idet noget farligt affald (f.eks. opløsningsmiddel affald) kan betragtes som giftigt affald mens andet (afhærdet pulvermaling) kan betragtes som inert affald. I miljøvurderingen vist i fig. 5.1 er hele mængden af farligt affald opgjort som giftigt affald. Hvis det omvendt antages at hele mængden kan betragtes som inert affald vil søjlen farligt affald helt forsvinde i miljøvurderingen og de væsentligste effekter vil blive volumenaffald, fotokemisk ozondannelse fra opløsningsmidler og drivhuseffekt pga. elforbrug.

For at verificere konklusionen om at farligt affald er det største problem vil det derfor være nødvendigt at bestemme mængderne ved de enkelte processer mere præcist. Samtidig bør mængden evt. opdeles i 2 kategorier, henholdsvis inert affald til KommuneKemi og giftigt affald til KommuneKemi.

Miljøvurdering af fremstillingsfasen

30

Page 31: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

0

1000

2000

3000

4000

5000

6000

Driv

huse

ffekt

Fors

urin

g

Foto

kem

.O

zon-

2

rings

salt

bela

stni

ng

Hum

on to

x

Volu

men

affa

ld

Farli

gt a

ffald

Ask

e/sl

agge

mPE

M p

r. to

ns m

alin

g

Vandfortyndbar maling

Opløsningsmiddelbaseret maling

Pulver maling

Ydre miljø

Fig. 5.1 Vægtede miljø- og arbejdsmiljøeffektpotentialer i fremstillings-fasen1

1 Enheden for ydre miljø-effekter er mPEM der står for millipersoneqvivalent ved de målsatte udledninger, dvs. belastningerne er omregnet til personeqvivalenter og vægtet med en faktor der er lig med 1990-udledning/målsat udledning i år 2000 for Danmark eller verden. Enheden for Arbejdsmiljø-effekter er mAAS, der står for det potentielle antal anmeldelser af arbejdsskader som den pågældende arbejdsmiljø belastning kan give. Enheden for ressourceforbrug er mPR der står for millipersonreserver, dvs. ressourceforbruget udtrykt i promille af den kendte reserve pr. person i verden i 1990.

31

Page 32: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.1Referenceprodukterne

5.1.1Valg af referenceprodukterSom referenceprodukter er der valgt 3 ovntørrende produktserier af henholdsvis pulvermaling, opløsningsmiddel baseret maling og vandfortyndbar maling til overfladebehandling af metalemner.

Der er valgt 3 traditionelle produktserier ud fra følgende begrundelser:

· ønsket om at tilvejebringe grundlæggende viden om miljøforholdene over hele livscyklus for 3 produktserier, der hver især er repræsentanter for et hovedproduktområde i TEKNOS SCHOU A/S

· sekundært for at sammenligne disse produktgrupper, hvorved der kan udpeges miljømæssige focuspunkter i produkternes livsforløb. De 3 produktserier er substituerbare, dvs. for slutbrugeren vil ydelsen opleves som sammenlignelig, både for de kvalitative og de kvantitative egenskaber

Ved at vælge 3 serier af referenceprodukter dækkes et større udsnit af virksomhedens produktion, idet hver serie består af en række malinger med hver sin recept.

5.1.2Sammensætning af referenceprodukterneReferenceprodukternes sammensætning er beskrevet ved en bruttorecept der er sammensat af recepterne for de enkelte malinger der indgår i serien.

Recepten er således beskrevet ved et gennemsnitligt indhold og en variationskoefficient for alle råvarer der anvendes i den pågældende serie.

Bruttorecepterne for de 3 serier er vist i tabel 5.2.

32

Page 33: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.2 Referenceprodukter

5.2Fremstilling af referenceprodukterne

Virksomheden TEKNOS SCHOU A/S er opdelt i to fysisk adskilte lokaliteter.

Adressen Industrivej 19 rummer direktion, salg og øvrig administration. Her foregår virksomhedens produktion af pulvermaling og opløsningsmiddelholdige malinger. Endvidere findes pulver- og vådmalingslaboratorierne på denne adresse.

Tværvej 6 i Lunderskov huser produktionen af vandfortyndbare malinger samt den dertil hørende driftskontrol.

5.2.1PulvermalingFremstilling af pulvermaling sker ved de processer der er vist i figur 5.2

5 . 7 . 1 2 - 1R e n g . a f f o r b l . k a r

5 . 7 . 1 3 - 1R e n g . a f c h ip s k a r

5 . 7 . 1 3 - 2R e n g . a f m ø l l e d e le

5 . 7 . 1 3 - 3R e n g . a f s ig t e

5 . 7 . 1 1F o r b la n d in g

5 . 5 . 6 1D r i f t s k o n t r o l

5 . 7 . 1 2E x t r u d e r in g

5 . 7 . 1 3F o r m a l in g ( m ø l le r )

5 . 5 . 6 - 7D r i f t s k o n t r o l ( r e n h e d )

5 . 5 . 6 - 3A f v e jn in g t i l la b . f o r s ø g

5 . 5 . 6 - 4L a b . e x t r u d e r

5 . 5 . 6 - 5F o r m a l in g , la b .m ø l le r

5 . 5 . 6 - 6O p s p r ø j t . o g m e k . t e s t s

R å v are

Fæ rdig v a re r

Fig. 5.2 Flowdiagram, pulvermaling

Forblanding De forskellige komponenter (bindemidler, fyldstoffer, hærdere, additiver og pigmenter) afvejes i et blandekar. Karret transporteres på en trækvogn til forblander. Blandekarret fastspændes til en blandemaskiner (forblander) og

33

Page 34: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

timeren indstilles på den ønskede blandetid. Blandingen foregår ved, at en rotor i bunden hvivler pulveret rundt i karret.

Extrudering Efter endt blanding transporteres karret til ekstruder. Karret hejses op på en platform over ekstruderen. Der åbnes for karrets bund, pulverblandingen ledes til en doserer, der virker som buffer. I bunden findes en snekke, der bringer forblandingen videre i processen. Extruderens snekker fører blandingen frem gennem to dispergeringskamre, hvor den under varmepåvirkning (ca. 100 °C) bliver en flydende masse.

Herefter ledes den flydende masse gennem valser ud på et afkølingsbånd, hvorefter det knuses til mellemproduktet, chips. Snekker, valser og transportbånd aftørres med opløsningsmidler efter hver charge.

Formaling De producerede chips opsamles i kar og transporteres til møllerum. Her hejses karret op på en platform over møllen. Ved hjælp af en kraftig luftstrøm bliver de producerede chips ved hjælp af vacuum ført frem til møllehuset, hvor de knuses. De anvendelige pulverpartikler udskilles i en cyklon. Gennem en sluse i bunden af cyklonen tappes pulveret. Den ikke anvendelige del af pulverpartiklerne (kaldet finstøv) udskilles i et posefilter.

Såfremt pulveret skal have en meget ensartet kvalitet ledes pulveret gennem en sigte. Herefter aftappes i 20 kg foldekasser, 500 kg trippel well bølge papkasser eller 800 kg Fairflex genbrugsemballage (big bags).

Rengøring Kar, som anvendes til forblanding, rengøres med vand. Kar, som anvendes til chips, støvsuges og aftørres med opløsningsmidler.

Hver 14. dag rengøres maskindele, enten ved aftørring med opløsningsmidler eller ved at nogle af delene stilles i cylindre indeholdende en stripper (p.t. en blanding af myresyre og methylenchlorid) og opbevares i et kar indeholdende opløsningsmidler (100 l) for at forhindre korrosion.

5.2.2Opløsningsmiddelbaseret malingFremstilling af opløsningsmiddelbaseret maling sker ved de processer, der er vist i figur 5.3.

34

Page 35: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5 . 7 . 2 0T e k n o m ix

5 . 7 . 9 - 1R e n g . a f k a r

5 . 7 . 9 - 2D e s t i l a t io n s a n læ g

5 . 7 . 4F o r b l a n d in g

5 . 7 . 5R iv n in g

5 . 7 . 6F æ r d ig b la n d in g

5 . 5 . 6 - 1d r if t s k o n t r o l

5 . 7 . 7T o n in g

5 . 7 . 8B la n d in g a f f o r t y n d e r

5 . 5 . 5 - 1L a b . f r e m s t . a f m a l in g

5 . 5 . 2 - 2O p s p r ø j t . a f p r ø v e

R åv a re

Fæ rdig v a re r

R å v a re R å v a re

Fæ rdig v a re r

5 . 7 . 9A f t a p n in g

R e n s e v æ s ke5 . 5 . 5 - 3

M in i p r o d u k t io n

Fæ rdig v a re r

R å v a re

Fæ rdig v a re r

Fig. 5.3 Flowdiagram, opløsningsmiddelbaseret maling

Forblanding De forskellige komponenter (bindemidler, fyldstoffer, hærdere, additiver, fortynder og pigmenter) afvejes i et blandekar af forskellige størrelser. Nogle råvarer pumpes direkte i blandekarret fra tanklagre. Tromler ophænges, således at råvaren kan hældes direkte i karret. Små mængder flydende råvarer tilsættes via litermål. Blandingen omrøres af en dissolver, indtil ønskelig dipersionsgrad er opnået.

Rivning Efter forblandingen transporteres blandekarret til en perlemølle. I perlemøllen sønderdeles de stærke sammenhobninger (agglomerater) af pigmenter, der er dannet under lagring og transport. Den samme maling rives evt. flere gange, alt efter type. Efter hver rivning nedvaskes karret med opløsningsmiddel.

Færdigblanding Efter rivningen tilsættes resterende råvarer (opløsningsmiddel, bindemiddel m.v.) under omrøring.

Toning Hvis nuancen af malingen ikke er tilfredsstillende, bliver den tonet ved tilsætning af farvepasta under omrøring, indtil farven stemmer med kundens ønske.

35

specialprodukter

specialprodukter

Page 36: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

For at kunne sammenligne malingen med kundens reference udføres en prøveopsprøjtning i en sprøjtekabine. Når farven er godkendt af laboratoriet kan malingen tappes.

Aftapning Inden aftapningen omrøres malingen. Karret indholdende maling hejses op på en platform eller i en kæde, alt efter størrelsen af karret. Malingen kan tappes i emballage, som kan være dåser, spande eller tromler af forskellig størrelse.

Rengøring Kar til maling rengøres i en vaskemaskine med en blandingsfortynder som rensevæske. De eventuelle malingsrester som vaskemaskinen ikke har fjernet, fjernes manuelt med børste og rensevæske.

36

Page 37: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.2.3Vandfortyndbar malingVandfortyndbar maling fremstilles ved de processer, der er vist i figur 5.4.

Fig. 5.4 Flowdiagram, vandfortyndbar maling

Fremstillingsprocesserne for vandfortyndbar maling er præcis de samme som for opløsningsmiddelbaseret maling, dvs. forblanding, rivning, færdigblanding, toning og aftapning, der henvises til beskrivelsen under punkt 5.2.2.

Rengøring Blandekarrene rengøres med højtryksrenser og rent vand til vask af kar. De eventuelle malingsrester, som ikke fjernes herved, fjernes manuelt med børste og evt. sæbeopløsning.

Det anvendte vaskevand fældes med fældningskemikalier, dekanteres og ledes til det offentlige kloaksystem. Slamresten opsamles og afbrændes på Skærbækværket.

5 . 7 4 - 2R e s t p r o du k t b l a n d in g

5 . 7 .9 - 1R e n g . a f k a r m .v .

5 . 7 .9 - 2R e n s n in gs a n læ g

5 . 7 . 4F o r b la n d in g

5 . 7 . 5R iv n in g

5 . 7 . 6F æ r d ig b la n d in g

5 . 5 .6 - 1D r i f t s k o n t r o l

5 . 7 . 7T o n in g

R å v a re

Fæ rdig v a re r

5 . 7 . 9A f t a p n in g

5 . 7 4 - 1E c h o p h o n

R å v a re

F in s t ø v f r ap u lv e r a f d .

Sla m t i l Sk æ r b æ k -v æ r k e t

A f ta pn in g

B la n d e k a r

37

Specialprodukter

Page 38: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3Emissioner og arbejdsmiljøpåvirkninger

Emissioner og arbejdsmiljøpåvirkninger ved fremstilling af referenceprodukterne fremgår af de følgende sider.

Oplysningerne er samlet i en tabel for hver type emission. Hver tabel fordeler emissionen på henholdsvis på de 3 referenceprodukter og på de underliggende fremstillingsprocesser.

Opgørelsen omfatter følgende emissioner og arbejdsmiljøpåvirkninger:

· el- og naturgasforbrug

· vandforbrug

· volumenaffald og farligt affald

· luftemission af støv og VOC

· COD i spildevand

· arbejdsmiljøpåvirkning fra KRAN-stoffer (her allergi og neurotoxicitet)

Oplysningerne er generelt baseret på en miljøgennemgang af produktionen udført af TEKNOS SCHOU A/S' medarbejdere i perioden 23 jan til 6 feb 1995.

Tallene for hver delproces fra denne 14. dages periode er herefter opskaleret til årstal ud fra forholdet mellem produceret mængde i alt i 1995 og produceret mængde i 14. dages perioden.

De specifikke emissioner pr. kg produkt er beregnet som emissionen for hele 1995 divideret med årsproduktionen.

Bidrag til administration og diverse er beregnet som de målte totaltal for forbrug eller emission i 1995 for TEKNOS SCHOU A/S minus forbruget/emissionen knyttet til processerne, opgjort som angivet ovenfor. Dette bidrag er herefter fordelt på de 3 produkttyper efter produktværdien, dvs. efter forholdet mellem omsætningen i 1995 af henholdsvis pulver-, opløsningsmiddelbaseret og vandfortyndbar maling.

De anvendte omregnings- og skaleringsfaktorer er samlet i nedenstående tabel 5.3

Tabel 5.3 Omregnings- og skaleringsfaktorer

Produkttype Skaleringsfaktor til 1995

Årsproduktion1995 i tons

Forhold mellem årsomsætning 1995

Pulvermaling 21 1344 0,24

Opl. Mid.bas. maling 15 3083 0,47

Vandfort.bar maling 39 3929 0,30

38

Page 39: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.1EnergiforbrugEl- og naturgasforbruget for 1995 er vist i tabel 5.4 og 5.5.

Det samlede elforbrug for TEKNOS SCHOU A/S' afdelinger i Vamdrup og Lunderskov er målt. Elforbruget ved de enkelte processer er skønnet ud fra aflæsning af mærkepladeeffekter og et skøn over driftstider på alt elforbrugende procesudstyr i registreringsperioden 23.01.95-06.02.95.

Herved introduceres en fejl, idet alle maskiner ikke belastes fuldt ud svarende til mærkepladeeffekten. Ud fra erfaringer skønnes det reelle effektforbrug i gennemsnit at være 25-50 % lavere end mærkepladeeffekten. For at imødegå dette, er det beregnede elforbrug reduceret med 30%.

Elforbruget til ventilation er beregnet som summen af mærkepladeeffekterne på alle ventilatorer ganget med en samlet skønnet driftstid på 5000 timer i 1995.

Elforbrug til administration og diverse er opgjort som differensen mellem det samlede elforbrug og forbruget til procesudstyr og ventilation. Dette forbrug er herefter fordelt på de 3 produkttyper efter produktværdi.

Naturgasforbrug TEKNOS SCHOU A/S anvender kun naturgas til rumopvarmning (adm.+div.). Forbruget på de enkelte processer er derfor 0.

Gasforbruget er målt særskilt for Vamdrup og for Lunderskov. Det samlede forbrug er fordelt på de 3 produkttyper efter produktværdi.

Usikkerheden ved vurdering af elforbruget ud fra mærkepladeeffekten skønnes at ligge indenfor +/- 25%. Tilsvarende skønnes det, at driftstiden er bestemt med en usikkerhed på +/- 25%. Den samlede usikkerhed skønnes derfor at ligge indenfor +/- Ö(252+252)% = +/- 35%, dvs. variationskoefficienten = 0,35. Usikkerheden på det samlede forbrug, der er målt, er dog sat til +/- 5%.

Usikkerheden på det samlede naturgasforbrug er sat til +/- 5%, da der er tale om en direkte måleraflæsning. Usikkerheden der introduceres ved at fordele forbruget efter produktværdien kan ikke vurderes, men den sættes her til +/- 25 %. Den samlede usikkerhed vurderes at ligge indenfor +/- 25 %, dvs. variationskoefficienten = 0,25.

Fremskaffelse af basisdata

Elforbrug

39

Vurdering af usikkerhed på data

Page 40: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.4 Elforbrug

ElforbrugAfdeling Aktivitet akt. nr. Elforbrug Elforbrug Specifikt Variations-

23.01.95-06.02.95 1995 elforbrug koefficient MWh MWh MWh/ton

Pulvermaling: Forblanding 5.7.11 2,10 44,10 0,03 0,35Driftskontrol 5.5.6.1 0,00 0,00 0,00 0,35Extrudering 5.7.12 16,80 352,80 0,26 0,35Formaling(møller) 5.7.13 16,15 339,13 0,25 0,35Driftskontrol(renhed) 5.5.6-7 0,00 0,00 0,00 0,35Reng. forblanderkar 5.7.12-1 0,02 0,37 0,00 0,35Reng. chipskar 5.7.13-1 0,00 0,00 0,00 0,35Reng. mølledele 5.7.13-2 0,00 0,00 0,00 0,35Reng. sigte 5.7.13-3 0,00 0,00 0,00 0,35Afvejn. til lab. forsøg 5.5.6-3 0,00 0,00 0,00 0,35lab. extruder 5.5.6-4 1,34 28,22 0,02 0,35Formaling lab.møller 5.5.6-5 0,05 1,09 0,00 0,35Opsprøjt+mek. test 5.5.6-6 4,66 97,90 0,07 0,35Ventilation 10,60 319,15 0,24 0,35Adm. + div. 4,26 61,96 0,05 0,35Pulverafd. total 55,98 1244,72 0,93 0,35

Opløsningsmiddelbaseret Forblanding 5.7.4 7,08 106,20 0,03 0,35maling: Rivning 5.7.5 13,23 198,45 0,06 0,35

Færdigblanding 5.7.6 1,31 19,65 0,01 0,35Driftskontrol 5.5.6-1 1,24 18,60 0,01 0,35Toning 5.7.7 2,61 39,15 0,01 0,35Aftapning 5.7.9 0,20 2,94 0,00 0,35Reng. af kar mv. 5.7.9-1 1,53 23,01 0,01 0,35Destillationsanlæg 5.7.9-2 1,32 19,73 0,01 0,35Blanding af fortynder 5.7.8 0,00 0,00 0,00 0,35Lab. frems. af maling 5.5.5-1 0,15 2,25 0,00 0,35Opsprøjt af prøve 5.5.5-2 1,11 16,70 0,01 0,35Ventilation 29,20 629,67 0,20 0,35Adm. + div. 4,95 121,35 0,04 0,35

Opl.afdeling total: 63,93 1197,69 0,39 0,35

Vandfortyndbar maling: Forblanding 5.7.4 1,90 74,10 0,02 0,35Rivning 5.7.5 3,85 150,15 0,04 0,35Færdingblanding 5.7.6 0,18 6,83 0,00 0,35Driftskontrol 5.5.6-1 0,01 0,35 0,00 0,35Toning 5.7.7 0,18 7,10 0,00 0,35Aftapning 5.7.9 0,07 2,65 0,00 0,35Restproduktblanding 5.74-2 0,05 1,95 0,00 0,35Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 0,35Rensningsanlæg 5.7.9-2 0,00 0,00 0,00 0,35Ventilation 0,97 38,00 0,01 0,35Adm. + div. 0,11 74,87 0,02 0,35Vandfort. afd. total: 7,31 356,00 0,09 0,35

TEKNOS SCHOU total: 127,23 2798,41 0,33 0,05

40

Page 41: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.5 Gasforbrug

GasforbrugAfdeling Aktivitet akt. nr. Naturgasforbrug gasforbr. Specifikt Variations-

23.01.95-06.02.95 1995 gasforbr. koefficient m3 m3 m3/ton

Pulvermaling: Forblanding 5.7.11 0 0 0,00 0,00Driftskontrol 5.5.6.1 0 0 0,00 0,00Extrudering 5.7.12 0 0 0,00 0,00Formaling(møller) 5.7.13 0 0 0,00 0,00Driftskontrol(renhed) 5.5.6-7 0 0 0,00 0,00Reng. forblanderkar 5.7.12-1 0 0 0,00 0,00Reng. chipskar 5.7.13-1 0 0 0,00 0,00Reng. mølledele 5.7.13-2 0 0 0,00 0,00Reng. sigte 5.7.13-3 0 0 0,00 0,00Afvejn. til lab. forsøg 5.5.6-3 0 0 0,00 0,00lab. extruder 5.5.6-4 0 0 0,00 0,00Formaling lab.møller 5.5.6-5 0 0 0,00 0,00Opsprøjt+mek. test 5.5.6-6 0 0 0,00 0,00Adm. + div. 5476 96480 71,79 0,25Pulverafd. total 5476 96480 71,79 0,25

Opløsningsmiddelbaseret Forblanding 5.7.4 0 0 0,00 0,00maling: Rivning 5.7.5 0 0 0,00 0,00

Færdigblanding 5.7.6 0 0 0,00 0,00Driftskontrol 5.5.6-1 0 0 0,00 0,00Toning 5.7.7 0 0 0,00 0,00Aftapning 5.7.9 0 0 0,00 0,00Reng. af kar mv. 5.7.9-1 0 0 0,00 0,00Destillationsanlæg 5.7.9-2 0 0 0,00 0,00Blanding af fortynder 5.7.8 0 0 0,00 0,00Lab. frems. af maling 5.5.5-1 0 0 0,00 0,00Opsprøjt af prøve 5.5.5-2 0 0 0,00 0,00Adm. + div. 14866 188940 61,28 0,25

Opl.afdeling total: 14866 188940 61,28 0,25

Vandfortyndbar maling: Forblanding 5.7.4 0 0 0,00 0,00Rivning 5.7.5 0 0 0,00 0,00Færdingblanding 5.7.6 0 0 0,00 0,00Driftskontrol 5.5.6-1 0 0 0,00 0,00Toning 5.7.7 0 0 0,00 0,00Aftapning 5.7.9 0 0 0,00 0,00Restproduktblanding 5.74-2 0 0 0,00 0,00Reng. af kar mv. 5.7.9-1 0 0 0,00 0,00Rensningsanlæg 5.7.9-2 0 0 0,00 0,00Adm. + div. 1641 116580 29,67 0,05Vandfort. afd. total: 1641 116580 29,67 0,05

TEKNOS SCHOU total: 21983 402000 48,11 0,05

41

Page 42: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.2VandforbrugVandforbruget for 1995 er opgjort i tabel 5.6.

Fremskaffelse af basisdata Det samlede vandforbrug for henholdsvis Vamdrup og Lunderskov er bestemt ved måling.

Vandforbruget ved de enkelte processer er målt eller skønnet af medarbejderne.

Vandforbrug til administration og diverse (sanitært spildevand) er opgjort som differensen mellem det samlede vandforbrug og forbruget til de enkelte processer. Dette forbrug er herefter fordelt på de 3 produkttyper efter produktværdi.

Usikkerheden på det samlede vandforbrug er sat til +/- 5 %, da der er tale om en direkte måleraflæsning.

Usikkerheden ved fordeling af vandforbruget på referenceprodukter skønnes til +/- 25%.

Den samlede usikkerhed vurderes at ligge inden for +/- 25 %, dvs. variationskoefficienten = 0,25.

42

Vurdering af usikkerhed på data

Page 43: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.6 Vandforbrug

VandforbrugAfdeling Aktivitet akt. nr. Vandforbrug vandfbr. Specifikt Variations-

23.01.95-06.02.95 1995 vandfbr. koefficient m3 m3 m3/ton

Pulvermaling: Forblanding 5.7.11 0,00 0,00 0,00 0,25Driftskontrol 5.5.6.1 0,00 0,00 0,00 0,25Extrudering 5.7.12 0,00 0,00 0,00 0,25Formaling(møller) 5.7.13 0,00 0,00 0,00 0,25Driftskontrol(renhed) 5.5.6-7 0,00 0,00 0,00 0,25Reng. forblanderkar 5.7.12-1 7,00 154,00 0,11 0,25Reng. chipskar 5.7.13-1 0,00 0,00 0,00 0,25Reng. mølledele 5.7.13-2 0,00 0,00 0,00 0,25Reng. sigte 5.7.13-3 0,00 0,00 0,00 0,25Afvejn. til lab. forsøg 5.5.6-3 0,00 0,00 0,00 0,25lab. extruder 5.5.6-4 0,00 0,00 0,00 0,25Formaling lab.møller 5.5.6-5 0,00 0,00 0,00 0,25Opsprøjt+mek. test 5.5.6-6 0,00 0,00 0,00 0,25Adm. + div. 59,27 1127,28 0,84 0,25Pulverafd. total 66,27 1281,28 0,95 0,25

Opløsningsmiddelbaseret Forblanding 5.7.4 0,00 0,00 0,00 0,25maling: Rivning 5.7.5 0,00 0,00 0,00 0,25

Færdigblanding 5.7.6 0,00 0,00 0,00 0,25Driftskontrol 5.5.6-1 0,00 0,00 0,00 0,25Toning 5.7.7 0,00 0,00 0,00 0,25Aftapning 5.7.9 0,00 0,00 0,00 0,25Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 0,25Destillationsanlæg 5.7.9-2 0,00 0,00 0,00 0,25Blanding af fortynder 5.7.8 0,00 0,00 0,00 0,25Lab. frems. af maling 5.5.5-1 2,25 49,50 0,02 0,25Opsprøjt af prøve 5.5.5-2 0,00 0,00 0,00 0,25Adm. + div. 136,00 2207,59 0,72 0,25

Opl.afdeling total: 138,25 2257,09 0,73 0,25

Vandfortyndbar maling: Forblanding 5.7.4 68,54 1507,88 0,38 0,25Rivning 5.7.5 3,00 66,00 0,02 0,25Færdingblanding 5.7.6 0,10 2,20 0,00 0,25Driftskontrol 5.5.6-1 1,60 35,20 0,01 0,25Toning 5.7.7 0,13 2,75 0,00 0,25Aftapning 5.7.9 0,24 5,28 0,00 0,25Restproduktblanding 5.74-2 0,00 0,00 0,00 0,25Reng. af kar mv. 5.7.9-1 40,00 880,00 0,22 0,25Rensningsanlæg 5.7.9-2 0,00 0,00 0,00 0,25Adm. + div. 18,23 1362,13 0,35 0,25Vandfort. afd. total: 131,84 3861,44 0,98 0,25

TEKNOS SCHOU total: 336,36 7399,81 0,89 0,05

43

Page 44: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.3AffaldMængden af volumenaffald og farligt affald i 1995 er opgjort i tabel 5.7 og 5.8.

Den samlede mængde af volumenaffald er opgjort ud fra oplysninger fra renovatørerne på vejesedler. Volumenaffaldet består af almindelig industrirenovation og blik- og stålaffald.

Affaldsmængderne ved de enkelte processer er vurderet ved en stk. opgørelse (antal spande, poser, dunke mv.) og et skøn over vægten af de de enkelte stk.

Affaldsmængden fra administration og diverse er opgjort som differensen mellem de samlede affaldsmængder og affaldsmængderne fra de enkelte processer. Denne mængde er herefter fordelt på de 3 afdelinger ud fra produktværdien.

Farligt affald De samlede mængder af farligt affald fra TEKNOS SCHOU A/S er opgjort ved vejesedler fra renovatører og fakturarer fra KommuneKemi. Farligt affald er defineret som affald, der skal afleveres til KommuneKemi eller til anden godkendt behandling efter dispensation.

Mængden af farligt affald ved de enkelte processer er skønnet af medarbejderene ved opgørelse af stk. og skøn af vægt af dunke, tromler mv.

Mængden af farligt affald fra administration og diverse omfatter fejlproduktioner og farligt affald fra specialproduktioner.

Usikkerheden ved opgørelse af den samlede affaldsmængde er sat til +/- 5 %, da der er tale om et vejeresultat.

Usikkerheden ved opgørelse og fordeling af affaldsmængder ved de enkelte processer er skønnet til +/- 100 % .

Den samlede usikkerhed vurderes at ligge indenfor +/- 100 %, dvs. variationskoefficienten = 1,0.

Fremskaffelse af basisdata

Volumenaffald

44

Vurdering af usikkerhed på data

Page 45: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.7 Volumenaffald

VolumenaffaldAfdeling Aktivitet akt. nr. vol. affald vol.affald specifik Variations-

23.01.95-06.02.95 1995 aff.mgd. koefficient kg kg kg/ton

Pulvermaling: Forblanding 5.7.11 2230,00 46830,00 34,84 1,00Årsproduktion: 1344 tons Driftskontrol 5.5.6.1 0,00 0,00 0,00 1,00

Extrudering 5.7.12 1940,00 40740,00 30,31 1,00Formaling(møller) 5.7.13 0,00 0,00 0,00 1,00Driftskontrol(renhed) 5.5.6-7 50,00 1050,00 0,78 1,00Reng. forblanderkar 5.7.12-1 10,00 210,00 0,16 1,00Reng. chipskar 5.7.13-1 0,00 0,00 0,00 1,00Reng. mølledele 5.7.13-2 0,00 0,00 0,00 1,00Reng. sigte 5.7.13-3 0,00 0,00 0,00 1,00Afvejn. til lab. forsøg 5.5.6-3 0,00 0,00 0,00 1,00lab. extruder 5.5.6-4 160,00 3360,00 2,50 1,00Formaling lab.møller 5.5.6-5 40,00 840,00 0,63 1,00Opsprøjt+mek. test 5.5.6-6 90,00 1890,00 1,41 1,00Adm. + div. 950,00 29534,40 21,98 1,00Pulverafd. total 5470,00 124454,40 92,60 1,00

Opløsningsmiddelbaseret Forblanding 5.7.4 1500,00 22500,00 7,30 1,00maling: Rivning 5.7.5 150,00 2250,00 0,73 1,00Årsproduktion: 3083 tons Færdigblanding 5.7.6 200,00 3000,00 0,97 1,00

Driftskontrol 5.5.6-1 50,00 750,00 0,24 1,00Toning 5.7.7 0,00 0,00 0,00 1,00Aftapning 5.7.9 0,00 0,00 0,00 1,00Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,00Destillationsanlæg 5.7.9-2 0,00 0,00 0,00 1,00Blanding af fortynder 5.7.8 0,00 0,00 0,00 1,00Lab. frems. af maling 5.5.5-1 0,00 0,00 0,00 1,00Opsprøjt af prøve 5.5.5-2 0,00 0,00 0,00 1,00Adm. + div. 3000,00 57838,20 18,76 1,00

Opl.afdeling total: 4900,00 86338,20 28,00 1,00

Vandfortyndbar maling: Forblanding 5.7.4 1470,00 57330,00 14,59 1,00Årsproduktion: 3929 tons Rivning 5.7.5 50,00 1950,00 0,50 1,00

Færdingblanding 5.7.6 20,00 780,00 0,20 1,00Driftskontrol 5.5.6-1 10,00 390,00 0,10 1,00Toning 5.7.7 70,00 2730,00 0,69 1,00Aftapning 5.7.9 160,00 6240,00 1,59 1,00Restproduktblanding 5.74-2 0,00 0,00 0,00 1,00Reng. af kar mv. 5.7.9-1 100,00 3900,00 0,99 1,00Rensningsanlæg 5.7.9-2 0,00 0,00 0,00 1,00Adm. + div. 1490,00 35687,40 9,08 1,00Vandfort. afd. total: 3370,00 109007,40 27,74 1,00

TEKNOS SCHOU total: 13740,00 319800,00 38,27 0,05

Tabel 5.8 Farligt affald

45

Page 46: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Farligt affaldAfdeling Aktivite t a kt. nr. fa rligt a ffa ld fa r.a ffa ld spe cifik Va ria tions-

23.01.95-06.02.95 1995 a ff.m gd. koe fficie nt kg kg kg/ton

Pulve rm aling: Forblanding 5.7.11 0,00 0,00 0,00 1,00Årsproduktion: 1344 tons Driftskontrol 5.5.6.1 0,00 0,00 0,00 1,00

Extrudering 5.7.12 0,00 0,00 0,00 1,00Formaling(møller) 5.7.13 2.619,05 55000,00 40,92 1,00Driftskontrol(renhed) 5.5.6-7 0,00 0,00 0,00 1,00Reng. forblanderkar 5.7.12-1 1.904,76 40000,00 29,76 1,00Reng. chipskar 5.7.13-1 0,00 0,00 0,00 1,00Reng. mølledele 5.7.13-2 0,00 0,00 0,00 1,00Reng. s igte 5.7.13-3 0,00 0,00 0,00 1,00Afvejn. til lab. forsøg 5.5.6-3 33,33 700,00 0,52 1,00lab. extruder 5.5.6-4 61,91 1300,00 0,97 1,00Formaling lab.møller 5.5.6-5 0,00 0,00 0,00 1,00Opsprøjt+mek. tes t 5.5.6-6 0,00 0,00 0,00 1,00Adm. + div. 1.428,57 30000,00 22,32 1,00Pulve ra fd. tota l 6.047,62 127000,00 94,49 1,00

Opløsningsm idde lba se re t Forblanding 5.7.4 0,00 0,00 0,00 1,00m a ling: Rivning 5.7.5 12.866,67 193000,00 62,60 1,00Årsproduktion: 3083 tons Fæ rdigblanding 5.7.6 100,00 1500,00 0,49 1,00

Driftskontrol 5.5.6-1 220,00 3300,00 1,07 1,00Toning 5.7.7 540,00 8100,00 2,63 1,00Aftapning 5.7.9 400,00 6000,00 1,95 1,00Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,00Destillationsanlæ g 5.7.9-2 800,00 12000,00 3,89 1,00Blanding af fortynder 5.7.8 0,00 0,00 0,00 1,00Lab. frems. af maling 5.5.5-1 400,00 6000,00 1,95 1,00Opsprøjt af prøve 5.5.5-2 400,00 6000,00 1,95 1,00Adm. + div. 4.153,33 62300,00 20,21 1,00

Opl.a fde ling tota l: 19.880,00 298200,00 96,72 1,00

Va ndfortyndba r m a ling: Forblanding 5.7.4 0,00 0,00 0,00 1,00Årsproduktion: 3929 tons Rivning 5.7.5 0,00 0,00 0,00 1,00

Fæ rdingblanding 5.7.6 0,00 0,00 0,00 1,00Driftskontrol 5.5.6-1 0,00 0,00 0,00 1,00Toning 5.7.7 0,00 0,00 0,00 1,00Aftapning 5.7.9 0,00 0,00 0,00 1,00Restproduk tblanding 5.74-2 0,00 0,00 0,00 1,00Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,00Rensningsanlæ g 5.7.9-2 6.846,15 267000,00 67,96 1,00Adm. + div. 589,74 23000,00 5,85 1,00Va ndfort. a fd. tota l: 7.435,89 290000,00 73,81 1,00

TEKNOS SCHOU tota l: 33.363,51 715200,00 85,59 0,05

46

Page 47: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.4Luftemissioner Mængden af støv og VOC der emitteres til luft er opgjort i tabel 5.10 og 5.11.

Støvemissionen forekommer fra forblanding i alle 3 afdelinger samt fra formaling og opsprøjt i pulverafdelingen. Støv afkastes gennem posefiltre og emissioner er skønnet ved at antage at emissionen ikke overstiger 5 mg/m3 fra posefiltret. Denne koncentration er herefter ganget med luftmængden i 14 dages perioden.

Støvemissionen fra alle øvrige aktiviteter er sat til 0.

VOC Der findes ikke data for de samlede VOC-emissioner fra TEKNOS SCHOU A/S eller fordelingen på de enkelte processer. Den specifikke VOC-emission fra referenceprodukterne er derfor skønnet ud fra råvaresammensætningen (indholdet af opløsningsmidler i råvarerne) og en vurdering af, hvilket VOC-tab disse opløsningsmidler giver i processerne forblanding, rivning, færdigblanding, tapning og rengøring.

Denne vurdering er baseret på data fra Brancheorientering nr. 5 fra Miljøstyrelsen /23/, idet specielt eksempel 3 i denne rapport, vedrørende industrimaling, er baseret på tidligere målinger af VOC-emissioner på TEKNOS SCHOU A/S.

Indholdet af opløsningsmidler er opgjort til henholdsvis 0% i pulverlakken, 34,4 % i den opløsningsmiddelbaserede lak og 1,77 % i den vandbaserede lak.

Tabet af opløsningsmidler ved 50% opløsningsmidler i råvarerne er i brancheorienteringen opgjort som vist i tabel 5.9.

Tabel 5.9 Emissionsfaktorer for opløsningsmidler

Delproces g/kg færdigvareForblanding 2Rivning 1Færdigblanding 1Tapning 3Rengøring 1

Ved almindelig forholdsregning kan disse tal omsættes til VOC emissionen ved de aktuelle indhold af opløsningsmidler på 0%, 34,4% og 1,77% .

Usikkerheden er skønnet til +/- 100 %, dvs. variationskoefficienten er 1,0.

Fremskaffelse af basisdata

Støv

47

Vurdering af usikkerhed på data

Page 48: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.10 Støvemission

StøvemissionAfdeling Aktivitet akt. nr. støvemission støv emis specifik Variations-

23.01.95-06.02.95 1995 emission koefficient kg kg kg/tons

Pulvermaling: Forblanding 5.7.11 2,80 58,80 0,04 1,00Årsproduktion: 1344 tons Driftskontrol 5.5.6.1 0,00 0,00 0,00 1,00

Extrudering 5.7.12 0,00 0,00 0,00 1,00Formaling(møller) 5.7.13 5,60 117,60 0,09 1,00Driftskontrol(renhed) 5.5.6-7 0,00 0,00 0,00 1,00Reng. forblanderkar 5.7.12-1 0,00 0,00 0,00 1,00Reng. chipskar 5.7.13-1 0,00 0,00 0,00 1,00Reng. mølledele 5.7.13-2 0,00 0,00 0,00 1,00Reng. sigte 5.7.13-3 0,00 0,00 0,00 1,00Afvejn. til lab. forsøg 5.5.6-3 0,00 0,00 0,00 1,00lab. extruder 5.5.6-4 0,00 0,00 0,00 1,00Formaling lab.møller 5.5.6-5 1,00 21,00 0,02 1,00Opsprøjt+mek. test 5.5.6-6 1,00 21,00 0,02 1,00Adm. + div. 0,00 0,00 0,00 1,00Pulverafd. total 10,40 218,40 0,16 1,00

Opløsningsmiddelbaseret Forblanding 5.7.4 1,80 27,00 0,01 1,00maling: Rivning 5.7.5 0,00 0,00 0,00 1,00Årsproduktion: 3083 tons Færdigblanding 5.7.6 0,00 0,00 0,00 1,00

Driftskontrol 5.5.6-1 0,00 0,00 0,00 1,00Toning 5.7.7 0,00 0,00 0,00 1,00Aftapning 5.7.9 0,00 0,00 0,00 1,00Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,00Destillationsanlæg 5.7.9-2 0,00 0,00 0,00 1,00Blanding af fortynder 5.7.8 0,00 0,00 0,00 1,00Lab. frems. af maling 5.5.5-1 0,00 0,00 0,00 1,00Opsprøjt af prøve 5.5.5-2 0,00 0,00 0,00 1,00Adm. + div. 0,00 0,00 0,00 1,00

Opl.afdeling total: 1,80 27,00 0,01 1,00

Vandfortyndbar maling: Forblanding 5.7.4 1,90 74,10 0,02 1,00Årsproduktion: 3929 tons Rivning 5.7.5 0,00 0,00 0,00 1,00

Færdingblanding 5.7.6 0,00 0,00 0,00 1,00Driftskontrol 5.5.6-1 0,00 0,00 0,00 1,00Toning 5.7.7 0,00 0,00 0,00 1,00Aftapning 5.7.9 0,00 0,00 0,00 1,00Restproduktblanding 5.74-2 0,00 0,00 0,00 1,00Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,00Rensningsanlæg 5.7.9-2 0,00 0,00 0,00 1,00Adm. + div. 0,00 0,00 0,00 1,00Vandfort. afd. total: 1,90 74,10 0,02 1,00

TEKNOS SCHOU total: 14,10 319,50 0,04 1,00

Tabel 5.11 VOC-emission

48

Page 49: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

VOC-emissionAfdeling Aktivitet akt. nr. VOC-emission VOCemis specifik Variations-

23.01.95-06.02.95 1995 emission koefficient kg kg kg/tons

Pulvermaling: Forblanding 5.7.11 0,00 1,00Driftskontrol 5.5.6.1 0,00 1,00Extrudering 5.7.12 0,00 1,00Formaling(møller) 5.7.13 0,00 1,00Driftskontrol(renhed) 5.5.6-7 0,00 1,00Reng. forblanderkar 5.7.12-1 0,00 1,00Reng. chipskar 5.7.13-1 0,00 1,00Reng. mølledele 5.7.13-2 0,00 1,00Reng. sigte 5.7.13-3 0,00 1,00Afvejn. til lab. forsøg 5.5.6-3 0,00 1,00lab. extruder 5.5.6-4 0,00 1,00Formaling lab.møller 5.5.6-5 0,00 1,00Opsprøjt+mek. test 5.5.6-6 0,00 1,00Adm. + div. 0,00 1,00Pulverafd. total 0,00 1,00

Opløsningsmiddelbaseret Forblanding 5.7.4 1,47 1,00maling: Rivning 5.7.5 0,73 1,00

Færdigblanding 5.7.6 0,73 1,00Driftskontrol 5.5.6-1 0,00 1,00Toning 5.7.7 0,00 1,00Aftapning 5.7.9 2,19 1,00Reng. af kar mv. 5.7.9-1 0,73 1,00Destillationsanlæg 5.7.9-2 0,00 1,00Blanding af fortynder 5.7.8 0,00 1,00Lab. frems. af maling 5.5.5-1 0,00 1,00Opsprøjt af prøve 5.5.5-2 0,00 1,00Adm. + div. 0,00 1,00

Opl.afdeling total: 5,85 1,00

Vandfortyndbar maling: Forblanding 5.7.4 0,07 1,00Rivning 5.7.5 0,04 1,00Færdingblanding 5.7.6 0,04 1,00Driftskontrol 5.5.6-1 0,00 1,00Toning 5.7.7 0,00 1,00Aftapning 5.7.9 0,11 1,00Restproduktblanding 5.74-2 0,00 1,00Reng. af kar mv. 5.7.9-1 0,04 1,00Rensningsanlæg 5.7.9-2 0,00 1,00Adm. + div. 0,00 1,00Vandfort. afd. total: 0,30 1,00

TEKNOS SCHOU total:

49

Page 50: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.5SpildevandSpildevandet er analyseret for almindelige parametre som COD, BI5, SS, KIF, bundfald og pH. Her er valgt COD som beskrivelsesparameter.

Udledte COD-mængder for 1995 er opgjort i tabel 5.10.

Fremskaffelse af basisdata COD mængden i procesudløbet fra Vamdrup er bestemt ved analyse af 4 tidsproportionale prøver for COD kombineret med et skøn over den månedligt udledte processpildevandsmængde (15 m3/måned).

COD mængden i procesudløbet fra Lunderskov er bestemt ved analyse af 4 flowproportionale prøver for BI5 kombineret med et skøn over den ugentlige vandmængde (20 m3/uge i 46 uger). COD er sat lig 2,12 x BI5 ud fra litteraturoplysninger.

COD mængden i sanitært spildevand er bestemt som det årlige vandforbrug til administration + diverse (4.697 m3) ganget med en gennemsnitlig COD koncentration for sanitært spildevand på 530 mg/l (litteraturværdi). COD-mængden er herefter fordelt på de 3 afdelinger ud fra produktværdien.

Spredningen på COD bestemmelserne er +/- 25%. Spredningen på BI5 bestemmelserne er +/- 80 %. De sande middelværdier skønnes at ligge indenfor +/- 2x spredningen dvs. indenfor ca. +/- 160 %, dvs. variationskoefficienten = 1,6.

50

Vurdering af usikkerhed på data

Page 51: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.12 COD

CODAfdeling Aktivitet akt. nr. COD COD specifik Variations-

23.01.95-06.02.95 1995 COD koefficient kg kg kg/tons

Pulvermaling: Forblanding 5.7.11 0,00 0,00 0,00 1,60Driftskontrol 5.5.6.1 0,00 0,00 0,00 1,60Extrudering 5.7.12 0,00 0,00 0,00 1,60Formaling(møller) 5.7.13 0,00 0,00 0,00 1,60Driftskontrol(renhed) 5.5.6-7 0,00 0,00 0,00 1,60Reng. forblanderkar 5.7.12-1 6,24 131,00 0,10 1,60Reng. chipskar 5.7.13-1 0,00 0,00 0,00 1,60Reng. mølledele 5.7.13-2 0,00 0,00 0,00 1,60Reng. sigte 5.7.13-3 0,00 0,00 0,00 1,60Afvejn. til lab. forsøg 5.5.6-3 0,00 0,00 0,00 1,60lab. extruder 5.5.6-4 0,00 0,00 0,00 1,60Formaling lab.møller 5.5.6-5 0,00 0,00 0,00 1,60Opsprøjt+mek. test 5.5.6-6 0,00 0,00 0,00 1,60Adm. + div. 19,05 597,36 0,44 1,60Pulverafd. total 25,29 728,36 0,54 1,60

Opløsningsmiddelbaseret Forblanding 5.7.4 0,00 0,00 0,00 1,60maling: Rivning 5.7.5 0,00 0,00 0,00 1,60

Færdigblanding 5.7.6 0,00 0,00 0,00 1,60Driftskontrol 5.5.6-1 0,00 0,00 0,00 1,60Toning 5.7.7 0,00 0,00 0,00 1,60Aftapning 5.7.9 0,00 0,00 0,00 1,60Reng. af kar mv. 5.7.9-1 0,00 0,00 0,00 1,60Destillationsanlæg 5.7.9-2 0,00 0,00 0,00 1,60Blanding af fortynder 5.7.8 0,00 0,00 0,00 1,60Lab. frems. af maling 5.5.5-1 0,00 0,00 0,00 1,60Opsprøjt af prøve 5.5.5-2 0,00 0,00 0,00 1,60Adm. + div. 61,27 1169,83 0,38 1,60

Opl.afdeling total: 61,27 1169,83 0,38 1,60

Vandfortyndbar maling: Forblanding 5.7.4 0,00 0,00 0,00 1,60Rivning 5.7.5 0,00 0,00 0,00 1,60Færdingblanding 5.7.6 0,00 0,00 0,00 1,60Driftskontrol 5.5.6-1 0,00 0,00 0,00 1,60Toning 5.7.7 0,00 0,00 0,00 1,60Aftapning 5.7.9 0,00 0,00 0,00 1,60Restproduktblanding 5.74-2 0,00 0,00 0,00 1,60Reng. af kar mv. 5.7.9-1 256,41 10000,00 2,55 1,60Rensningsanlæg 5.7.9-2 0,00 0,00 0,00 1,60Adm. + div. 30,00 721,81 0,18 1,60Vandfort. afd. total: 286,41 10721,81 2,73 1,60

TEKNOS SCHOU total: 372,97 12620,00 1,51 1,60

51

Page 52: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5.3.6ArbejdsmiljøAntal medarbejdertimer med allergi- og neurotoxiske påvirkninger er opgjort i tabel 5.11 og 5.12.

Fremskaffelse af basisdata Opgørelse af arbejdsmiljøbelastningerne er begrænset til en vurdering af antal timer/år, hvor medarbejdere er udsat for KRAN-stoffer. Opgørelsen af foretaget af BST i samarbejde med TEKNOS SCHOU A/S.

Fremgangsmåde Basis for opgørelsen var lister over anvendte råvarer i hver afdeling. Ud fra råvarernes mærkning (R-sætninger) er råvarer med K, R og A-stoffer udpeget.

De nervesystemskadende stoffer (N) er fundet ud fra AT-rapport nr. 13/1990, hvor stoffer med stof-risiko-indextal (SRI) 3, 4 og 5 er medtaget.

Ved denne opgørelse blev der kun fundet råvarer med allergifremkaldende stoffer (A) og neurotoxiske stoffer (N).

Påvirkningstiden blev skønnet ved at gennemgå produktionsprocesser, hvor KRAN-stoffer indgik, og hvor der var en mulig påvirkning, idet en påvirkning defineres som:

· belastning > 10% af grænseværdi eller

· risiko for hudkontakt eller

· registrerede gener ved APV

Påvirkningstiden er beregnet som antal ansatte udsat for belastning x skønnet belastningstid pr. år.

Belastning > 10%? Vurdering af om belastningen er større eller mindre end 10% af grænseværdien er sket på baggrund af sikkerhedsgruppens og BST’s kendskab til og erfaring med de pågældende produktionsprocesser. Desuden er relevante måleresultater fra BST-undersøgelser brugt som grundlag i de tilfælde, hvor måleomstændighederne stadig svarer til forholdene.

Hudkontakt? Ved angivelse af risiko for hudkontakt er der taget højde for risiko ved uheld, stænk, sprøjt eller lignende. Ved korrekt anvendelse af produktionsudstyr og værnemidler er der ikke normalt risiko for hudkontakt.

APV Gener registreret i APV følger de APV-skemaer som er udfyldt på nuværende tidspunkt, september 1996. Registrerede gener i forbindelse med opløsningsmidler er ikke angivet på stofniveau, men generelt og er derfor noteret for alle opløsningsmidlerne.

Antal belastede ansatte Antal ansatte er opgjort så nøjagtigt som muligt. I de tilfælde, hvor påvirkningen kun er lokal, er det beregnet hvor mange medarbejdere, som arbejder alene med denne proces. I de tilfælde, hvor påvirkningen spredes som baggrundsbelastning, eller hvor stoffet anvendes i alle produkter, er der regnet med alle i afdelingen/alle på pågældende skift.

Belastningstid Dette gør sig også gældende ved beregning af belastningstid, hvor der ved lokale påvirkninger er regnet på tidsforbruget på den enkelte proces,

52

Page 53: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

hvorimod generelle påvirkninger er beregnet ud fra en 8 timers arbejdsdag og 225 arbejdsdage/år.

Det skønnes, at der er en usikkerhed på +/- 50% i opgørelsen af genetimer, dvs. variationskoefficienten = 0,5.

53

Vurdering af usikkerhed af data

Page 54: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.13 Allergi

AllergiAfdeling Aktivitet akt. nr. allergipåvirkn. allergi specifik Variations-

23.01.95-06.02.95 1995 allergi koefficient mandtimer timer timer/ton

Pulvermaling: Forblanding 5.7.11 2143 45000 33,48 0,50Driftskontrol 5.5.6.1 0 0 0,00 0,50Extrudering 5.7.12 3086 64800 48,21 0,50Formaling(møller) 5.7.13 12343 259200 192,86 0,50Driftskontrol(renhed) 5.5.6-7 0 0 0,00 0,50Reng. forblanderkar 5.7.12-1 0 0 0,00 0,50Reng. chipskar 5.7.13-1 0 0 0,00 0,50Reng. mølledele 5.7.13-2 0 0 0,00 0,50Reng. sigte 5.7.13-3 0 0 0,00 0,50Afvejn. til lab. forsøg 5.5.6-3 0 0 0,00 0,50lab. extruder 5.5.6-4 0 0 0,00 0,50Formaling lab.møller 5.5.6-5 0 0 0,00 0,50Opsprøjt+mek. test 5.5.6-6 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50Pulverafd. total 17572 369000 274,55 0,50

Opløsningsmiddelbaseret Forblanding 5.7.4 29 600 0,19 0,50maling: Rivning 5.7.5 0 0 0,00 0,50

Færdigblanding 5.7.6 13 280 0,09 0,50Driftskontrol 5.5.6-1 0 0 0,00 0,50Toning 5.7.7 0 0 0,00 0,50Aftapning 5.7.9 0 0 0,00 0,50Reng. af kar mv. 5.7.9-1 0 0 0,00 0,50Destillationsanlæg 5.7.9-2 0 0 0,00 0,50Blanding af fortynder 5.7.8 0 0 0,00 0,50Lab. frems. af maling 5.5.5-1 0 0 0,00 0,50Opsprøjt af prøve 5.5.5-2 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50

Opl.afdeling total: 42 880 0,29 0,50

Vandfortyndbar maling: Forblanding 5.7.4 0 0 0,00 0,50Rivning 5.7.5 0 0 0,00 0,50Færdingblanding 5.7.6 0 0 0,00 0,50Driftskontrol 5.5.6-1 0 0 0,00 0,50Toning 5.7.7 0 0 0,00 0,50Aftapning 5.7.9 0 0 0,00 0,50Restproduktblanding 5.74-2 0 0 0,00 0,50Reng. af kar mv. 5.7.9-1 0 0 0,00 0,50Rensningsanlæg 5.7.9-2 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50Vandfort. afd. total: 0 0 0,00 0,50

TEKNOS SCHOU total: 17614 369880 44,27 0,50

54

Page 55: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 5.14 Neurotoxicitet

NeurotoxicitetAfdeling Aktivitet akt. nr. Neurotox Neurotox specifik Variations-

23.01.95-06.02.95 1995 Neurotox koefficient mandtimer timer timer/ton

Pulvermaling: Forblanding 5.7.11 0 0 0,00 0,50Årsproduktion: 1344 tons Driftskontrol 5.5.6.1 0 0 0,00 0,50

Extrudering 5.7.12 0 0 0,00 0,50Formaling(møller) 5.7.13 0 0 0,00 0,50Driftskontrol(renhed) 5.5.6-7 0 0 0,00 0,50Reng. forblanderkar 5.7.12-1 0 0 0,00 0,50Reng. chipskar 5.7.13-1 0 0 0,00 0,50Reng. mølledele 5.7.13-2 0 0 0,00 0,50Reng. sigte 5.7.13-3 0 0 0,00 0,50Afvejn. til lab. forsøg 5.5.6-3 0 0 0,00 0,50lab. extruder 5.5.6-4 0 0 0,00 0,50Formaling lab.møller 5.5.6-5 0 0 0,00 0,50Opsprøjt+mek. test 5.5.6-6 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50Pulverafd. total 0 0 0,00 0,50

Opløsningsmiddelbaseret Forblanding 5.7.4 29 1620000 525,46 0,50maling: Rivning 5.7.5 0 1620000 525,46 0,50Årsproduktion: 3083 tons Færdigblanding 5.7.6 13 1620000 525,46 0,50

Driftskontrol 5.5.6-1 0 0 0,00 0,50Toning 5.7.7 0 1620000 525,46 0,50Aftapning 5.7.9 0 1620000 525,46 0,50Reng. af kar mv. 5.7.9-1 0 0 0,00 0,50Destillationsanlæg 5.7.9-2 0 0 0,00 0,50Blanding af fortynder 5.7.8 0 0 0,00 0,50Lab. frems. af maling 5.5.5-1 0 0 0,00 0,50Opsprøjt af prøve 5.5.5-2 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50

Opl.afdeling total: 42 8100000 2627,31 0,50

Vandfortyndbar maling: Forblanding 5.7.4 0 0 0,00 0,50Årsproduktion: 3929 tons Rivning 5.7.5 0 0 0,00 0,50

Færdingblanding 5.7.6 0 0 0,00 0,50Driftskontrol 5.5.6-1 0 0 0,00 0,50Toning 5.7.7 0 0 0,00 0,50Aftapning 5.7.9 0 0 0,00 0,50Restproduktblanding 5.74-2 0 0 0,00 0,50Reng. af kar mv. 5.7.9-1 0 0 0,00 0,50Rensningsanlæg 5.7.9-2 0 0 0,00 0,50Adm. + div. 0 0 0,00 0,50Vandfort. afd. total: 0 0 0,00 0,50

TEKNOS SCHOU total: 42 8100000 969,36 0,50

55

Page 56: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6Brugsfasen

Formål Formålet med denne fase af projektet er at opgøre miljø- og arbejdsmiljøbelastninger ved brug af de 3 referenceprodukter.

Som nævnt i afsnit 4 vil miljøbelastningerne i brugsfasen for ovnhærdende malinger primært være belastninger forbundet med påføring af maling hos TEKNOS SCHOU A/S' kunder. Miljøbelastningen i brugsfasen for det malede produkt er antaget negligibel.

Fremgangsmåde I projektet har det ikke været muligt at foretage en kortlægning af miljøpåvirkninger i konkrete virksomheder, der anvender de tre udvalgte maleprodukter. Derfor er kortlægningen af miljø- og arbejdsmiljøpåvirkninger ved anvendelsen af de 3 udvalgte malingstyper udført teoretisk efter den model der er beskrevet i det følgende.

For hver af de 3 valgte malinger er der defineret en almindeligt anvendt manuel påføringsteknik samt hærdeteknik og procesventilation som anført nedenfor. Fastlæggelsen er udført på basis af leverandørbrugsanvisningen, den tekniske produktbeskrivelse samt erfaringer fra TEKNOS SCHOU A/S.

Der er taget kontakt til et antal leverandører til de pågældende påførings- og hærdeteknikker samt procesventilation. Leverandørerne har efter telefonisk henvendelse modtaget spørgeskema for hver malingstype. De er blevet bedt om at svare på de stillede spørgsmål og fremsende beskrivelser af det relevante udstyr.

På basis af de modtagne oplysninger fra leverandører og malingernes brugsanvisningerne er der opstillet en massebalance for male- og hærde-/tørreprocessen for alle 3 maleprodukter. Affaldsmængder og emission til luft er beregnet/estimeret på basis af de opstillede massebalanceudtryk og omregnet til emissioner/tons maling.

Opgørelsen af arbejdsmiljøbelastninger ved male- og hærdeprocessen er baseret på samme vurderingsgrundlag, som arbejdsmiljøbelastningen ved fremstilling af malingerne på TEKNOS SCHOU A/S. Det vil sige, opgørelsen af arbejdsmiljøbelastningerne er begrænset til en vurdering af antal timer/år, hvor medarbejdere i maleafdelingen er udsat for KRAN-stoffer.

Opgørelsen er foretaget af BST på basis af en vurdering af procesteknikleverandørernes anlægs- og udstyrsbeskrivelser. Denne vurdering har BST sammenholdt med egne generelle erfaringer med arbejdmiljøbelastninger ved male- og hærdeprocessen for de 3 udvalgte maleprodukter.

Resultater Miljø- og arbejdsmiljøbelastninger pr. tons maling i anvendelsesfasen for de 3 referenceprodukter er sammenfattet i nedenstående tabel 6.1.

56

Page 57: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

De viste data er baseret på forespørgsler hos 3-4 leverandører af påføringsudstyr, påføringsbokse samt hærde-/tørreovne til almindeligt anvendte teknikker vedrørende energiforbrug og malingsspild. Dette er kombineret med beregning af VOC- emissioner ud fra kendskab til referenceprodukternes indhold af opløsningsmidler.

Arbejdsmiljødata er baseret på, at BST har foretaget en vurdering af antal belastningstimer ud fra leverandørernes anlægs- og udstyrsbeskrivelser.

Tabel 6.1 Nøgletal for brugsfasen

I nedenstående fig. 6.1 er de vægtede effektpotentialer for ydre miljø og arbejdsmiljø og de vægtede ressourceforbrug vist ved anvendelse af alle 3 typer maling i en malekabine. Det fremgår at fotokemisk ozondannelse pga. emission af organiske opløsningsmidler fra den opløsningsmiddelbaserede maling og mængden af farligt affald fra anvendelse af både vandfortyndbar og opløsningsmiddelbaseret maling er de dominerende ydre miljø effekter i anvendelsesfasen.

Den dominerende potentielle arbejdsmiljøeffekt er allergipåvirkning fra anvendelse af pulvermaling. En noget mindre potentiel effekt er nerveskade fra opløsningsmidler ved anvendelse af den opløsningsmiddelbaserede maling.

Ressourceforbruget er primært stenkul til elektricitetsproduktion. Elektriciteten anvendes til både ventilation af malekabinen, opvarmning af erstatningsluft og til tørring af malingen.

Miljøvurdering af anvendelsesfasen

57

Page 58: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Følsomhedsanalyse Usikkerheden på opgørelsen af forbrug og emissioner i anvendelsesfasen er skønnet i tabel 6.1, hvor der er angivet en variationskoefficient for hver type forbrug og emission. Skønnet er bl.a. baseret på variationen i de oplysninger der er givet fra forskellige leverandører.

Fotokemisk ozondannelse er bestemt med stor sikkerhed ud fra indholdet af opløsningsmidler i referenceprodukternes recepter. Konklusionen om at dette er en betydelig miljøpåvirkning vil derfor ikke kunne ændres pga. de angivne usikkerheder.

Den humantoxiske effekt af emissionen af opløsningsmidler er ikke umiddelbart markant når man ser figuren, men den ville formentlig være større hvis man inddrager stedspecifikke oplysninger om eksponering og lokale vægtningsfaktorer i vurderingen, idet der primært er tale om en lokal miljøeffekt.

Som anført under afsnittet om fremstillingsfasen skyldes fremhævningen af farligt affald at det er klassificeret som giftigt affald. Dette er rimeligt for opløsningsmiddelbaseret affald, men det er mere tvivlsomt om rester af pulvermaling kan klassificeres som giftigt affald. Envidere vil farligt affald kun være et reelt problem hvis det håndteres forkert. Hvis det farlige affald klassificeres som inert affald, vil fotokemisk ozondannelse pga. fordampning af opløsningsmidler og elforbrug til ventilation og tørring være de mest markante miljøpåvirkninger i anvendelsesfasen.

Samtidig er opgørelsen af farligt affald ved det enkelte produkt bestemt med stor usikkerhed (+/- 100%), således at mængden reelt kunne være 0 ved et produkt.

Af hensyn til verifikation af konklusionen om at farligt affald er et problem bør mængden bestemmes mere nøjagtigt, f.eks. ved at få aktuelle tal fra miljøgennemgange af malekabiner hos TEKNOS SCHOU A/S’ kunder.

58

Page 59: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 6.1 Vægtede miljø- og arbejdsmiljøbelastninger i brugsfasen

6.1Forudsætninger vedrørende emne og malemetoder

Miljø- og arbejdsmiljøbelastninger som stammer fra påføring af maling på en given færdigvare skyldes både egenskaber ved malingen (VOC-indhold, indhold af allergener m.v.), den anvendte påføringsmetode (energiforbrug, spildprocent m.v.) og emnerne der males (form, tykkelse, m.v.).

For at opgøre miljøbelastningerne i denne fase er det derfor nødvendigt at specificere maleemne og påføringsmetode.

Maleemne Maleemnet er fastlagt til at være en kvadratisk 1 m2 stålplade der males på den ene side. Pladen er en tyndplade hvilket svarer til 1-2 mm gods. Emnet forudsættes på forhånd at være forbehandlet og klar til topcoating. Den valgte plade resulterer i et forholdsvis lavt spild, i forhold til hvis der var valgt at male f.eks. cykelstel hvor der ikke findes store regulære flader. Den lave spildprocent viser sig især for vådlakkerne da spildet ved pulvermaling ikke vil variere væsentligt grundet genvinding af pulver i processen.

Påføringsmetode For alle 3 typer maling er det forudsat at påføringen foregår manuelt i en ventileret spøjtekabine. Dette grunder til dels i at der i Danmark ikke findes leverandører af udstyr til automatiske maleprocesser, dels et ønske om at få enkle og entydige svar fra leverandører grundet valg af en simpel maleproces.

Påføringsteknikken for pulvermaling er elektrostatisk påføring med spøjtepistol, hvor emnet der skal males påføres et spændingspotentiale i forhold til malingen, med henblik på at tiltrække malingspartiklerne og derved reducere malingsspild. Der regnes med en normal topcoating i en lagtykkelse på 80 my.

Påføringsteknikken for vådmaling (opløsningsmiddel- og vandbaseret maling) er airmix, aircoat, airassist eller tilsvarende udført manuelt. Disse begreber dækker over de forskellige leverandørers patenterede metoder. Grundlæggende for alle metoderne er at malingen ved hjælp af tryk sprøjtes på emnet. Rundt om malingen findes en kappe af luft, der sikrer at malingen holdes indenfor et afgrænset område. Herved opnås stor præcision ved maleprocessen. Der regnes med at vådmaling påføres i en normal lagtykkelse på 35 my tør maling.

Hærdning Alle 3 typer maling hærdes i en elopvarmet konvektionsovn.

Driftstid For alle 3 typer maling er der regnet med 7 timers kontinuert drift uden farveskift eller anden omstilling. Et arbejdsår er fastsat til 220 arbejdsdage.

Emner pr. time Ud fra samtaler med udstyrsleverandører er antallet af emner der kan males pr. minut fastsat til ca. 1 plade pr. minut. Dette svarer til ca. 1 m2 /min. eller 60 stk. plader pr. time.

59

Page 60: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6.2Beregning af emissioner og arbejdsmiljøpåvirkninger

6.2.1Pulvermaling

Tabel 6.2 Forbrug, emissioner og arbejdsmiljø ved påføring af pulvermaling

Forbrug af maling Til beregning af malingsforbrug er brugt følgende nøgletal:

· vægtfylde pulver = 1,6 g/cm3.

· Maling på plade (1m2) = 80 cm3 derfor = 128 g/m2.

· Malingsforbruget pr. time er 60 x 128 g + spild = 7,68 kg/h + spild.

De 3 leverandører har opgivet henholdsvis 0,1%, 4% og 10% spild (TEKNOS SCHOU A/S oplyser et gennemsnitligt spild på 5% hvilket stemmer med leverandørernes oplysninger).

60

Page 61: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Malingsforbruget er således:

- ved 0,1 % spild : 7,68/0,999= 7,68 kg/h, spild = 0,01 kg/h- ved 4% spild : 7,68/0,96 = 8,00 kg/h, spild = 0,32 kg/h- ved 10% spild : 7,68/0,90 = 8,53 kg/h, spild = 0,85 kg/h

Forbrug af el Elforbruget opdeles på på følgende processer:

1. Opladning af emner/malingVærdien er oplyst af leverandører

2. Trykluft til sprøjteudstyrEfter samtale med leverandører er det oplyst at der normalt skal skabes et driftstryk på 7 bar for at få udstyret til at virke. Herudover er der oplyst et luftforbrug i m3/h. Herefter er brugt en skemaværdi på 0,072 kWh/m3 trykluft ved 7 bar og elforbruget er beregnet som: luftforbrug m3/h x 0,072 kWh/m3.

3. Udsugning af boksEffekten af blæser oplyses af leverandør. Dette tal er reduceret med en faktor 0,70 af hensyn til at den fulde mærkepladeeffekt ikke udnyttes.

4. Udsugning af ovnEffekt oplyses af leverandør. Beregning foretages som for udsugning af boks.

Varmeforbrug Varmeforbruget er regnet som el-opvarmning, hvorfor det vil give sig udtryk i et el-forbrug. Der er regnet med 2 typer varmeforbrug:

1. Opvarmning af ovnEffekten af opvarmningsudstyr er oplyst af leverandør.

2. Opvarmning af ventilationsluft fra boks.Beregning foretages som for opvarmning af ovn såfremt der fra leverandørerne er oplyst en effekt.

Ellers beregnes varmeforbruget via luftmængden der udsuges fra boksen der er oplyst af leverandør. Det forudsættes at den luft der udsuges skal erstattes af udeluft der således skal opvarmes til rumtemperatur (18 oC). Der regnes med en gennemsnitlig udetemperatur på 8 oC og en varmefylde for luft på 0,34.

Effektforbruget(W) = luftmængde (m3/h) x varmefylde luft ( kJ/m3) x Dt(oC)

Det er oplyst at luften til opvarmning af boksen kun i 40-50% af alle tilfælde går over en veksler og bliver opvarmet af udsugningsluften fra ovnen. Det er ligeledes oplyst at det anlæg der indgår i dette projekt er så lille at en veksler til denne proces højst sandsynlig er for dyr. Der er derfor regnet med at udsugningsluften skal erstattes med friskluft der opvarmes.

61

Page 62: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6.2.2Opløsningsmiddelbaseret maling

Tabel 6.3 Forbrug, emissioner og arbejdsmiljø ved påføring af opløsningsmiddelbaseret maling

Forbrug af maling Forbruget af maling er beregnet ud fra følgende forudsætninger:

· 35 my på en 1m2 plade svarer til 35 cm3 eller 35 ml.

· Massefylden for malingen er 2,029 g/ml hvilket svarer til 71,015 g/m2 (tør maling).

· Vægt/vægt procenten (w/w %) er 67% hvilket også udtrykker at vægten af den tørre maling svarer til 67 % af malingen i våd tilstand.

· De 4 leverandører har oplyst spildprocenter på henholdsvis: 30%, 28%, 30% og 30%.

· lak på plade = 71,015 g/m2 x 60 m2/h = 4261 g/hLakforbrug, tør:- ved 30 % spild: 4260,9 g/h/0,70 = 6087 g/h- ved 28 % spild: 4260,9 g/h/0,72 = 6360 g/hLakforbrug, våd:- ved 30 % spild: 6087 g/h/0,67 = 9085 g/h- ved 28 % spild: 6360 g/h/0,67 = 9493 g/hVOC:- ved 30 % spild: 9085 - 6087 g/h = 2998 g/h- ved 28 % spild: 9493 - 6360 g/h = 3233 g/hLakspild, tør:- ved 30 % spild: 6087 - 4261 g/h = 1826 g/h- ved 28 % spild: 6360 - 4261 g/h = 2099 g/h

Elforbrug Elforbruget opdeles på følgende processer:

1. Trykluft til sprøjteudstyrDriftstrykket for spøjteudstyr til vådlakkerne (den opløsningsmiddelbaserede og den vandfortyndbare) er oplyst at være det samme som for pulverlakken, hvilket normalt svarer til 7 bar. Det faktiske luftforbrug i m3/h er ligeledes oplyst. Herefter er brugt samme skemaværdi på 0,072 kWh/m3 trykluft ved 7 bar, som tilfældet er for pulverlakken og elforbruget er beregnet som luftforbrug (m3/h) x 0,072 kWh/m3.

2. Udsugning af boksEffekten af blæser oplyses af leverandør. Herefter benyttes følgende udregning: 0,70 x effekt (kWh/h).

3. Udsugning af ovnEffekt oplyses af leverandør. Beregning foretages som for udsugning af boks.

Varmeforbrug Varmeproduktionen stammer fra el-varme. Der er regnet med 2 typer varmeforbrug:

62

Page 63: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1. Opvarmning af ovnEffekten af opvarmningsudstyr er oplyst af leverandør.

2. Opvarmning af ventilationsluft fra boks.Beregnes som for pulvermaling.

63

Page 64: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6.2.3Vandfortyndbar maling

Tabel 6.4 Forbrug, emissioner og arbejdsmiljø ved påføring af vandfortyndbar maling

Forbrug af maling Forbruget af maling er beregnet ud fra følgende forudsætninger:

· 35 my på en 1m2 plade svarer til 35 cm3 eller 35 ml.

· Massefylden for malingen er 1,786 g/ml hvilket svarer til 62,51 g/m2 (tør maling).

· Vægt/vægt procenten (w/w %) er 60% hvilket også udtrykker at vægten af den tørre maling svarer til 60 % af malingen i våd tilstand.

· indhold af VOC i den vandfortyndbare maling er sat til 1,8 % (w/w)

· de 4 leverandører oplyser et lakspild på henholdsvis 30 %, 28 %, 30 % og 25 %

Lak på plade = 62,51 g/m2 x 60 m2/h = 3751 g/hLakforbrug, tør:- ved 30 % spild: 3751/0,70 = 5359 g/h- ved 28 % spild: 3751/0,72 = 5210 g/h- ved 25 % spild: 3751/0,75 = 5001 g/hLakforbrug, våd:- ved 30 % spild: 5359/0,60 = 8932 g/h- ved 28 % spild: 5210/0,60 = 8683 g/h- ved 25 % spild: 5001/0,60 = 8335 g/hVOC:- ved 30 % spild: 8932 x 0,018 = 161 g/h- ved 28 % spild: 8683 x 0,018 = 156 g/h- ved 25 % spild: 8335 x 0,018 = 150 g/hLakspild, tør:- ved 30 % spild: 5359 - 3751 = 1608 g/h- ved 28 % spild: 5210 - 3751 = 1459 g/h- ved 25 % spild: 5001 - 3751 = 1250 g/h

Øvrige forudsætninger er de samme som for den opløsningsmiddelbaserede maling.

64

Page 65: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

65

Page 66: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

7Bortskaffelsesfasen

Formål Formålet med denne fase i livscyklusvurderingen af TEKNOS SCHOU A/S' produkter er at præsentere størrelserne af de påvirkninger af det ydre miljø, der forekommer ved bortskaffelse af hver af de tre referenceprodukter. Bortskaffelsen afhænger stærkt af hvilket produkt, malingen følger. Der er i dette notat opstillet et scenarie, der er tilnærmet det gennemsnitligt bortskaffelsesforløb for hærdet maling på stålplade i Danmark.

Arbejdsmiljø Der er ikke foretaget en opgørelse af arbejdsmiljøeffekter ved bortskaffelsen, idet det ikke er muligt at opgøre hvor meget af en given arbejdsmiljøbelastning på f.eks. et forbrændingsanlæg der skal tilskrives maling på stål set i forhold til de mange forskellige kemiske stoffer der optræder i arbejdsmiljøet på forbrændingsanlægget.

Fremgangsmåde Fordelingen af den brugte maling mellem de forskelllige bortskaffelses-processer i det gennemsnitlige bortskaffelsesforløb, samt de betydende faktorer for hver af disse teknologier, er undersøgt og beskrevet kvalitativt og kvantitativt (se kapitel 7.1). Herved er opstillet en række beregningsforudsætninger, der beskriver, hvad der sker under bortskaffelsen med hver af de indgående komponenter i malingerne.

Indholdsstofferne i en prøve fra hver af de tre serier af maling (hærdet) er bestemt ved kemiske analyser.

På grundlag af disse oplysninger er beregnet estimater for de væsentlige miljøpåvirkninger ved bortskaffelsen af maling.

Toxiske emissioner Det har ikke været muligt at beregne eventuelle emissioner af toxiske stoffer som kulmonooxid (CO), blåsyre (HCN), PAH’er og uomsatte forgassede råvarer ved de involverede forbrændingsprosser. Disse kan forekomme ved forbrænding af de fleste komplekse organiske materialer, fx. træ, under ugunstige forbrændingsbetingelser.

Årsagen til den manglende kvantificering af disse stoffer er netop, at frigivelsen er stærkt afhængig af forbrændingsbetingelserne og at der ved visse af de aktuelle bortskaffelsesprocesser forekommer ukontrollable forbrændingsforhold, der er vanskelige at kvantificere.

Hvad angår tungtflygtige organiske stoffer som PAH’er og uomsatte råvarer fra malingerne udgør dette formodentligt ikke et stort problem, idet der vurderes at være en rimeligt effektiv tilbageholdelse af disse stoffer i luft- og røggasrensningssystemerne i de aktuelle bortskaffelsesprocesser.

Eventuelle letflygtige gasser som fx. kulmonooxid (CO) og blåsyre (HCN) fra forbrændingen af malingen i shredder-anlæg og stålværker vil derimod ikke med sikkerhed tilbageholdes ved rensningen af afkastluften.

Tungmetaller Der er ved de kemiske analyser af malingstyperne fundet indhold af visse tungmetaller, der ligger ud over, hvad der kan forklares ud fra malingernes recepter. Forholdet undersøges nærmere af arbejdsgruppen.

66

Page 67: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Usikkerheder På en række punkter har det ikke været muligt at skaffe præcise data om detaljer i bortskaffelsen, hvorfor det har været nødvendigt at foretage en række skøn med varierende usikkerhed og at simplificere visse problemstillinger. Skøn og simplificeringer er angivet i beskrivelsen i afsnit 7.1 og sammenfattet som en skønnet varitionskoefficient i tabel 7.1.

Resultater I tabel 7.1 er angivet de beregnede udslip for de tre malinger fordelt på de involverede bortskaffelses-processer.

Beregningerne er udført på baggrund af de forudsætninger, der er beskrevet i afsnit 7.1, samt analyseresultaterne fra de analyser, der er blevet udført på de tre udhærdede malinger. Der er foretaget røntgen-fluoriscens analyse og glødetabs-bestemmelse på DTI i Århus, samt elementaranalyser på H.C.Ørsted Instituttet, Københavns Universitet.

Røntgen-fluoriscens analysen viser det samlede indhold af samtlige grundstoffer tungere end kvælstof (ca.) med usikkerheder på op til +/- 20%. Elementar-analysen viser indholdet af de lette grundstoffer brint (H), kulstof (C) og kvælstof (N). Indholdet af grundstofferne He, Li, Be og B er således ikke bestemt, men de har ingen relevans for disse malinger.

Glødetabet er massen af den organiske stofmængde i malingerne plus eventuelle indhold af andre stoffer, som går på gasform ved høje temperaturer, fx. carbonater, der forkommer i visse pigmenter. Glødetabsbestemmelsen er foretaget ved 850 øC.

Det skal bemærkes, at det ikke har været muligt at fremstille malingprøver til analyserne, der har været helt identiske med de gennemsnits-recepter, der er angivet i tabel 5.2. I betragtning af de betydelige usikkerheder forbundet med denne opgørelse, er der ikke gjort forsøg på at korrigere for disse afvigelser i beregningerne.

Tabel 7.1 Nøgletal for bortskaffelsesfasen

I nedenstående fig. 7.1 er de vægtede effektpotentialer for ydre miljø vist ved bortskaffelsen af alle 3 typer maling. Det fremgår at farligt affald især fra pulvermaling og slagge/aske fra alle 3 typer malinger er de dominerende effekter. Luftemissioner fra afbrændning af malinger (drivhuseffekt og eutrofiering) betyder knapt så meget.

Potentielle arbejdsmiljøeffekter i bortskaffelsesfasen har ikke kunnet opgøres og der er ikke specielle ressourceforbrug forbundet med bortskaffelsen.

Følsomhedsanalyse Som det fremgår af tabel 7.1 er der tale om meget store usikkerheder i opgørelsen af miljøbelastningerne.

Konklusionen om at farligt affald er det største miljøproblem afhænger af at farligt affald klassificeres som giftigt affald. Hvis det klassificeres som inert affald vil aske/slagge og forsuring være de største miljøproblemer ved bortskaffelsen. Som tidligere nævnt er farligt affald kun et reelt problem hvis det håndteres forkert.

Miljøvurdering af bortskaffelsesfasen

67

Page 68: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Usikkerheden på opgørelsen af farligt affald er samtidigt så stor (+/- 100 %) at mængden reelt kunne være 0 ved det enkelte produkt. Disse mængder bør derfor verificeres.

Fig. 7.1 Vægtede miljøeffektpotentialer i brugsfasen

7.1Forudsætninger vedrørende bortskaffelse af referenceprodukterne

Malede stålplader anvendes til meget forskelligeartede formål. Hvordan den malede stålplade bortskaffes, afhænger af hvilken produkttype, der er tale om. Der er ikke i dette projekt indsamlet viden om, hvordan de undersøgte malinger faktisk fordeler sig på forskellige produkter af stålplade, ligesom en lille del af malingen sælges til udlandet, hvor der kan være benyttet anderledes bortskaffelsesteknologi. Det er derfor valgt at betragte et scenarie, hvor malingen bortskaffes som den gennemsnitlige bortskaffelse for jern- og stålplader under danske forhold.

Det understreges, at der på denne måde er tale om beregning af miljøeffekter af et konstrueret bortskaffelsesscenarie, der dog er baseret på realistiske data.

Stål og jern bortskaffes/tabes af følgende veje i Danmark:

•17Neddeling og sortering i fragmenteringsanlæg (shredder-anlæg) fulgt af omsmeltning på stålværker, her eksemplificeret ved Det Danske Stålvalseværk.

•18Klipning og omsmeltning (uden shredning og yderligere maskinel sortering).

•19Tilførsel til affaldsforbrænding via husholdningsaffald og brændbart storskrald. Malingen vil blive brændt helt her, mens jern og stål opsamles fra slaggen og føres til omsmeltning.

•20Direkte deponering uden tilbageførsel til genanvendelseskredsløbet. Malingen herpå regnes tabt som volumenaffald.

68

Page 69: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

•21Diffust tab direkte til miljøet ved slitage og korrosion.

7.1.1Fordeling af maling-mængder på bortskaffelsesvejeI figur 7.2 nedenfor er bortskaffelsen af maling på stålplade illustreret. Numrene i figuren henviser til beskrivelsen i teksten af hvert af de involverede trin.

Affaldsforbrænding

Maling (på stålplade)

Shredder

Omsmeltningg

Gas-emissioner

Gas-emissioner

Slagge/aske

Volumenaffald

Gas-emissioner

Slagge/aske

Kemikalieaffald

Aske

Volumenaffald

Direkte til vol.affald

Tab i miljøet

Fig. 7.2 Bortskaffelsesveje for malede stålplader i Danmark

I Danmark blev der i 1993/94 produceret ca. 510.000 tons jernskrot.

I 1991 blev der fragmenteret 292.000 tons skrot. Ca. 80% var jern svarende til ca. 234.000 tons jern.

Ifølge opgørelsen i ISAG blev der i 1994 fraført 19.000 tons forbrændingsjern fra forbrændingssanlæggene (sorteret fra forbrændingsslaggen). I en opgørelse for 1993 er mængden af forbrændingsjern opgjort til 25.000 tons. Et gennemsnit for produktionen af forbrændingsjern antages at befinde sig inden for disse to værdier.

Ad fig. 7.2, pkt 1) Det skønnes på dette grundlag, at af størrelsesordenen 50% af mængden af jern- og stålskrot i Danmark går gennem shredderanlæg, mens ca. 5% går via forbrændingsanlæggene. Genanvendelsen af jern og stål i Danmark regnes for at udgøre godt 95% af forbruget i Danmark. Omkring 40% må regnes for klippet, men ikke shreddet, mens knap 5% af forbruget tilføres affaldsdeponier direkte ellers tabes diffust til miljøet ved slitage og korrosion.

Der kan meget vel være forskel på dækningen (kg maling pr. ton stål) med maling på de forskellige fraktioner. Fx. vil jern/stål, der blot klippes ofte være af større godstykkelser, hvorved dækningen bliver lavere. På grund af manglende viden herom, regnes her med, at der er halvt så mange kg maling pr. tons jern/stål på den fraktion, der blot klippes inden omsmeltning, som på resten af jernet/stålet, men at mængden af maling derudover er direkte proportional med jern/stål-mængden.

På denne måde fremkommer beregningsforudsætningerne for det scenarie, der kan betragtes som en tilnærmelse til den sandsynlige gennemsnitsbortskaffelse af maling på stålplade i Danmark:

•2270% af malingen føres på stålplader til shredder-anlæg, hvorfra det går videre til omsmeltning.

69

Page 70: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

•2320% af malingen følger stål, der klippes inden det føres til omsmeltning på stålværker.

•245% af malinger går med stålprodukter til affaldsforbrænding.

•255% af malingen regnes tilført deponier direkte (idet diffust tab i miljøet regnes 0%).

7.1.2Shredder-anlægDet Danske Stålvalseværk /1/ Vejle Amts miljøtilsyn for shredderanlæg /2/ samt kilder i genanvendelsesbranchen oplyser samstemmende, at alt eller næsten alt maling fjernes fra jern/stål i shreddere. Denne vurdering er for alle kilder baseret på et visuelt indtryk. I scenariet regnes der med, at 20% af den maling, der passerer shredderen føres videre på stålpladerne til omsmeltning på stålværkerne.

Ifølge /2/ og en kilde fra genanvendelsesbranchen kan temperaturen visse steder i shredderen kan nå op på 600-800øC på grund af den mekaniske bearbejdning. Der ses røgudvikling ved shredningen /2/. Det er /2/’s opfattelse, at maling på de emner, der shreddes, dels krakelerer og falder af metallet, dels forbrændes helt eller delvist.

Ifølge en beskrivelse af fem af de i alt seks shredderanlæg i Danmark /3/ renses samtlige udgående luftstrømme for partikler i cyklon-udskillere. Udsugningsluften fra shredder-enheden føres efter cyklon-udskilleren desuden gennem en vådskrubber, der tilbageholder små partikler og vasker røggassen med vand. Vandet recirkuleres efter udskillelse af partikel-slam.

Tilbageholdelsen af partikler og røggasser i disse luftrensningssystemer er ikke undersøgt i /3/. Det skal her vurderes, at hele partikel-mængden (incl. aske) samt størstedelen af eventuelle tungtflygtige organiske gasser fra forbrændingen vil blive opfanget og udskilt. Systemet er ikke designet til tilbageholdelse af sure gasser (SO2, NOx, HCl) og CO2 . Hvis andelen af nyt vand er høj i vaskevandet, kan der være en beskeden tilbageholdelse af disse gasser. Den regnes dog her som 0%.

Forbrænding generelt Ved forbrænding af organisk materiale oxideres en del af luftens kvælstof, N2, til NOx. Dette vil også gælde ved forbrænding i shreddere og ved omsmeltning. Hvor meget NOx , der dannes pr. kg brændt maling, afhænger stærkt af forbrændingsbetingelserne. Der regnes dog her generelt med, at der produceres 1,2 g NO2 pr. kg brændt maling uanset, hvilken proces i bortskaffelsesscenarierne, der tale om (jf. UMIP for plasttyper, der forbrændes i affaldsforbrændingsanlæg /4/).

Det kan ikke afvises, at der ved den ukontrollerede forbrænding i shredderen kan frigives toxiske organiske stoffer, fx. tungtflygtige som PAH’er og forgassede uomsatte råvarer, samt letflygtige gasser som fx. CO (kulmonooxid) og HC (cyanbrinte). Disse stoffer kan ligeledes frigives under ugunstige forhold ved forbrænding af andre organiske materialer, fx. træ.

Eventuelle tungtflygtige organiske gasser samt de små mængder af tungmetaller (i form af aske), der er målt i malingerne, vurderes som nævnt at blive tilbageholdt i shredderens filtersystemer.

ToxicitetFig. 7.2, pkt 2 og 3

70

Jacob Maag, 03-01--1,
CWN forsøger at finde tal for NOx fra forbrænding af gennemsnitsaffald. Bør skrives i alle opsumeringer, j´hvor NOx er nævnt.
Page 71: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

De nævnte letflygtige toxiske gasser kan dannes ved ugunstige forbrændingsforhold. Forbrændingen i en shredder må som nævnt anses som stærkt varierende, hvorfor det ikke skal forsøges her at estimere eventuelle udslip af disse gasser.

Der er ikke kendskab til undersøgelser af, hvor stor en del af det tilledte organiske materiale, der forbrændes i screddere. Dette vil i øvrigt variere kraftigt afhængigt af den type skrot, der fødes ind i shredderen. En betydelig mængde brændbart materiale (gummi, plast, træ mm.) passerer imidlertid shredderen uden at blive brændt væk /3/. Det vurderes derfor, at en betydelig del af den maling, der kører igennem shredderen, ikke forbrændes, mens den resterende del forbrændes helt eller delvis. Da forbrændingsgraden er ukendt, regnes der her med en fuldstændig forbrænding (mineralisering) af sidstnævnte mængde.

Skæbnen for den maling, der passerer shredder-anlæg kan simplificeret opsummeres som følger (beregningsforudsætninger):

•2670% af den totale mængde maling på plader regnes tilført shredderanlæg.

•2775% af tilførslen til shredder-anlæg regnes mængdemæssigt som ikke forbrændt. Denne mængde regnes fordelt som følger:

· 5% tilføres kemikalieaffald.

· føres videre til omsmeltning på stålværkerne.

· 50%, dvs. den resterende del, deponeres som volumenaffald.

•2825%af tilførslen regnes som fuldstændigt forbrændt, dvs. mineraliseret, i shredderen. Denne mængde regnes fordelt som følger:

· Malingernes glødetab (se analyseresultater i bilag 1) regnes forgasset til uorganiske gasser: Kuldioxid (CO2), svovldioxid (SO2), kvælstof-oxider (NOx), saltsyre (HCl) og vand (H2O).

· Malingernes gløderest bliver til aske.

· Der produceres 1,2 g forbrændings-NO2 pr. kg brændt maling (ud over den NOx, der kommer fra malingens indhold af kvælstof).

7.1.3Klippe-anlægDet antages, at hovedparten af malingen bliver på metallet, når det neddeles ved klipning. Malingen bringes således videre med metallet til stålværket. Dvs. at 20% af den totale maling-mængde går direkte til stålværket med denne stålfraktion.

7.1.4Omsmeltning på stålvalseværkerPå Det Danske Stålvalseværk renses den indkomne jern- og stålskrot indledningsvist for jord og eventuelle rester af andre materialer. Den frasorterede mængde tilføres deponi. Det er uvist, hvor meget maling, der vil falde af her. Der regnes i scenariet med 0%.

Opsummering, Fig. 7.2 pkt. 2, 3 og 4

71

Page 72: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Derefter tilføres skrottet ovnene, hvor det opvarmes ved hjælp af elektricitet ved lysbueeffekten (svarende til princippet ved svejsning). Opvarmningen fra rumtemperatur går relativt hurtigt, 6 tons smeltes på 20 minutter. Røggastemperaturen ved udgangen af ovnen er omkring 800-900§C. Afgasning fra ovnene opfanges i udsugningsanlæg og nedkøles i et rørsystem, inden det passerer posefiltre (partikelopsamling) og ledes ud gennem skorstenen. Temperaturen i skorstenen er nede på omkring 50§C /1/.

Ved omsmeltningen vurderes langt hovedparten af eventuelt resterende maling på det neddelte skrot at blive forbrændt fuldstændigt. De elektriske udladninger under opvarmningen kan muligvis forårsage dannelse af miljøfarlige organiske stoffer /5/ som vil kunne forlade ovnen. Med den anvendte proces kan det ikke afvises, at en mindre mængde organiske stoffer vil kunne forlade ovnen uden at blive forbrændt. Behandlingen af røggassen fra processen vil dog give en vis tilbageholdelse af eventuelle uomsatte eller dannede tungtflygtige organiske stoffer. Eventuelle letflygtige organiske stoffer, der undslipper ovnen uden at blive brændt, vil formodentlig kunne passere filtrene. Da der ikke er kendskab til den faktiske omsætning af maling, regnes der i scenarierne med, at der sker en fuldstændig mineralisering.

Ved processen vil uorganiske gasser dannet ud fra indholdsstofferne i eventuelle malingrester (CO2, SO2, NOx, HCl og H2O) blive emitteret med røggassen, mens hovedparten af de øvrige uorganiske stoffer i malingen vil følge slaggerne fra smeltningen eller flyveasken, der opfanges i posefiltrene. En mindre del kan muligvis følge det omsmeltede stål videre ud i samfundet. Denne del er dog ikke indregnet i dette projekt.

Skæbnen for den maling, der tilføres omsmeltning på stålvalseværket regnes i gennemsnitsscenariet som følger:

•2920% af den totale mængde maling på plader regnes tilført omsmeltning på stålværker via klipning.

•3012% af den totale mængde maling (20% af 75%) regnes tilført omsmeltning via shredder-anlæg.

•31Al maling tilført omsmeltning regnes mængdemæssigt mineraliseret, dvs:

· Malingernes glødetab regnes forgasset til uorganiske gasser: CO2, SO2, NOx , HCl og H2O.

· Malingernes gløderest bliver til aske.

· Der produceres 1,2 g forbrændings-NO2 pr. kg brændt hærdet maling (ud over den NOx, der kommer fra malingens indhold af kvælstof).

Opsummering,Fig. 7.2 pkt. 4, 5 og 6

72

Page 73: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

7.1.5AffaldsforbrændingAffaldsforbrænding i Danmark i dag er optimeret med henblik på at eliminere udslip af miljøfarlige stoffer. Ved forbrænding af disse malinger i danske affaldsforbrændingsanlæg vil langt størstedelen af det organiske materiale mineraliseres, her regnes med 100%. Hovedparten af den lille mængde tungtflygtige organiske stoffer, der ikke forbrændes, følger slagge/aske fraktionen, mens en del opfanges ved røggasrensningen, og kun en marginal mængde emitteres med røggassen (se fx. /6/ ). Indholdet af uorganiske stoffer i malingerne (bl.a. metaller), primært fra pigmenterne, følger slagge eller aske.

Ved røggasrensningen i affaldsforbrændingsanlæg opfanges partikler og sure gasser, dvs. SO2 ,NOx og HCl. De sure gasser opfanges ved at lede røggassen igennem kalkmel (tørt eller opslemmet i vand). Tilbageholdelsen er høj, her regnes med 98% tilbageholdelse. Ifølge /7/ produceres der af størrelsen 5-10 g (tørvægt) røggasrensningsprodukt ved sur røggasrensning pr. kg tilført affald. Der regnes her som groft skøn med, at der produceres 7g røggasrensningsprodukt ved forbrænding af 1 kg maling på stålplade.

Røggasrensningsprodukt er i beregningerne indregnet som aske, fordi det mht. indholdet af miljøfarlige stoffer ligner dette mest (og ofte deponeres sammen med flyveaske).

Malingerne har en positiv brændværdi, dvs. der produceres energi ved forbrænding af dem (ca. 16 MJ/kg pulvermaling). Denne energi udnyttes til fjernvarme i affaldsforbrændingsanlæg, hvorved der kan spares andre brændsler, fx. kul. Emissionerne fra forbrænding af en tilsvarende mængde kul, kan derfor i princippet trækkes fra emissionerne ved forbrændingen af malingerne.

Da det kun er ved forbrændingen i affaldsforbrændingsanlæg, at varmen udnyttes, skal denne udligning naturligvis kun gøres for de 5% af den hærdede maling, der tilføres affaldsforbrænding og det er vurderet at denne godskrivning har så lille betydning for det samlede resultat, at den ikke er medtaget her.

Skæbnen for den maling, der tilføres affaldsforbrænding kan opsummeres som følger (beregningsforudsætninger):

•325% af den totale mængde maling regnes tilført affaldsforbrænding. Denne mængde regnes som mineraliseret, dvs.:

· Malingernes glødetab regnes forgasset til uorganiske gasser: CO2, SO2, NOx , HCl og H2O. CO2 og H2O udledes. 98% af massen af hver af de øvrige gasser regnes opfanget ved sur røggasrensning.

· Malingernes gløderest bliver til aske.

· Der regnes produceret 7 g røggasrensningsprodukt pr. kg tilført maling. Dette tilføres volumenaffald.

· Der produceres 1,2 g forbrændings-NO2 pr. kg brændt maling (ud over den NOx, der kommer fra malingens indhold af kvælstof).

Røggasrensning

Malingernes brændværdi

Opsummering,fig. 7.2 pkt. 7, 8 og 9

73

Jacob Maag, 03-01--1,
Skal røggasrensningsprodukt regens under aske i stedet??
Page 74: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

7.1.6Direkte tab til deponierDe knap 5% af jern- og stålforbruget, der ikke tilføres genanvendelseskredsløbet tilføres dels affaldsdepoter direkte, dels tabes de i miljøet ved slitage og korrosion. Som nævnt ovenfor er hele denne mængde i scenarierne dog antaget tilført deponi, dvs. 5% af malingen regnes som tilført volumenaffald med denne fraktion.

74

Page 75: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

75

Page 76: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

8Miljøeffektpotentialer ogprioritering

I dette afsnit er der foretaget en beregning af miljøeffektpotentialer for miljø- og arbejdsmiljøpåvirkninger fra produktion, brug og bortskaffelse af de 3 referenceprodukter fra TEKNOS SCHOU A/S. Miljøeffektpotentialerne er anvendt til at foretage en prioritering af miljø- og arbejdsmiljøpåvirkningerne og på baggrund heraf en udvælgelse af de vigtigste indsatsområder.

Beregning af miljøeffektpotentialerne er foretaget ved hjælp af UMIPTOOL. Resultaterne er vist på de følgende 6 kurveblade der for hver af de 3 typer maling viser henholdsvis:

· vægtede potentielle ydre miljø-effekter som funktion af livscyklusfaser

· vægtede potentielle arbejdsmiljø-effekter som funktion af livscyklusfaser

· vægtede ressourceforbrug som funktion af livscyklusfaser

Miljøeffektpotentialer, arbejdsmiljøeffektpotentialer og ressourceforbrug er både angivet pr. tons maling og pr. funktionel enhed, hvor den funktionelle enhed er mængden af maling der skal anvendes til 1 m2 metalplade dvs. 135 g/m2 for pulvermaling og 90 g/m2 for både opløsningsmiddelbaseret og vandfortyndbar maling.

Ydre miljø Af kurvebladene for ydre miljø fremgår det, at det er fotokemisk ozondannelse i brugsfasen pga VOC-fordampningen i malerkabinen, herunder især emissionen af xylen der giver de største effektpotentialer. Tilsvarende ville humantox-effekten som skyldes xylen formentlig have været højere i forhold til andre effekter, hvis man inddrog stedspecifikke oplysninger om eksponering og vægtning for alle effekttyper.

Det næststørste miljøeffektpotentiale skyldes produktionen af farligt affald i brugsfasen for vådmalinger. Farligt affald kan dog kun betegnes som et reelt problem i det omfang det ikke håndteres korrekt, ellers er det mere et økonomisk problem.

Herefter kommer miljøbelastningen fra elforbrug (drivhuseffekt, forsuring og aske/slagge produktion).

Arbejdsmiljø Arbejdsmiljøeffekterne ligger betydeligt lavere end ydre miljøeffekter målt i millipersonækvivalenter, men den største arbejdsmiljøeffekt er nerveskadende påvirkninger fra opløsningsmidler ved fremstillingen af opløsningsmiddelbaseret maling (xylen). Herefter følger allergi-påvirkning ved fremstilling af pulvermaling (TGIC-hærder).

Brugsfasens arbejdsmiljøpåvirkninger er generelt mindre end fremstillingsfasens.

Ressourceforbrug For alle 3 typer maling er det dominerende ressourceforbrug stenkul til elektricitetsproduktionen i forbindelse med brugsfasens elforbrug.

76

Page 77: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Følsomhedsanalyser Emissionen af opløsningsmidler kan bestemmes med stor sikkerhed ud fra referenceprodukternes recepter. Markeringen af fotokemisk ozondannelse som det største ydre miljøproblem er derfor et rimeligt pålideligt resultat.

Markeringen af farligt affald som et stort miljøproblem er derimod mere tvivlsom, idet det afhænger af at malingsaffald fra alle 3 referenceprodukter klassificeres som giftigt affald. Dette er nok korrekt for opløsningsmiddelbaseret affald, men mere tvivlsomt for pulver- og vandbaseret maling.

Samlet konklusion For de 3 undersøgte malinger kan der derfor drages følgende konklusion vedrørende de højst prioriterede indsatsområder:

Processer: Reduktion af mængden af farligt affald og elforbruget i brugsfasen for opløsningsmiddelbaseret og vandfortyndbar maling

Stoffer: Reduktion/substitution af Xylen i opløsningsmiddelbaseret maling og TGIC-hærder i pulvermaling

77

Page 78: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig 8.1 Vægtede miljøeffektpotentialer pr. tons maling

78

Page 79: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 8.2 Vægtede miljøeffektpotentialer pr. funktionel enhed

79

Page 80: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 8.3 Vægtede arbejdsmiljøeffektpotentialer pr. tons maling

80

Page 81: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig 8.4 Vægtede arbejdsmiljøeffektpotentialer pr. funktionel enhed

81

Page 82: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 8.5 Vægtede ressourceforbrug pr. tons maling

82

Page 83: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 8.6 Vægtede ressourceforbrug pr. funktionel enhed

83

Page 84: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

9Handlingsplan

Som omtalt i afsnit 8 kan der peges på følgende som de vigtigste indsatsområder for TEKNOS SCHOU A/S' fremtidige miljøarbejde:

Processer: Reduktion af mængden af farligt affald og elforbruget i brugsfasen for opløsningsmiddelbaseret og vandfortyndbar maling

Stoffer: Reduktion/substitution af Xylen i opløsningsmiddelbaseret maling og TGIC-hærder i pulvermaling

I det følgende er skitseret forskellige ideer til hvordan disse miljøbelastninger kan nedbringes.

Farligt affald Farligt affald i brugsfasen for vådmalinger er primært malingsspild som skyldes forbisprøjt som ender enten som malingsslam i forbindelse med en vandvæg eller som afhærdet maling i et papirfilter.

Årsagen til at denne affaldsmængde er forholdsmæssigt større ved vådmalinger end ved pulvermaling er at pulveret recirkuleres og genbruges direkte. Desuden er påføringen af pulvermaling styret ved elektrostatisk påføring.

Løsningsmuligheder Reduktion af mængden af farligt affald kan ske ved at: 1) substituere de stoffer der gør at affaldet skal kategoriseres som farligt og 2) reducere dannelse af malingsspild under maleprocessen og 3) øge genanvendelsen af malingsspild under maleprocessen. Eksempler på konkrete handlemuligheder er:

· Substitution af TGIC-hærderen i pulvermaling som medfører at brugt pulver betragtes som kemikalieaffald

· Forhærde pulveraffald, hvorved det kan behandles som almindeligt affald.

· HVLP-maling (High Volume Low Pressure) hvor der bruges mindre forstøverluft og derved fås et mindre spild

· Automatisering af sprøjetmaleprocessen så den styres ved hjælp af en automatisk aflæsning af emnets form, hvorved spild reduceres i forhold til manual sprøjtemaling

· Genanvendelse af vandfortyndbar maling, hvor der i stedet for maling op mod en vandvæg males op mod f.eks. en kølet bagvæg med henblik på opsamling og filtrering af malingsspildet ved f.eks. ultra- eller membranfiltrering (anvendes i dag som state of art teknik ved f.eks. maling af biler/autodele, radiatorer og pumper og andre virksomheder med meget store produktserier)

84

Page 85: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Elforbrug Elforbruget i brugsfasen for vådmalinger skyldes dels et elforbrug til tørring af emnerne og dels et elforbrug til udsugninger i sprøjtekabine m.m.

Elforbruget hænger dermed direkte sammen med dels farligheden af anvendte opløsningsmidler (ventilationsbehov) og dels fordampningshastigheden af de anvendte opløsningsmidler.

Løsningsmuligheder:

· fremstilling af ovntørrende malinger med mindre energiforbrug

· reducere indholdet af opløsningsmidler i vådmalinger

· anvendelse af mindre farlige opløsningsmidler

· indkapsling og minimering af størrelse af de lokaler der skal ventileres

· optimering af ventilator type og -størrelse med henblik på at tilpasse ydelse efter behov

· VLT-styring eller on/off styring af ventilatorer så de kun kører når der er brug for det og med det luftskifte der er brug for.

Xylen VOC emissionen i brugsfasen skyldes brug af ca. 250 g/kg xylen som opløsningsmiddel i opløsningsmiddel baseret maling. Hovedparten af xylenen fordamper under påføring og afhærdning af malingen i brugsfasen.

Løsningsmuligheder:

· Frafiltrering af xylen ved brug af aktiv kul filtre eller kuldefælder med genanvendelse af opsamlet opløsningsmiddel (næppe økonomisk muligt for mindre produktioner)

· Biofiltre til biologisk nedbrydning af de organiske opløsningsmidler

· katalytisk forbrænding af afkastluft (anvendes f.eks. på møbelfabrikker)

TGIC-hærder Som nævnt i det foregående medfører TGIC-hærderen som anvendes i pulvermaling arbejdsmiljøproblemer med allergi i både fremstillings- og brugsfasen.

Løsningsmuligheder:

· Substitution med mindre miljøbelastende hærdere

85

Page 86: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

10Screening af råvarer

Dette afsnit indeholder en overordnet screening af råvarerne der anvendes til fremstilling af de 3 referencemalinger. Screeningen er en meget hurtig vurdering baseret på rimeligt let tilgængelige data.

Screeningen skal bruges til at udvælge 1-2 råvarer der skal livscyklusvurderes detaljeret med henblik på evt. substitution. Denne udvælgelse foretages ved en rangordning af råvarerne ud fra:

1. et vægtkriterie

2. en overordnet vurdering af materiale- og energiforbrug samt evt. udledning af farlige stoffer til luft og vand knyttet til fremstillingen af råvarerne (vurdering efter MEKA-princippet).

3. en vurdering af om råvaren medfører særlige miljøproblemer ved fremstilling, brug og bortskaffelse

10.1Vægt

De råvarer der skal medtages i den overordnede miljøvurdering er udvalgt efter følgende kriterier:

•33tilsammen udgør de udvalgte råvarer mindst 95% w/w af malingen

•34den enkelte råvare udgør mere end 1% w/w af malingen

•35hvis der er flere råvarer med ens funktion, er den der indgår i størst mængde i malingen valgt

På baggrund heraf er der udvalgt 17 råvarer som vist i tabel 10.2.

De råvarer der herved er fravalgt består af de såkaldte additiver samt de farvegivende pigmenter.

Additiver Herunder er omfattet overfladeaktive stoffer og vokse

Overflade aktive stoffer er en gruppe stoffer, hovedsageligt fremstillet ud fra forskellige polysiloxaner. Stofferne har ingen miljømæssig mærkning.

Vokse er en gruppe stoffer fremstillet ud fra polyethylen, teflon samt polyamid. Stofferne har ingen miljømæssig mærkning.

Pigmenter De farvegivende pigmenter er enten uorganiske eller organiske, herunder en del metalforbindelser.

86

Page 87: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Det vigtigste uorganiske pigment til malingsfremstilling er det hvide titandioxid, der fremstilles syntetisk ud fra titanholdig malm. Titandioxid er medtaget i screeningen da det optræder i mængder >1%. Nogle af de uorganiske pigmenter er naturligt forekommende kemiske forbindelser som f.eks. jernoxiderne. De naturligt forekommende uorganiske pigmenter har været kendt meget længe.

De organisk syntetisk fremstillede pigmenter er derimod alle af relativt ny oprindelse. De udgør i dag en meget vigtig del af pigmenterne til malingsfremstilling.

Nogle af de vigtigste typer pigmenter er vist i tabel 10.1.

Tabel 10.1 Pigmenter

Sort: - Carbonblack fremstillet ved afbrænding af olie/gas i iltsvag atmosfære- Jernoxid - forbindelser

Blåt: - Phthalocyanin blå- Phthalocyanin grøn

Gult: - Jernoxid - forbindelser- Nikkel/chrom (III)/titan forbindelser- Organiske forbindelser, f.eks. mono azo

Rødt: - Jernoxid - forbindelser- Organiske forbindelser, f.eks. mono azo

De pigmenter der anvendes i referencemalingerne har ingen miljømæssig mærkning.

Det er sammenfattende vurderet at der ikke er miljømæssig baggrund for at medtage additiver eller andre pigmenter i screeningen. Dette er primært begrundet med at de optræder i mængder der udgør <1% og at de ikke har nogen miljømæssig mærkning.

Der er ikke taget højde for eventuelle miljøbelastninger ved fremstillingen af råvarer der udgør <1%.

For nogle af pigmenterne er det også indgået i overvejelserne at der ikke findes alternativer i dag (f.eks. for phthalocyanin blå).

87

Page 88: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 10.2 Råvarer valgt på grundlag af vægtkriteriet

Råvarer i referanceprodukter

Pulvermalingg/kg

Opløsnings-middelbaseret maling g/kg

Vandfortyndbar malingg/kg

BINDEMIDLER:

Polyester

Alkyd

Alkyd

Akryl

484

165

143

125

HÆRDER:

TGIC

Urea/melamin

Melamin

37

72

31

OPLØSNINGS-MIDLER:

Xylen

N-butanol

Solvent naphta

Butyldiglykol

Ionbyttet vand

254

55

14

11

455

ADDITIVER:

Calciumcarbonat

Zinksulfid

Bariumsulfat

Magnesiumsilikat (talkum)

"pulver"

131

35

50

50

25

76 45

PIGMENTER:

TIO2 213 279 142

ADDITIVER/ ANDET ?

"Andet"

"Andet"

61

47

88

Page 89: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

10.2Materiale- og energiforbrug samt farlige stoffer

På trods af en omfattende søgning har det ikke været muligt at finde livscyklusdata for alle de udvalgte råvarer.

BUWAL Den mest omfattende samling af relevante oplysninger er fundet i BUWAL: Schriftenreie Umwelt nr. 232 /8/, der indeholder oplysninger om energi- og materialeforbrug samt emissioner til luft og vand over hele livscyklus fra udvinding af primære råvarer til den færdigt producerede råvare. Her er der fundet oplysninger om:

Alkyd bindemiddelAkryl bindemiddelCalciumcarbonat (CaCO3)Titandioxid (TiO2)o-Xylen og N-butanol

BUWAL angiver 2 typer alkyd bindemiddel, henholdsvis "60% i terpentin/xylen 3:1" og "70% i terpentin" hvor TEKNOS SCHOU A/S vurderer at den førstnævnte svarer til den anvendte type i TEKNOS SCHOU A/S opløsningsmiddelbaserede maling.

Tilsvarende angiver BUWAL data for et "akrylat bindemiddel, 46% i vand" som TEKNOS SCHOU A/S vurderer svarer til den anvendte type akryl bindemiddel i den vandfortyndbare maling.

BUWAL angiver derimod ikke data der svarer til alkyd bindemidlet som også anvendes i TEKNOS SCHOU A/S' vandfortyndbare maling. Tilsvarende mangler der også data for polyester bindemidlet til pulvermalingen.

H. Kindler & Nickels Data for energiforbruget ved fremstilling af polyester bindemiddel er fundet i forbindelse med et projekt på tekstilfabrikken Tytex om miljøstyring, hvor energiforbruget er beregnet ud fra oplysninger fra H. Kindler & A. Nickels: "Energiaufwand zur Herstellung von Werkstoffen" /9/.

SimaPro/IWAM I den hollandske IWAM-database /10/ er der fundet oplysninger om bl.a. energiforbrug ved fremstilling af 3 typer opløsningsmiddelbaseret maling og 1 type vandbaseret maling. Disse oplysninger er anvendt til en overordnet kontrol af om der mangler råvarer med et væsentligt energiforbrug i fremstillingsfasen.

Ecobilan Rapporten: "The Life Cycle Analysis of eleven indoors decorative paints" /11/ er anvendt på samme måde til en overordnet kontrol af at der ikke mangler råvarer med et væsentligt energiforbrug.

UMIP's enhedsprocesdatabase /12/ indeholder livscyklusdata for fremstilling af vandværksvand og CaCO3. TEKNOS SCHOU A/S anvender almindeligt vandværksvand til fremstillingen af vandfortyndbare malinger, idet virksomheden selv ionbytter vandet. Miljøbelastningerne fra ionbytningsprocessen (elforbrug og bortskaffelse af brugt ionbytter) indgår i opgørelse af miljøbelastningerne ved fremstillingen af malingen. Miljøbelastningerne ved fremstillingen af ionbytteren er således den eneste belastning der ikke er medtaget.

UMIPs enhedsprocesdatabase

89

Page 90: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

TEKNOS SCHOU A/S har forsøgsvist udsendt en forespørgsel til deres leverandører af bindemidler og bedt om oplysninger om energiforbrug ved fremstilling af bindemidlerne. Kun 2 af leverandørerne har givet data, og kun for deres egen fremstillingsproces. Disse data bekræfter oplysningerne om procesenergiforbruget opgivet i BUWAL /8/.

Mangler data Totalt set har det ikke været muligt at skaffe data for mere end 8 af de 17 udvalgte råvarer, men de 8 råvarer dækker dog henholdsvis 83%, 78% og 72% af vægten af de 3 referencemalinger. De råvarer der mangler data for er:

Alkyd til vandbaseret malingTGIC-hærderUrea/melamin hærderMelamin hærderSolvent naphta opløsningsmiddelButyldiglykol opløsningsmiddelZinksulfid additivBariumsulfat additivMagnesiumsilikat additiv

10.2.1EnergiforbrugI tabel 10.3 er energiforbruget ved fremstilling af råvarerne fra udvinding til den færdige råvare vist (for de råvarer hvor det var muligt at finde data).

Tabel 10.3 Energiforbrug ved fremstilling af råvarer

Råvare Energiforbrug totalt (til jord)MJ/kg råvare

Reference

TiO2 79,28 Buwal /8/

Xylen 73,67 Buwal /8/

Alkyd bindemiddel 71,20 Buwal /8/

N-butanol 58,41 Buwal /8/

Polyester bindemiddel 52 H. Kindler /9/

Akryl bindemiddel 38,80 Buwal /8/

CaCO3 1,83 Buwal /8/

Dansk vandværksvand 0,00038 » 0 UMIP /12/

I tabel 10.4 er energiforbrugene til fremstilling af den aktuelle mængde råvare i hver af de 3 referencemalinger beregnet.

Leverandør-oplysninger

90

Page 91: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 10.4 Energiforbrug til fremstilling af råvarer, MJ/kg maling

Pulver maling MJ/kgMaling

Opløsnings-middelbaseret maling

MJ/kgMaling

Vandbaseretmaling

MJ/kgMaling

CaCO3

TiO2

Polyester

0,316,924,5

XylenCaCO3

TiO2

N-butanolAlkyd

18,70,1

22,03,2

11,9

TiO2

Akryl dispersionDestilleret vand

11,25,0= 0

I alt(redegjort for 83% af råvarerne)

41,7 I alt(redegjort for 78% af råvarerne)

55,9 I alt(redegjort for 72% af råvarerne)

16,2

Sammenlignes med livscyklusvurderinger af malinger i IWAM databasen /10/ og ECOBILANs projekt /11/ mangler der formentlig ikke væsentlige energiforbrugende råvarer, idet begge projekter anfører TiO2, opløsningsmidler og bindemiddeldispersioner som de væsentlige energiforbrugende råvarer. Energiforbrug for fremstilling af råvarer (tilbage til jord) varierer således mellem 6,7 og 11 MJ/kg maling i IWAM og fra 10 til 61 MJ/kg i ECOBILAN.

10.2.2RessourceforbrugI tabel 10.5 er vist forbruget af ressourcer. Det har ikke været muligt at finde data for ressourceforbruget ved fremstilling af polyester.

Tabel 10.5 Ressourceforbrug

Råvare Ressourceforbrug totalt (til jord)kg/kg råvare

Reference

Råolie Natur-gas

Vand Soja-olie

Kalk Rutil/Ilmenit

TiO2 0 0 53,3 0 0 >12 Buwal /8/

Xylen 0,46 0,55 2,21 0 0 0 Buwal /8/

Alkyd bindemiddel 0,47 0,09 0 0,3 0 0 Buwal /8/

N-butanol 0,46 0,24 2,20 0 0 0 Buwal /8/

Polyester bindemiddel 0 0 0

Akryl bindemiddel 0,16 0,29 0,89 0 0 0 Buwal /8/

CaCO3 0 0 0,26 0 1 0 UMIP /12/

vand 0 0 1,10 0 0 UMIP /12/

2 Buwal angiver ikke et forbrug af primær mineraler, dvs. Rutil eller Ilmenit ved udvinding og fremstilling af TiO2. Forbruget er derfor her kun angivet som >1kg/kg TiO2.

91

Page 92: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

10.2.3Emission af miljøfarlige stofferI tabel 10.6 er emissionen af miljøfarlige stoffer vist, idet emissioner som skyldes energiforbrug dog er udeladt. Ligeledes er der ikke fundet data om polyester.

Tabel 10.6 Emission af miljøfarlige stoffer i g/kg råvare

Råvare Emission til luft g/kg råvare3

Emission til vand g/kg råvare4

CaCO3

TiO2

XylenN-butanolAlkyd bindemiddel

Akryl bindemiddel

00H2S: 0,01H2S: 0,010

0

0metaller: 2,23-59metaller: 0,360NH3: 0,05-0,07 metaller: 0,06-0,110

10.3Rangordning af råvarerne

I nedenstående tabel 10.7 er det søgt at foretage en samlet rangordning af råvarerne på basis af oplysningerne i de foregående tabeller. Ved rangordningen er der anvendt en vurdering efter MEKA-princippet, dvs. vurderingen omfatter materialer (M), energi (E), kemikalier (K) og andet (A).

Energiforbrug Råvarerne i tabellen er opstillet i rækkefølge efter energiforbrug, således at TiO2, der har det største energiforbrug, jf. tabel 10.3, får 1 point og CaCO3 der har det laveste energiforbrug får 7 point.

Materialeforbrug Ved materialeforbrug er der kun taget hensyn til forbruget af ikke-fornyelige ressourcer, dvs. mineraler, råolie og naturgas. Råvarerne er rangordnet ud fra summen af forbruget af mineraler, råolie og naturgas ved hver råvare jf. tabel 10.5, dog således at :

· Rutil/Ilmenit vægtes med en faktor 1/150 (forsyningshorisont 150 år jf. MUP/LCA /13/), forbruget er sat til 1 kg/kg TiO2

· Råolie vægtes med en faktor 1/43 (forsyningshorisont 43 år jf. UMIP/12/) og

· naturgas vægtes med en faktor 1/60 (forsyningshorisont 60 år jf. UMIP/12/)

Kalk er ikke medtaget i opgørelsen idet der iflg. MUP/LCA /13/ er tilstrækkeligt af denne ressource.

Kemikalier, luft Der er kun fundet oplysninger om emissioner af kemikalier til luft ved fremstilling af xylen og butanol (emission af H2S) jf. tabel 10.6. Begge disse stoffer gives derfor 1 point i tabellen og resten 2 point.

3 data fra BUWAL, Schriftenreie Umwelt nr. 232 /8/4 data fra BUWAL, Schriftenreie Umwlet nr. 232 /8/

92

Page 93: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Kemikalier, vand Der er kun fundet oplysninger om emissioner af kemikalier til vand for TiO2, xylen og Alkyd bindemiddel jf. tabel 10.5. For TiO2 er der tale om forholdsvis store emissioner af TiO2 og forskellige tungmetaller herunder især Cr. Udledningen fra produktion af TiO2 vurderes derfor som den mest betydende (1 point). Herefter følger udledning fra alkyd-bindemiddel som både omfatter metaller og ammoniak (2 point) og udledning fra xylen (3 point). Øvrige råvarer gives 4 point.

Samlet rangordning Den samlede rangordning opnås ved simpel addition af de opnåede point for energiforbrug, materialeforbrug og kemikalier til luft og vand. De råvarer der herved får den laveste sum i tabellen er vurderet som de råvarer der belaster miljøet mest.

Denne måde at rangordne på er valgt som den mest simple. Den vil kunne kritiseres på mange måder, men det har ikke været muligt at udvikle mere avancerede scoresystemer i dette projekt.

Desuden skønnes det at der er taget rimelige forsigtighedshensyn med hensyn til udledningen af kemikalier ved den valgte måde at score på.

Tabel 10.7 Rangordning af råvarer

Råvare Energi-forbrug

Materiale-forbrug

Kemikalier luft

Kemikalier vand

Sum

TiO2 1 5 2 1 9

Xylen 2 1 1 3 7

Alkyd 3 3 2 2 10

N-butanol 4 2 1 4 11

Polyester 5 6 2 4 17

Akryl 6 4 2 4 16

CaCO3 7 6 2 4 19

10.4Valg af råvarer til detaljeret livscyklusanalyseAf tabel 10.7 fremgår det at xylen og TiO2 vurderes som de to mest miljøbelastende råvarer at fremstille.

I afsnit 8 er xylen udpeget som den største ydre miljø belastning pga. emissioner i brugsfasen (påføring i malerkabinen) og TGIC-hærderen som den største arbejdsmiljøbelastning pga. allergipåvirkning under fremstilling af pulvermaling.

Der er således en rimelig begrundelse for at udpege de 3 råvarer:

XylenTGIC-hærder ogTiO2

som de mest interessante i forbindelse med substitutionsovervejelser.

93

Page 94: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Xylen vil kunne erstattes af f.eks. parafiner el. andre lignende kulbrinter, men da de er væsentligt dyrere (ca. 10 gange) vil det være mere relevant at undgå xylen ved at erstatte opløsningsmiddelbaseret maling med vandbaseret maling eller pulvermaling, dvs. alternativerne er ikke en anden råvare men en helt anden type maling, som netop er de alternativer der er undersøgt i dette projekt.

For TGIC-hærderens vedkommende findes der faktisk et relevant alternativ, nemlig b-hydroxyalkylamid, som formentlig ikke har de samme allergifremkaldende egenskaber.

For TiO2 vil det være relevant at sammenligne de 2 typer der findes på markedet, nemlig fremstilling efter henholdsvis chlorid- og sulfatmetoden.

Konklusion Der arbejdes derfor i det følgende videre med en detaljeret livscyklusanalyse af TIO2 og TGIC-hærderen og deres mulige alternativer.

94

Page 95: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

11Detaljeret livscyklusanalyse af TiO2

Titandioxid (TiO2) er på verdensplan det vigtigste hvide pigment til maling, idet dets evne til at reflektere lys er bedre end alle andre hvide pigmenter (Lithopone, zinkoxid, zinksulfid, antimonoxid).

Reelt eksisterer der således ikke andre relevante alternativer til TiO2 udover de forskellige former for TiO2 der fremkommer ved at anvende forskellige titanråmaterialer og -produktionsmetoder.

11.1Udvinding af råmaterialer

De vigtigste råmaterialer til fremstilling af TiO2 er vist i tabel 11.1.

Tabel 11.1 Råmaterialer for TiO2

Råmateriale Produktionskapacitet på verdensplan 1987, 103 ton/år /14/

Illmenit (FeTiO3)Titan slaggeNaturlig rutil (TiO2)Syntetisk rutil

3.0601.850490470

Titandioxid forekommer naturligt som mineralerne ilmenit (FeTiO3) der indeholder 35 - 60 % TiO2 og rutil der indeholder 92 - 98 % TiO2.

Ilmenit og Rutil Ilmenit og rutil udvindes primært af sand fra Australien og Sydafrika. Udvindingen sker ved henholdsvis vægtfyldeseparation, magnetisk separation og elektrostatisk separation af sandet. Herved opdeles sandet i :

•36rutil

•37ilmenit

•38ilmenit + leucoxene (et forvitringsprodukt af ilmenit)

•39zirkon

•40kvarts

•41"tailings" ( restprodukt fra separeringen bestående af aluminium og silikater)

Udvindingen indebærer primært miljøbelastninger i form af strømforbrug til separeringsudstyr og restprodukter i form af "tailings".

95

Page 96: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Som alternativ til de naturligt forekommende bjergarter er der også udviklet syntetiske TiO2 råmaterialer hvor jern er fjernet fra ilmenit:

Syntetisk rutil Syntetisk rutil fremstilles ud fra Ilmenit ved opvarmning og reduktion med C og S efterfulgt af oxidation med O2, hvorved jernoxiderne udskilles og kan returneres til minen (Becher processen).

Miljøbelastningerne ved processen er formentlig primært emission af CO2, CO, SO2 og NOx fra strømforbrug og reduktionsprocessen.

Titanslagge Titanslagge fremstilles ved forbrænding af ilmenit i en lysbueovn med koks eller stenkul hvorved der dannes en slagge med 70-85% TiO2 og frit jern. Dette råmateriale anvendes i stigende omfang, bl.a. fordi det er fri for følgemineralet monazit (der typisk indeholder 6% af det radioaktive stof thorium og lidt uran).

Miljøbelastningerne er primært det store strømforbrug.

11.2Fremstilling af Titandioxid

11.2.1SulfatprocessenVed sulfatprocessen fremstilles TiO2 ved behandling af ilmenit med koncentreret svovlsyre. Fremstillingen sker i følgende trin:

96

Page 97: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 11.1 Fremstilling af TiO2 ved sulfatprocessen /15/

Råvareforbruget omfatter i det væsentligste ilmenit, svovlsyre (oleum) og vand. Desuden anvendes jernskrot til reduktion af Fe3+ til Fe2+ og små mængder Al og Zn -pulver til blegning af TiO2 gelen.

Det mest omdiskuterede miljøproblem i processen er bortskaffelsen af sulfater og "tynd" svovlsyre fra filtrering og vaskning af TiO2 gelen. Hidtil er bortskaffelsen sket ved udledning direkte til havet eller ved udledning i dybhavet fra tankskibe. Det arbejdes på at anvende roterovnene i calcineringstrinet til opkoncentrering af svovlsyren så den kan genanvendes direkte til oplukningen af Ilmenit. Samtidig kan sulfaterne omdannes til SO2

der kan anvendes i en kontaktproces for fremstilling af svovlsyre (se afsnit 11.3.1).

Processen indeholder desuden en række stærkt energiforbrugende trin herunder tørring, formaling og calcinering der medfører luftemissioner af støv, CO, CO2, SO2 og NOx.

Affald omfatter metallisk jern udtrukket af den nedknuste ilmenit ved hjælp af magnetseparator samt fra filtreret jernsulfat.

97

Oplukning

Opløsning og reduktion

Filtrering og bundfældning

Hydrolyse

Filtrering og vaskning

Calcinering 800-900°C

Formaling og slutbehandling

TiO2-pigment

Tørring og

formaling

FeSO4- 7H2O

H2SO4

TiO2-gel

Ilmenite

Behandling af biprodukter

Oleum

VandVand

Jernskrot

TiO2

kim

Vand

Vand

Page 98: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 11.2 Miljøbelastninger ved sulfatprocessen

Procestrin Råvare-forbrug

Energi-forbrug

Luftemis-sioner

Spildevand Affald

Tørring og formaling

ilmenit ++ støv metallisk jern

Oplukning oleum vand

+

Opløsning og reduktion

jernskrotvand

+

Filtrering og bundfældning

+ jernsulfat

Hydrolyse TiO2kimvand

+

Filtrering og vaskning

Zn, A1 pulvervand

+ "tynd svovlsyre" og sulfater

Calcinering +++ SO2, CO, CO2, NOx

Formaling ++ støv

11.2.2ChloridprocessenVed chloridprocessen behandles rutil med chlor hvorved der dannes det flygtige titantetrachlorid, der kan afdestilleres og oxideres til ren TiO2. Processen kan enten baseres på naturligt forekommende rutil eller på kunstig rutil fremstillet ud fra ilmenit. Fremstillingen sker i følgende trin:

98

Page 99: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 11.2 Fremstilling af TiO2 ved chloridprocessen /15/

Råvareforbruget omfatter i det væsentligste rutil, koks og chlor. Desuden bruges små mængder af reducerende stoffer (Cu eller H2S) samt AlCl3, O2 og vand.

Energiforbrugende processer omfatter forvarmning og forbrænding, idet selve chloreringen er exoterm.

Luftemissioner omfatter udover CO, CO2, NOx og SO2 fra energiforbrug samt støv fra formalingsprocesser, også små mængder HCL dannet i chloreringen pga. uundgåelig fugt i råvarerne.

99

TiCl4

Chlorering

Rutile

Koks

Cl2, O2

Afkøling

Reduktion

Destillation

Forvarmning(500-1000°C)

Forbrænding(900-1400°C)

Formaling og slutbehandling

TIO2-pigment

MgCl2 (S)

CaCl2 (S)

ZrSiO4 (S)FeCl2 (S)

FeCl3(S)

ZrCl4 (S)

Vanadium

Chlorider (S)

SiCl4 (S)

Cl2 (g)

TiCl4

Reducerende stoffer H2S, Cu

H2O, O2

AlCl3

TiO2

Page 100: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Processen giver som det fremgår af fig. 11.2 en del biprodukter i form af chlorider af en række metaller. Disse bortskaffes normalt i opløst form evt. ved nedpumpning i borerør til porøse jordlag ("deep well" metoden). Alternativt genanvendes en del af chloriderne til vandbehandling m.m.

Tabel 11.3 Miljøbelastninger ved chloridprocessen

Procestrin Råvareforbrug

Energiforbrug Luftemissioner

Affald/spilde-vand

Chlorering rutil, koks, C12, O2

+ HC1 MgC12, CaC12ZrSiO4

Køling alkali + CO, CO2, N2 FeC12, FeC13, ZrC14

Reduktion Cu, H2S + V-chlorider

Destillation + SiC14

Forvarmning O2, H2O, A1C13

+++ CO, CO2, NOx, SO2

Forbrænding +++ CO, CO2, NOx, SO2

Formaling + støv

11.3Fremstilling af hjælpestoffer

De vigtigste hjælpestoffer ved fremstillingen af TiO2 er svovlsyre og chlor.

11.3.1SvovlsyreI sulfatprocessen anvendes 2,4-3,5 ton koncentreret svovlsyre pr. ton TiO2 produceret /14/.

Svovlsyre fremstilles f.eks. ved kontaktmetoden ved forbrænding af flydende svovl til SO2 som oxideres katalytisk til SO3. SO3 absorberes i fortyndet H2SO4 hvorved koncentrationen gradvist øges /16/.

Den væsentligste miljøbelastning er restgasser af uomdannet SO2. Da processerne er exoterme er der et netto energioverskud.

11.3.2 ChlorChlor fremstilles ved elektrolyse af alkalisalte som f.eks. NaCl. Ved processen dannes frit Chlor ved anoden og brint (H2) og natriumhydroxid (NaOH) ved katoden. Både H2 og NaOH kan anvendes som salgbare biprodukter /16/.

For at undgå sammenblanding af produkterne adskilles anode og katode af en polymermembran eller af en asbestplade.

Miljøbelastningerne er strømforbruget til elektrolyse og affald i form af brugte membraner/asbestplader.

100

Page 101: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Elektroderne fremstilles af Titan og ædelmetal der kun korroderes minimalt.

11.4Emissioner ved fremstilling af TiO2

Miljødata for de 2 typer af titanoxid er indsamlet af bl.a. Buwal /8/ som gengivet i tabel 11.4 nedenfor:

Tabel 11.4 Emissioner ved fremstilling af TiO2 jf. Buwal /8/.

Emissioner Chloridmetoden g/ton TiO2

Sulfatmetoden g/ton TiO2

Emissioner til luft:

Carbonmonoxid (CO)Carbondioxid (CO2)Hydrogenchlorid (HCL)Nitrogenoxider (NOx)Svovldioxid (SO2)Uspecificerede partiklerHydrogencarboner

2.9904.066.430

7011.54027.6305.020

33.340

2.9004.684.590

011.24095.52014.06033.090

Emissioner til vand:

Suspenderet stof (SS)Chlorid (C1)Uspecificerede metallerUspecificeret opløst stofFe (jern)H+ (hydrogenioner)Uspecificeret olieSulfat (SO4

2-)

78092.4802.2302.8604.300

80.99050

2.530

2.06060

59.0004.190

412.00093.940

70912.050

Affald:

Uspec. Volumenaffald 1.709.620 1.814.030

Det skal bemærkes at Buwal ikke har specificeret indholdet af tungmetaller i spildevandet. Små forskelle i indholdet af f.eks. kviksølv kan give væsentlige ændringer i den samlede vurdering.

Ifølge TIOXIDES grønne regnskab for 1995 /17/ kan der forekomme små mængder af Cr, Ni, Pb, Cu, As, Hg og Cd i spildevandet. Mængden kan overslagsmæssigt skønnes ud fra det grønne regnskab som følger:

Cr : 400-500 g/ton TiO2

Ni: 20 - 30-

Pb: 10 - 20Cu: 10 - 15

-As: 2 - 3

-Hg: 0,5 - 1Cd: 0 - 0,5

101

Katalytisk oxidation

Page 102: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

TIOXIDE anvender både chlorid- og sulfatmetoden og ovenstående tungmetalmængder kan derfor ikke entydigt tilskrives en af metoderne.

11.5Miljøvurdering

I fig. 11.3 nedenfor er tallene i tabel 11.4 indtastet i UMIPTOOL for at sammenligne de potentielle miljøeffekter.

Da en ændring af typen af TiO2 ikke ændrer malingens sammensætning kan miljøvurderingen begrænses til en vurdering og sammenligning af miljøbelastningerne ved fremstillingen af de 2 typer af TiO2:

Da energi- og ressourceforbruget endvidere er stort set ens ved de 2 typer TiO2 iflg. BUWAL/8/, kan sammenligningen begrænses til emissioner til ydre miljø, dvs. luftemissioner, spildevand og affald.

Fig. 11.3 Sammenligning af potentielle ydre miljøeffekter ved henholdsvis sulfat- og chloridmetoden med data fra BUWAL /8/

Som det fremgår er der en tendens til at sulfatmetoden giver lidt større miljøbelastninger end chloridmetoden.

Følsomhedsvurdering Selv små udledninger af tungmetaller i spildevandet vil dog kunne ændre ovenstående billede betydeligt. I nedenstående fig. 11.4 er der forsøgsvist tilføjet en udledning af 1g Hg/ton TiO2 ved chloridmetoden (bemærk den ændrede skala). Dette er en realistisk værdi for chloridmetoden jf. TIOXIDES grønne regnskab. Som det ses vil den humantoksiske effekt af 1 g Hg/ton TiO2 nu være den dominerende miljøeffekt.

102

Page 103: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fig. 11.4 Vægtede miljøeffektpotentialer når der medregnes en udledning af 1 g Hg/ton TiO2 ved chloridmetoden

Med de foreliggende oplysninger kan det altså ikke klart afgøres hvilken af de to metoder, henholdsvis sulfat- eller chloridprocessen der er den mindst miljøbelastende, idet relativt små udledninger af tungmetal vil kunne ændre konklusionen væsentligt.

Det skal dog bemærkes at det især er kviksølv der giver ovennævnte store ændring af billedet på grund af kviksølvs store humantoxiske effekt. Tilføjelse af andre tungmetaller i de mængder der er anslået i TIOXIDES grønne regnskab vil ikke ændre billedet i fig. 11.3 væsentligt.

En anden usikkerhedsfaktor er, at der i visse tilfælde mangler oplysninger om hvilke specifikke stoffer der emitteres, idet BUWAL angiver nogle emissioner som "uspecificerede partikler" eller "uspecificerede metaller". For disse kan der ikke beregnes f.eks. bidrag til toxicitet.

103

Page 104: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

12Detaljeret livscyklusvurdering af TGIC-hærder og b-Hydroxyalkylamid

Stoffet "triglycidyl isocyranurat" (TGIC) er almindeligt anvendt som hærder ved fremstillingen af pulvermaling, men har vist sig at medføre en række arbejdsmiljøproblemer der på det seneste har medført en omklassificering efter EUs mærkningsregler således, at produktet fra 31 maj 1998 skal klassificeres som T- mærket . TGIC er rimeligt godt undersøgt og der ligger en række data og undersøgelser vedrørende arbejdsmiljøeffekter og ydre miljø effekter til brug for livscyklusvurderingen.

b-hydroxyalkylamid er et muligt alternativ til TGIC der tilsyneladende ikke medfører de samme miljø- og arbejdsmiljøproblemer.

Det er disse 2 stoffer der sammenlignes i det følgende

12.1TGIC

Der er ikke fundet nogen "færdige" livscyklusvurderinger for TGIC, og det har derfor været nødvendigt at foretage en mere detaljeret vurdering af de enkelte procestrin som vist i det følgende.

12.1.1Fremstilling af TGICTGIC produceres af CIBA-GEIGY Aktiengesellschaft Basel / Switzerland. Fremstillingen omfatter de trin der vist i figur 12.1 nedenfor.

Figur 12.1 viser samtidig hvilke mængder af de forskellige råvarer der skal anvendes for at fremstille 1000 kg TGIC. Disse mængder er beregnet støkiometrisk i bilag 1.1 ud fra reaktionsligningerne som er beskrevet i det følgende.

104

Page 105: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

LuftN 2 ,. . . ..

Nitrogen283 kg

N 2

NaturgasC H 4 , .. . ..

Brint61 kg

H 2

Am m oniak343 kg

N H 3

Kuldioxid444 kg

C O 2

U rea606 kg

C H 4N 2O

C yanursyre434 kg

C 3H 3N 3O 3

Natrium chloridN a C l

Chlor707 kg

C l2

Propylen424 kg

C H 2C H C H 3

Allylchlorid768 kgC 3H 5C l

Natrium chloridN a C l

Chlor707 kg

C l2

Calcium karbonat808 kgC a C O 3

Vand182 kg

H 2O

H ypochlorsyre525 kgH O C l

E pichlorhydrin929 kg

C 3H 5C lO

TGIC1000 kg

C 12H 15N 3O 6

Fig. 12.1 Procestræ for fremstilling af TGIC /14/, /15/

Ammoniak fremstilles normalt ud fra nitrogen og brint. Nitrogen findes i luft og brint fås ved reformering af naturgas /15/.

Den resulterende kemiske reaktion for ammoniaksyntesen er:

(12.1) N2 + 3 H2 « 2 NH3

Fremstillingen sker via 8 enhedsoperationer som vist i figur 12.2.

AmmoniakNH3

105

Page 106: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Am m oniak NH 3

A m m on iaksyn tese

K om p ress ion

M eth an erin g

K u ld ioxid fjern else

Ford am p n in g

S eku n d æ r reform erin g

P rim æ r reform erin g

S vovlfjern else

Naturgas

Fig. 12.2 Ammoniaksyntese baseret på naturgas /15/

Anvendelsen af naturgas beror på hvilke råmateriale der er adgang til . Produktionen i USA er for 95% vedkommende baseret på naturgas og i Europa er 72% af produktionen baseret på naturgas. Alternative råmaterialer for fremstilling af H2 ved reformering er naphta og kul.

Brint kan dog også fremstilles ved hydrolyse af vand.

Kuldioxid fås mest som biprodukt fra forbrændingsprocesser /18/.

Urea fremstilles normalt ved "Basaroff reaktionen" /15/.

(12.2) 2 NH3 + CO2 « NH2 COONH4

(12.3) NH2 COONH4 « CH4N2O + H2O

Forbruget af råmaterialer er primært NH3 og CO2 og hjælpestoffer som damp og vand.

Emissioner fra fremstilling af urea er primært NH3 og støv. Formaldehyd, methanol og andre farlige stoffer kan emitteres til luft hvis der anvendes additiver. FormalinTM, brugt som et formaldehyd additiv kan indeholde op til 15% methanol. NH3 emitteres under selve syntesen som ukontrolleret fordampning og ved afgivelse fra det faste urea under oplagring. Støv afgives under alle fremstillingsprocesserne. Der er ikke nogen pålidelige målinger af gasformige formaldehyd emissioner /19/.

KuldioxidCO2

UreaCH4N2O

106

Page 107: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Under fremstillingen opstår der spildevand (reaktion (12.3)). Spildevandet renses for indeholdet af hovedsageligt urea og NH3. For eksempel vil produktion af 1200 ton urea om dagen som en normal dagsproduktion, medføre 360 ton spildevand om dagen.. Normalt fjernes NH3 fra spildevandet ved tilsætning af kaustisk soda hvorved det afdamper og kan opsamles. Urea nedbrydes til ammoniumcarbamat der fjernes ved stripning. /15/.

Cyranursyre fremstilles fra urea der smeltes ved en temperatur omkring 300°C (12.4). Processen kræver flere timers opvarmning for fuldstændig omdannelse af urea til cyranursyre. NH3 er det eneste biprodukt /15/, /18/.

(12.4) 3 CH4N2O ® C3H3N3O3 +3 NH3

Miljøpåvirkningen er væsentligst energiforbruget til smelteprocessen og afdampning af NH3.

Chlor fremstilles ved elektrolyse af natrium chlorid.

(12.5) Na+ + Cl- ® Na-Hg + ½ Cl2

Elektroderne til processen kan indeholde Hg /15/, men i dag dominerer processer hvor titan eller ædelmetaller anvendes som elektroder.

Propylen fremstilles ud fra mineralolie.

Brydning af calciumcarbonat medfører emissioner fra energiforbrug og anvendelse af eksplosiver.

Syntesen af allylchlorid sker ved en temperatur på 300-600 °C og er baseret på en reaktion mellem propylen og chlor /15/.

(12.6) C3H6 + Cl2 ® C3H5Cl + HCl

Ved reaktionen dannes HCl som biprodukt.

Hypochlorsyre er et almindeligt anvendt rengøringskemikalie. Hypochlorsyre fremstilles ud fra chlor og calciumcarbonat /18/.

(12.7) 2 Cl2 + 2 H2O + 2 CaCO3 ® 2 HOCl + Ca Cl2 + Ca (HCO3)2

Reaktionen giver biprodukter i form af saltene calciumchlorid og calciumhydrogencarbonat.

Bruttoreaktionen er vist nedenfor /15/, /18/.

(12.8) 2 C3H5Cl + 2 HOCl ® 2 C3H5ClO + 2HCl

TGIC fremstilles ved reaktion mellem cyranursyre og epichlorhydrin /15/.

(12.9) C3H3N3O3 + 3 C3H5ClO ® C12H15N3O6 + 3 HCl

Den dannede TGIC vil ikke være 100% ren, idet den indeholder rester af epichlorhydrin i PPM området.

Som biprodukt ved reaktionen dannes saltsyre.

Cyranursyre C3H3N3O3

ChlorCl2

Propylen

Calciumcarbonat CaCO3

Allylchlorid C3H5Cl

HypochlorsyreHOCl

Epichlorhydrin C3H5ClO

Triglycidyl isocyanurat C12H15N3O6

107

Page 108: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

12.1.2Miljøpåvirkninger ved fremstilling af TGICDet har ikke været muligt at opgøre alle emissioner idet datakvaliteten og omfang af data er varierende. For nogle stoffer har det ikke været muligt at finde oplysninger om emissioner og energiforbrug overhovedet.

I tabel 12.1 er givet en kvalitativ oversigt over råvareforbrug, energiforbrug og emissioner.

Tabel 12.1 Kvalitative miljøbelastninger /14/, /15/, /8/, /19/

Procestrin Råvareforbrug Energiforbrug Luftemissioner Spildevand Affald

Brint, H2 Naturgas, vand ++ støv, CO2, CO, HC, NOx, HCl

Olie, SS, DOC, syrer, metaller, HC

+

AmmoniakNH3

vand, luft +++ CO, CO2, SO2, NH3, Organiske stoffer

Ingen data Ingen data

UreaCH4N2O

- + NH3, støv NH4,CH4N2O

Ingen data

Cyranursyre C3H3N3O3

- + ingen data ingen data ingen data

ChlorCl2

NaCl, vand, kalk +++ støv, CO, CO2, HC, SO2, NOx, HCl

COD, syrer, SS, SO4

2-, Cl-, metaller

++

PropylenC3H6

mineral olie, naturgas, vand

++ Støv, CO, CO2, HC, SO2, NOx, H2S

COD, BOD, syrer, SS, SO4

2-, Cl-, NH3, olie

+

Calciumcarbonat CaCO3

kalk ++ støv, CO, CO2, HC, SO2, NOx

SS +

Allylchlorid C3H5Cl

- ++ ingen data ingen data ingen data

HypochlorsyreHOCl

kalk, vand ingen data ingen data ingen data ingen data

EpichlorhydrinC3H5CLO

ingen data ingen data ingen data ingen data ingen data

TriglycidylisocyanuratC12H15N3O6

ingen data ingen data ingen data ingen data ingen data

Sundhedseffekter I nedenstående tabel 12.2 er vist faremærkning af de stoffer som indgår i fremstillingen af TGIC samt om der ved fremstilling anvendes farlige processer.

Kvalitative miljøpåvirkninger

108

Page 109: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 12.2 Sundhedseffekter og farlige reaktioner /14/, /15/, /18/

Stof Farlige reaktioner Sundhedseffekter Symbol

Triglycidyl Isocyranurat C12H15N3O6

ingen data Sundhedsskadelig; irriterer øjne, åndedrætsorganer og huden; farlig ved indånding og ved hudkontakt; overfølsomhed ved hudkontakt

Xn; R 40; R38/37/36; R20/22;R43

Epichlorhydrin C3H5ClO

eksplosive reaktioner med baser, syrer, organiske stoffer nedbrydningsprodukter er phosgen og saltsyre

carcinogen; øjenirritation; irriterer huden; giftig; ætsende

Carc2; R45; R10 T; R23/24/25; C; R34; R43

Allylchlorid C3H5Cl

reagerer voldsomt med alkaliske stoffer, eksplosive reaktioner, hurtigt polymerisation, forbrændingsprod. phosgen, dioxin and saltsyre etc.

giftig; øjenirritation, irriterer huden

F; R11 Tx; R26 N; R50

HypochlorsyreHOCl

ingen data ingen data ingen data

Propylen ingen data ingen data Fx; R12

Chlor Cl2 Farlige reaktioner med ammoniak, brint, kulstof og svovldioxid etc.

ætsende, lunge skader; giftig T; R23 Xi; R36/37/38

CyanursyreC3H3N3O3

ingen data ingen data ingen data

UreaCH4N2O

ingen data ingen data ingen data

Ammoniak NH3

Farlige reaktioner med Chlor, hydrogenchlorid, kuldioxid etc.

irriterer øjne, hud, lunge skade, øjenirritation; giftig

R10 T; R23

BrintH2

Eksplosiv narkotisk ved lang tids udsættelse, erstatter O2

Fx; R12

I maj 1996 har EU komissionen vedtaget en opstramning af faremærkningen for TGIC, således at den inden den 31 maj 1998 skal mærkes som:

T; R46,R23/25, R41, R43, R48/22, R52/53 (100% TGIC)

I det følgende er foretaget en opsummering af alle fundne kvantitative data for miljøbelastninger omregnet til 1 ton TGIC.

Hovedkilden til LCA data er BUWAL /8/. Data i denne rapport omfatter en række stoffer hvor alle data er "terminerede" , dvs. de omfatter alle miljøbelastninger fra fremstillingen af stoffet og alle de tilhørende råvarer m.m.

Den eneste undtagelse er, at rapporten ikke opgør ressourceforbruget til energi, dvs. mængden af olie, naturgas, kul og uran anvendt til at fremstille energien der anvendes i produktionsprocesserne. Denne undtagelse er blevet bekræftet af firmaet Ökoscience AG i Zürich der har været konsulent ved udarbejdelsen af BUWAL /8/.

Kvantitative miljøbelastninger

109

Page 110: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Derfor er ressourceforbruget til energi beregnet ud fra oplysningerne om energiforbrug i BUWAL/8/ kombineret med nøgletallene i UMIPTOOL for ressourceforbrug ved forskellige brændselstyper.

Emissioner fra energiforbrug er generelt inkluderet i BUWALs tal, men for urea og ammoniak, der ikke findes i BUWAl, er emissioner fra elektricitetsforbrug beregnet ved hjælp af emissionsfaktorer fra BUWAL kombineret med oplysninger om elforbrug fra USEPA /19/.

I tabel 12.4 for ressourceforbrug er angivet et tal på 836 kg calciumcarbonat. Dette tal er en sum af den mængde der dannes støkiometrisk ved produktionen af hypochlorit (808 kg), mængden der forbruges ved produktionen af chlor jf. BUWAL (28,28 kg) og mindre mængder brugt ved energiproduktionen.

De kemiske reaktioner for fremstilling af TGIC som er beskrevet i afsnit 12.1.1 viser at der rent støkiometrisk dannes en række biprodukter der enten kan ende som emissioner eller som råmaterialer i andre produktioner. Generelt er biprodukter ikke medregnet som emissioner i de følgende tabeller medmindre dette bekræftes af andre kilder.

Der er ikke fundet nogen data om luftemissioner, emissioner til vand og affald fra produktion af: TGIC , epichlorhydrin , allylchlorid , hypochlorsyre og cyranursyre. De reelle emissioner vil derfor sandsynligvis være større end angivet.

Energiforbrug Energiforbruget til fremstilling af 1 ton TGIC er beregnet i bilag 2.2. Resultatet er sammenfattet i nedenstående tabel 12.3.

Tabel 12.3 Energiforbrug /14/, /15/, /8/

Produktionstrin Forbrug pr. ton TGIC

Ammoniak

UreaCalciumcarbonateChlorPropylenHypochlorsyreAllylchloridEpichlorhydrinCyanursyreTGIC

23,3 GJ 5 0,3 GJ 6

1,5 GJ 30,4 GJ 7 29,5 GJ 8ingen dataingen dataingen dataingen dataingen data

I alt 85,0 GJ

Ressourceforbrug Ressourceforbruget ved fremstilling af TGIC er beregnet i bilag 2.3. Det har været muligt at finde aktuelle forbrugstal i håndbogslitteraturen og kun forbruget af CaCO3 ved fremstilling af HOCl er beregnet støkiometrisk.

5 omfatter også energiforbrug ved fremstilling af råmaterialerne naturgas og brint6 omfatter kun energiforbrug ved fremstilling af urea fra ammoniak og kuldioxid7 omfatter også energiforbrug ved fremstilling af råmaterialet natriumchlorid8 omfatter også energiforbrug ved fremstilling af råmaterialerne mineral olie og naturgas

110

COWI, 03-01--1,
Page 111: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 12.4 Ressourceforbrug /14/, /15/, /8/

Ressource Forbrug pr ton TGIC9

naturgasrå olievandaluminiumjernkulbrunkulcalciumcarbonatelernatriumchloridbiomasseuran

2.701 kg 1.613 kg 44.852 kg 0,5 kg 0,1 kg 2.976 kg 722 kg 836 kg 0,04kg 1.711 kg 46 kg 0,1 kg

Emissioner og affald Emissioner til luft, vand og affald fra fremstilling af TGIC er beregnet i bilagene 2.4-2.6. Der er kun fundet oplysninger om emissioner fra nogle af procestrinene. For Urea er der anført en negativ emission af CO2 som skyldes forbruget af CO2 i processen for fremstilling af Urea. Mængden er beregnet støkiometrisk.

9 Mængderne omfatter ikke ressourceforbruget ved fremstilling af TGIC, epichlorhydrin, hypochlorsyre og cyanursyre samt ressourceforbruget til energi ved fremstillingen

111

Page 112: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 12.5 Emissioner /14/, /15/, /8/, /19/

Parameter Emission pr. ton TGIC10

Emissioner til luft:

StøvCOSO2

TOCNH3

CO2

HCNox

H2SHCl

8,2 kg 5,0 kg 24,0 kg 78,0 kg 7,8 kg 3.165,0 kg 18,0 kg 17,0 kg 0,004kg 0,26 kg

Emissioner til Vand:

SS (suspenderet stof)DS (opløste salte)CODBODDOCSyrerSO4

2-

Cl-

OlieMetallerKulbrinter

3,0 kg 1,0 kg 0,1 kg 0,01 kg 0,03 kg 0,54 kg 10,0 kg 59,0 kg 0,1 kg 0,14 kg 0,01 kg

Fast affald:

Uspec. Volumenaffald 250 kg

12.2b-Hydroxyalkylamid

Der er heller ikke for b-hydroxyalkylamid fundet nogen "færdige" livscyklusvurderinger. Det har derfor også her været nødvendigt at foretage en mere detaljeret vurdering af de enkelte procestrin i fremstillingen.

12.2.1Fremstilling af b-hydroxyalkylamidb-hydroxyalkylamid produceres hovedsageligt af EMS-Chemie Aktiengesellschaft i Schweiz. Fremstillingen omfatter de trin der vist i Figur 12.3 nedenfor.

10 Mængderne omfatter ikke emissioner fra fremstilling af TGIC, epichlorhydrin, allylchlorid, hypochlorsyre og cyanursyre samt emissioner fra energiforbrug ved fremstilling af disse stoffer

112

Page 113: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Natu rg asC H 4,.. .

M ethan olC H 3O H19 9 kg

L uftO 2,.. .

O xyge nO 2

26 5 kg

Lu ftN 2,...

Nitrog enN 2

3 5 kg

N aturga sH 2,.. .

BrintH 2

1 2 kg

Am m o n ia kN H 3

7 0 kg

S alpe tersyreH N O 3

26 1 kg

LuftO 2 , ...

O xygenO 2

9 9 kg

M inera lo lieB e nzen ,. ..

Be nzenC 6H 6

2 4 2 kg

Na tu ra gasH 2,.. .

BrintH 2

19 kg

Cyclohe xanC 6H 12

2 61 kg

AdipinsyreC 6H 10O 4

4 53 kg

Dim ethy la dip a tC 8H 14O 4

54 0 kg

L uftN 2, ...

N itroge nN 2

53 kg

Na tu rg asH 2,.. .

Brin tH 2

1 9 kg

Am m oniakN H 3

10 6 kg

Lu ftO 2,.. .

O xy genO 2

3 98 kg

M ine ra lo lie ,Na tu rg asE th ylen ,.. .

E thy le nC 2H 4

4 06 kg

E th y lenox idC 2H 4O5 47 kg

D ie than olam inC 4H 11N O 2

6 52 kg

beta-Hydroxyalkylam idC 14H 30N 2O 6

1 0 0 0 kg

Fig. 12.3 Procestræ for fremstilling af b-hydroxyalkylamid /14/, /15/, /20/, /21/, /22/

Benzen fremstilles primært af råolie eller naphta. Ved produktionen opstår luftemissioner, spildevand og affald /8/.

Stort set al cyclohexan produceres industrielt ved hydrering af benzen udvundet af råolie. En lille del fremstilles dog ved superfraktionering af naphta fra råolie /14/.

Benzen kan hydreres katalytisk til cyclohexan i enten væske- eller dampfasen ved tilstedeværelse af brint og med nikkel, platin eller palladium som katalysator.

(12.10) C6H6 + 3 H2 ® C6 H12

Reaktionen er stærkt exoterm og udføres typisk ved 20-30 MPa og max 300°C.

Cyclohexan bruges til at fremstille adipinsyre, som indgår i syntesen af b-hydroxyalkylamid.

Ammoniak fremstilles normalt ud fra nitrogen og brint. Nitrogen findes i luft og brint fås ved reformering af naturgas /15/.

Den resulterende kemiske reaktion for ammoniaksyntesen er:

(12.11) N2 + 3 H2 « 2 NH3

Benzen C6H6

CyclohexanC6H12

AmmoniakNH3

113

Page 114: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Fremstillingen sker via 8 enhedsoperationer som vist i figur 12.4.

Am m oniak NH 3

A m m on iaksyn tese

K om p ress ion

M eth an erin g

K u ld ioxid fjern else

Ford am p n in g

S eku n d æ r reform erin g

P rim æ r re form ering

S vovlfjern else

Naturgas

Fig. 12.4 Ammoniaksyntese baseret på naturgas /15/

Anvendelsen af naturgas beror på hvilke råmateriale der er adgang til . Produktionen i USA er for 95% vedkommende baseret på naturgas og i Europa er 72% af produktionen baseret på naturgas. Alternative råmaterialer for fremstilling af H2 ved reformering er naphta og kul.

Brint kan dog også fremstilles ved hydrolyse af vand.

Ammoniakken benyttes til fremstilling af salpetersyre og diethanolamin.

Salpetersyre er nødvendig til fremstilling af adipinsyre /14/, /15/.

Industriel fremstilling af salpetersyre sker hovedsageligt ved oxidation af ammoniak ved hjælp af oxygen fra atmosfærisk luft. Herved dannes nitrogen, som absorberes i vand og derved danner salpetersyre. Det samlede reaktionsforløb er:

(12.12) NH3 + 2O2 ® HNO3 + H2O

Reaktionen, der katalyseres af platin eller platin/rhodium katalysatorer, foregår ved en temperatur på 800 - 900°C.

Der sker luftemission, fordi der ikke er økonomi i at absorbere mere end 97 - 98% af den NO, der indblæses i vandet for at danne salpetersyre.

Adipinsyre bruges til fremstilling af alkyl esteren dimethyladipat, som indgår i syntesen af b-hydroxyalkylamid. Adipinsyre fremstilles af cyclohexan i to hovedtrin ved oxidationsprocesser.

Salpetersyre HNO3

AdipinsyreC6H10O4

114

Page 115: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

I første trin oxideres cyclohexan til ketonen cyclohexanon og alkoholen cyclohexanol (12.13). Denne keton -alkohol blanding omdannes herefter til adipinsyre ved oxidation med salpetersyre ved tilstedeværelse af enten en krom eller kobolt og/eller kobber katalysator (12.14).

(12.13) 3 C6H12 + 3O2 ® 3 C6H12O2

3 C6H12O2 ® 2 C6H12O + C6H10 O + H2O + O2

(12.14) 2 C6H12O + C6H10O + 4 HNO3 ® 3 C6H10O4 +N2O +2NO

Adipinsyre er et meget anvendt råstof bl.a. til fremstilling af polyester, nylon-6,6 m.m. Ved processen sker emission af mange forskellige forbindelser, bl.a. CH4, NOx, CO2 /13/ hvorved der opstår en del miljøproblemer.

Methanol fremstilles ved oxidation af methan udvundet af naturgas /8/. Produktionen af methanol medfører en del luftemission, spildevand og affald.

Esteren dimethyladipat fremstilles industrielt ved en reaktion mellem adipinsyre og methanol med en lille mængde svovlsyre som katalysator.

(12.15) C6H10O4 + 2 CH4O ® C8H14O4 + 2 H2O

Der har ikke kunnet fremskaffes oplysninger om luftemission, spildevand og affald fra denne proces.

Ethylen er den organiske forbindelse, der i dag produceres i størst mængde. Det er den vigtigste byggesten i den petrokemiske industri. Ved siden af anvendelser til fremstilling af opløsningsmidler, overfladeaktive midler, belægninger, blødgøringsmidler og antifrostvæsker, anvendes ethylen hovedsageligt til fremstilling af polymerer såsom plastic, kunstharpiks, fibre og elastomerer.

I dag fremstilles ethylen næsten udelukkende ved pyrolyse af kulbrinter, der udvindes af naturgas og/eller mineralolie. Ethylen kan også produceres ved dehydrering af ethanol.

Der er en del miljøproblemer forbundet med produktion af ethylen på grund af de store produktionsmængder og fordi der ved produktionen sker luftemissioner (bl.a. CO2, HC, NOx) og opstår spildevand og affald /8/.

Ethylenoxid bruges til fremstilling af dimethanolamin, som indgår i syntesen af b-hydroxyalkylamid.

Ethylenoxid fremstilles industrielt ved en direkte oxidationsproces. Reaktionen er en katalytisk oxidation af ethylen med ilt ved brug af en sølvbaseret katalysator.

(12.16) 7 C2H4 + 6 O2 ® 6 C2H4O + 2 CO2 + 2 H2O

Ved reaktionen danner den rene proces kuldioxid og vand som biprodukter.

Ethanolaminerne er de vigtigste aminoalkoholer. De fremstilles industrielt ved en reaktion med ethylenoxid og ammoniak. Di- og triethanolaminer produceres på samme måde ved gentagelse af reaktionen /14/, /15/.

Methanol CH3OH

Dimethyladipat C8H14O4

Ethylen C2H4

Ethylenoxid C2H4O

Diethanolamin C4H11NO2

115

Page 116: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

(12.17) NH3 + C2H4O ® C2H7NO

(7.17)C2H7NO + C2H4O® C4H11NO2

Der har ikke kunnet fremskaffes oplysninger om luftemission, spildevand og affald fra denne proces.

Fremstilling af hærderen b-hydroxyalkylamid foregår ved en reaktion af dimethyladipat og en blanding af diethanolamin og natriumhydroxid (katalysator). Det blev i 1992 opdaget, at b-hydroxyalkylamid kan fungere som hærder og samme år blev reaktionsprocessen udviklet /20/, /22/. Processen er:

(12.18) C8H14O4 + 2 C4H11NO2 ® C14H30N2O6 + 2 CH3OH

12.2.2Miljøpåvirkninger ved fremstilling af b-HydroxyalkylamidDet har ikke været muligt at opgøre alle emissioner, idet datakvaliteten og omfang af data er varierende. For nogle stoffer har det ikke været muligt at finde oplysninger om emissioner og energiforbrug overhovedet.

I tabel 12.6 er givet en kvalitativ oversigt over råvareforbrug, energiforbrug og emissioner.

Tabel 12.6 Kvalitative miljøbelastninger /8/, /14/, /15/, /19/

Procestrin Råvareforbrug Energi-forbrug

Luftemissioner Spildevand Affald

BenzenC6H6

mineralolie, naturgas, vand

+++ støv, CO, SO2, CO2, HC, NOx, H2S, HCl

støv, COD, BOD, DOC, syrer, chlorid, NH3, olie, metaller

+

Cyclohexan C6H12

- + ingen data ingen data ingen data

Hydrogen H2

naturgas, vand ++ støv, CO2, CO, HC, NOx, HCl

olie, støv, DOC, syrer, metaller, HC

+

Ammoniak NH3

vand, luft ++ CO, SO2, VOC, NH3, CO2

ingen data ingen data

SalpetersyreHNO3

luft + NOx ingen data ingen data

AdipinsyreC6H10O4

luft ingen data

CO, CO2, NOx, CH4, N2O

ingen data ingen data

Methanol CH3OH

naturgas, vand +++ støv, CO, CO2, SO2, CO2, HC, NOx, HCl

støv, BOD, DOC, syrer, olie, metaller, HC

+++

b-hydroxyalkylamid C14H30N2O6

Kvalitative miljøpåvirkninger

116

Page 117: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Dimethyl-adipat C8H14O4

ingen data ingen data

ingen data ingen data ingen data

Ethylene C2H4

naturgas, mineral olie, vand

+++ CO2 olie, støv +

Ethylenoxid C2H4O

ingen data ingen data

CO2 ingen data ingen data

Diethanol-amin C4H11NO2

ingen data ingen data

ingen data ingen data ingen data

b-Hydroxy-alkylamid C14H30N2O6

ingen data ingen data

ingen data ingen data ingen data

Sundhedseffekter I nedenstående tabel 12.7 er vist faremærkning af de stoffer som indgår i fremstillingen af b-hydroxyalkylamid samt om der ved fremstilling anvendes farlige processer.

Datakvaliteten er varierende, da stofferne enten ikke er udforsket eller sparsomt publiceret. Der er ikke medtaget stoffer, hvor ingen data foreligger.

Tabel 12.7 Sundhedseffekter og farlige reaktioner /14/, /15/, /18/

Stof Farlige reaktioner Sundhedseffekter Symbol

b-Hydroxy-alkylamid C14H30N2O6

ingen ingen (lav systemisk toksicitet)

ingen krav om mærkning

Dimethyladipat C8H14O4

ingen data farlig ved indånding, indtagelse eller hudkontakt, kan medføre irritation

ingen data

Methanol CH3OH

eksplosive reaktioner med baser og stærke iltningsmidler

giftig ved indånding, indtagelse og optagelse gennem huden, skader på synet, hovedpine, neurotoksisk

F; R11 T; R23/25

Adipinsyre C6H10O4

reaktion med baser øjenirritation Xi; R36

Salpetersyre HNO3

exoterm reaktion med baser, organiske forbindelser etc.

øjen - og lungeirritation, stærkt ætsende

O; R8 C; R35

Ammoniak NH3

farlige reaktioner med chlor, hydrogenchlorid,

irriterer øjne og hud, lungeskade, giftig

R10 T; R23

117

Page 118: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Stof Farlige reaktioner Sundhedseffekter Symbol

kuldioxid etc.

CyclohexanC6H12

eksplosive reaktioner (dampe)

irriterer øjne og hud, narkotisk virkning, lever - og nyreskader

F; R11

Hydrogen H2

kan danne eksplosive blandinger med mange luftarter, bl.a. oxygen (knaldgas)

narkotisk virkning ved længere tids påvirkning, erstatter oxygen

Fx; R12

Benzen C6H6

eksplosive reaktioner med stærke iltningsmidler

giftig ved indånding, indtagelse og optagelse gennem huden, neurotoksisk, carcinogen ved længere tids påvirkning, hudreaktioner

Carc1; R45 F; R11 T; R48/23/24/25

Diethanolamin C4H11NO2

ingen data øjen - og hudirritation

Xi; R36/38

Ethylenoxid C2H4O

eksplosiv sammen med baser, syrer og aminer

mutagen, carcinogen, giftig, øjen -, hud - og lungeirritation, narkotisk virkning

Carc2; R45 Mut2; R46 Fx; R12; T; R23 Xi;R36/37/38

Ethylen C2H4

eksplosive reaktioner med chlor

narkotisk virkning Fx; R12

I det følgende er foretaget en opsummering af alle fundne kvantitative data for miljøbelastninger omregnet til 1 ton b-hydroxyalkylamid .

Hovedkilden til LCA data er BUWAL /8/. Data i denne rapport omfatter en række stoffer hvor alle data er "terminerede" , dvs. de omfatter alle miljøbelastninger fra fremstillingen af stoffet og alle de tilhørende råvarer m.m.

Den eneste undtagelse er, at rapporten ikke opgør ressourceforbruget til energi, dvs. mængden af olie, naturgas, kul og uran anvendt til at fremstille energien der anvendes i produktionsprocesserne. Denne undtagelse er blevet bekræftet af firmaet Ökoscience AG i Zürich der har været konsulent ved udarbejdelsen af BUWAL /8/.

Derfor er ressourceforbruget til energi beregnet ud fra oplysningerne om energiforbrug i BUWAL/8/ kombineret med nøgletallene i UMIPTOOL for ressourceforbrug ved forskellige brændselstyper.

Kvantitative miljøbelastninger

118

Page 119: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Emissioner fra energiforbrug er generelt inkluderet i BUWALs tal, men for urea og ammoniak, der ikke findes i BUWAl, er emissioner fra elektricitetsforbrug beregnet ved hjælp af emissionsfaktorer fra BUWAL kombineret med oplysninger om elforbrug fra USEPA /19/.

De kemiske reaktioner for fremstilling af b-hydroxyalkylamid som er beskrevet i afsnit 12.2.1 viser at der rent støkiometrisk dannes en række biprodukter der enten kan ende som emissioner eller som råmaterialer i andre produktioner. Generelt er biprodukter ikke medregnet som emissioner i de følgende tabeller medmindre dette bekræftes af andre kilder.

Der er ikke fundet nogen data om luftemissioner, emissioner til vand og affald fra produktion af: ethylenoxid, cyclohexan, adipinsyre, salpetersyre, diethanolamin og dimethyladipat. De reelle emissioner vil derfor sandsynligvis være større end angivet i de følgende tabeller.

Energiforbrug Energiforbruget til fremstilling af b-hydroxyalkylamid er beregnet i bilag 3.2. Der er fundet oplysninger om energiforbrug til nogle af delkomponenterne i litteraturen, men det har ikke været muligt at finde data om alle energiforbrugende processer.

Tabel 12.8 Energiforbrug /8/,/14/

Produktionstrin Forbrug pr. ton b-hydroxyalkylamid

Ammoniakbenzenethylencyclohexanhydrogen (cyclohexan)methanolsalpetersyreadipinsyredimethyl adipatethylen oxiddiethanolaminb-hydroxyalkylamid

12 GJ 11 18 GJ 28 GJingen data 5,9 12

15 GJ ingen dataingen dataingen dataingen dataingen data1,3 GJ 13

I alt 80,4 GJ

Ressourceforbrug Ressourceforbruget ved fremstilling af b-hydroxyalkylamid er angivet i bilag 3.3. Der er fundet oplysninger om ressourceforbrug ved nogle af delkomponenterne i litteraturen, men det har ikke været muligt at finde data om alle processer. Tabel 12.9 indeholder også ressourceforbrug ved energiproduktion til de forskellige processer, i det omfang dette energiforbrug er kendt (se tabel 12.8).

11 omfatter også energiforbrug ved fremstilling af råmaterialerne naturgas og brint12 omfattet kun energiforbruget til fremstilling af brint til cyclohexan13 omfatter kun energiforbruget til fremstilling af b-hydroxyalkylamid ud fra dimethyladipat og diethanolamin

119

COWI, 03-01--1,
Page 120: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 12.9 Ressourceforbrug /8/, /14/

Ressource Forbrug pr ton b-hydroxyalkylamid14

naturgasrå olievandaluminiumjernkulbrunkulcalciumcarbonatelernatriumchloridbiomasseuran

4.379 kg 2.390 kg 1.951 kg 0,8 kg 0,1 kg 3.924 kg 108 kg 0,2 kg 0,05kg 1,2 kg 6,9 kg 0,01kg

Emissioner og affald Emissioner til luft, vand og affald fra fremstilling af b-hydroxyalkylamid er beregnet i bilagene 3.4 -3.6. Der er ikke fundet oplysninger om emissioner fra alle processer.

Tabellerne indeholder også emissioner til luft, vand og affald for energiproduktion til de forskellige processer, i det omfang dette energiforbrug er kendt (se tabel 12.8).

14 Mængderne omfatter ikke ressourceforbruget ved fremstilling af ethylenoxid, cyclohexan, adipinsyre, salpetersyre, dimethyladipat og diethanolamin samt ressourceforbruget til energi ved fremstillingen af disse stoffer

120

Page 121: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Tabel 12.10 Emissioner /8/,/19/

Parameter Emission kg pr. ton b-hydroxyalkylamid15

Emissioner til luft:

StøvCOSO2

TOCNH3

CO2

HCNox

H2SHClCH4

N2O

1,5 18 11 5,1 0,4 2.589 57 22 0,006 0,01 0,06 132,0

Emissioner til Vand:

SS (suspendert stof)DS (opløste salte)CODBODDOCSyrerCl-

NH3

OlieMetallerKulbrinter

0,2 6,9 0,1 0,03 0,03 0,07 0,04 0,005 0,2 0,09 0,2

Fast affald:

Uspec. Volumenaffald 611

15 Mængderne omfatter ikke emissioner og affald dannet ved fremstilling af ethylenoxid, cyclohexan, adipinsyre, salpetersyre, dimethyladipat og diethanolamin samt ressourceforbruget til energi ved fremstillingen af disse stoffer

121

Page 122: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

12.3Miljøvurdering

Ved eventuel udskiftning af TGIC-hærderen med b-hydroxyalkylamid i pulvermaling kan der ske ændringer af miljøbelastningerne i alle livscyklusfaser fordi sammensætningen af malingen ændres.

For at kunne sammenligne forskellene er det vigtigt at definere den funktionelle enhed.

Funktonel enhed Som udgangspunkt vælges en "funktionel enhed" på 1 tons pulvermaling, idet der ikke foreligger undersøgelser der talmæssigt dokumenterer forskelle i levetid for maling baseret på de 2 typer hærdere. Ud fra accelererede test, hvor malingerne afprøves under ekstreme betingelser, er der dog noget der tyder på en mindre holdbarhed af maling baseret på b-hydroxyalkylamid.

Ifølge oplysninger fra TEKNOS SCHOU A/S vil forbruget af b-hydroxyalkylamid være ca. 0,77 x forbruget af TGIC når alle andre parametre er uændrede. Alle andre parametre vil i praksis være uændrede ved hovedparten af malingerne (ca. 80% af recepterne).

Den eneste ændring der regnes med i det følgende er således at der til 1 tons pulvermaling skal bruges 0,77 x 37 = 29 kg b-hydroxyalkylamid i stedet for 37 kg TGIC.

Manglende oplysninger Ved sammenligningen af miljøbelastningerne i det følgende skal der iøvrigt tages forbehold for at der for begge typer hærdere mangler oplysninger om ressourceforbrug og emissioner for en del procestrin som beskrevet i de foregående afsnit.

12.3.1RessourceforbrugUdskiftning af TGIC med b-hydroxyalkylamid medfører en ændring

i ressourceforbruget som det fremgår af tabel 12.4 og tabel 12.9. I nedenstående figur 12.5 er det normaliserede og vægtede ressourceforbrug sammenstillet for de 2 typer af hærdere.

Det der sammenlignes i figuren er ressourceforbruget til fremstilling af den mængde hærder der indgår i 1 tons pulvermaling, dvs. henholdsvis 37 kg TGIC og 29 kg b-hydroxyalkylamid. Enheden er derfor ressourcforbrug pr. tons pulvermaling.

122

Page 123: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

0

1

2

3

4

5

6

7

Nat

urga

s

Råo

lie

Vand

Alum

iniu

m

Jern Ku

l

Brun

kul

mPR

pr t

ons

pulv

erm

alin

g

TGIC

Betahydroxyalkylkamid

Fig. 12.5 Sammenligning af ressourceforbrug ved fremstilling af 2 hædere

Som det fremgår af figuren er ressourceforbruget gennemgående større ved b-hydroxyalkylamid, hvilket bl.a. skyldes at der anvendes naturgas og mineralolie både som råmateriale og til energifremstilling.

For TGIC er der også et forbrug af naturgas og råolie, men primært til fremstilling af energi. Herudover er de væsentligste råmaterialer til fremstilling af TGIC, NaCl og CaCO3 som findes i rigelige mængder.

Betydningen af det forøgede ressourceforbrug ved at skifte fra TGIC til b-hydroxyalkylamid skal dog vurderes i forhold til størrelsen af ressourceforbruget fra andre råvarer og de øvrige livscyklusfaser.

Fig. 12.6 viser det samlede ressourceforbrug i henholdsvis råvare-, fremstillings- og brugsfasen for pulvermaling. For råvarefasen er der ingen direkte oplysninger om det samlede ressourceforbrug, og i figuren er det derfor skønnet ud fra energiforbruget fundet i screeningen (kapitel 10).

123

Page 124: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

0

5

10

15

20

25

30

Alum

iniu

m

Jern

Nat

urga

s

Råo

lie

Sten

kul

mPR

pr.

tons

pul

verm

alin

g

Råvare

Brug

Egen produktion

Fig. 12.6 Ressourceforbrug for pulvermaling over livscyklus

Sammenlignes fig. 12.5 og 12.6 ses det at forøgelsen af ressourceforbruget ved at skifte fra TGIC til b-hydroxyalkylamid er lille også i forhold til det samlede ressourceforbrug over pulvermalingens livsforløb.

12.3.2Ydre miljøI nedenstående fig. 12.7 er de vægtede miljøeffekter ved fremstilling af hærderne opgjort på grundlag af tallene i tabel 12.5 og 12.10.

0

20

40

60

80

100

120

140

160

180

200

Driv

huse

ffekt

Fors

urin

g

rings

saltb

ela

stni

ng

Hum

anto

ksic

itet

Foto

kem

isk

ozon

dann

else

Volu

men

affa

ld

mPE

M p

r. to

ns p

ulve

rmal

ing

TGIC

Betahydroxyalkylamid

Fig. 12.7 Vægtede miljøeffekter

Figur 12.7 viser at b-hydroxyalkylamid medfører en væsentlig større drivhuseffekt pr. tons pulvermaling end TGIC.

En nærmere vurdering viser at dette skyldes udledningen af ca. 132 kg N2O pr. tons b-hydroxyalkylamid under fremstillingen af Adipinsyre (se afsnit 12.2.1).

I nedenstående fig. 12.8 er de potentielle miljøeffekter vist når man forsøgsvist udelader N2O-emissionen. Miljøeffekterne er nu mere ens selvom der stadig er forskelle (bemærk den ændrede skala i forhold til fig. 12.7).

124

Page 125: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

0

2

4

6

8

10

12

14

16

18

20

Driv

huse

ffekt

Fors

urin

g

rings

saltb

ela

stni

ng

Hum

anto

ksic

itet

Foto

kem

isk

ozon

dann

else

Volu

men

affa

ld

mPE

M p

r. to

ns p

ulve

rmal

ing

TGIC

Betahydroxyalkylamid

Fig. 12.8 Vægtede miljøeffekter escl. emission af N2O ved betahydroxyalkylamid

Umiddelbart vil den større drivhuseffekt ved at anvende b-hydroxyalkylamid dog skulle sættes i forhold til drivhuseffekten som forårsages af andre råvarer og livscyklusfaser som vist i nedenstående fig. 12.9.

0

1000

2000

3000

4000

5000

6000

Driv

huse

ffekt

Fors

urin

g

Foto

kem

.O

zon-

2

rings

salt

bela

stni

ng

Hum

an to

x

Volu

men

affa

ld

Farli

gt a

ffald

Aske

/sla

gge

mPE

M p

r. to

ns p

ulve

rmal

ing

Råvare

Bortskaffelse

Brug

Egen produktion

Fig. 12.9 Ydre miljøbelastninger for pulvermaling over livscyklus ved brug af TGIC som hærder

I fig. 12.9 er der for råvarefasen kun medtaget miljøbelastninger fra henholdsvis TiO2(sulfatmetoden) ogTGIC, idet miljøbelastningerne fra øvrige råvarer ikke kendes.

Fig. 12.9 viser, at bidraget til drivhuseffekten fra disse 2 stoffer i råvarefasen er lille sammenlignet med bidraget fra brugsfasen (energiforbrug) og at drivhuseffekten totalt er en mindre miljøbelastning end f.eks. farligt affald set over pulvermalings livscyklus.

125

Page 126: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

I nedenstående fig 12.10 er TGIC erstattet af b-hydroxyalkylamid som hærder

0

1000

2000

3000

4000

5000

6000

Driv

huse

ffekt

Fors

urin

g

Foto

kem

.O

zon-

2

rings

salt

bela

stni

ng

Hum

an to

x

Volu

men

affa

ld

Farli

gt a

ffald

Aske

/sla

gge

mPE

M p

r. to

ns p

ulve

rmal

ing

Råvare

Bortskaffelse

Brug

Egen produktion

Fig. 12.10 Ydre miljøbelastninger for pulvermaling over livscyklus ved brug af beta-hydroxyalkylamid som hærder

Ved at sammenligne figur 12.9 og fig. 12.10 ses det at den forøgelse af drivhuseffekten på knapt 200 mPEM pr. tons pulvermaling som skift af hærderen til b-hydroxyalkylamid medfører, er af relativt lille betydning for det ydre miljø, totalt set.

Derimod har det væsentlig betydning at udskiftning af TGIC til b-hydroxyalkylamid medfører at mængden af farligt affald pr. tons pulvermaling falder til 0 ved fremstilling og brug af pulvermaling, idet dette affald udelukkende består af uhærdet pulvermaling, der i dag skal klassificeres som farligt affald pga. TGIC-hærderens sundhedsskadelige egenskaber. Denne omklassificering forudsætter dog at alt TGIC fjernes fra pulvermaling og erstattes af b-hydroxyalkylamid.

Mængden af farligt affald fra bortskaffelsen af pulveraffald ændres derimod ikke, idet dette primært er affald fra schredder processen, der er mindre veldefineret i sammensætningen (afsnit 7.1.2).

Som nævnt i afsnit 12.1.1 vil TGIC endvidere iflg. producenten aldrig være 100% ren, idet den vil indeholde små rester af epichlorhydrin (i ppm-området). De præcise mængder kendes ikke, men i afsnit 7 er der ud fra grundstofanalyser beregnet en forventet HCl-emission på 1,5 kg/tons pulvermaling ved schredning og omsmeltning af malede emner.

Det antages at en del af denne emission skyldes rester af epichlorhydrin i TGIC-hærderen.

b-hydroxyalkylamid anvender ikke chlorholdige råmaterialer og vil derfor ikke give HCl emission ved forbrænding af pulvermaling.

126

Page 127: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

12.3.3ArbejdsmiljøVed fremstilling af pulvermaling med TGIC er der fundet en arbejdsmiljøbelastning på grund af TGIC. TGIC er jf. tabel 12.2 mærket med risikosætningen R 43, hvilket betyder at stoffet medregnes til allergifremkaldende stoffer i beregning af arbejdsmiljøeffekterne efter UMIPTOOL.

TGIC vil endvidere skulle T-mærkes som et giftigt stof fra 31 maj 1998.

b-hydroxyalkylamid er ikke mærket som farligt stof jf. tabel 12.7.

Det betyder at den allergifremkaldende arbejdsmiljøeffekt må forventes at forsvinde fuldstændigt ved skift fra TGIC til b-hydroxyalkylamid.

Under brugsfasen af pulvermaling optræder de samme allergieffekter af TGIC som under fremstillingsfasen, jf. afsnit 8.

Der må derfor forventes samme positive effekt af at udskifte TGIC med b-hydroxyalkylamid i brugsfasen som i fremstillingsfasen.

12.3.4Samlet konklusion vedrørende valg af hærderSom det fremgår af ovenstående er der både fordele og ulemper ved at udskifte TGIC med b-hydroxyalkylamid.

Fordelene er:

· Fjernelse af arbejdsmiljøbelastninger (som skyldes at TGIC er et allergifremkaldende og kommende T-mærket stof) i fremstilling og brug af pulvermaling

· Omklassificering af pulveraffald fra farligt affald til almindeligt affald forudsat at alt TGIC erstattes af b-hydroxylakylamid

· reduktion af udledningerne af chlorforbindelser ved bortskaffelse af pulvermaling

Ulemperne er:

· en lille forøgelse af ressourceforbruget (naturgas, olie og kul)

· en lille forøgelse af drivhuseffekten (pga. N2O)

Udover disse "objektive" informationer skal også medregnes mere subjektive hensyn i valget af hærder, som f.eks. at TEKNOS SCHOU A/S generelt ønsker at undgå T-mærkede stoffer i produktionen.

Ud fra dette kan det anbefales at TEKNOS SCHOU A/S udskifter TGIC-hærderen med b-hydroxyalkylamid, men at der samtidig startes en dialog med råvareleverandøren EMS chemie om mulighederne for at reducere N2O-emissionen ved rensning eller lignende.

12.3.5FølsomhedsvurderingOvenstående konklusion er selvfølgelig behæftet med usikkerhed, fordi der mangler data for en del af processerne.

127

Page 128: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

F.eks. mangler der i visse tilfælde oplysninger om hvilke specifikke stoffer der emitteres, idet bl.a. BUWAL angiver nogle emissioner som "uspecificerede partikler" eller "uspecificerede metaller". For disse kan der ikke beregnes bidrag til toxicitet mv..

Der er dog ingen tvivl om, at de viste arbejdsmiljømæssige fordele ved at skifte til b-hydroxyalkylamid er reelle nok, vurderet ud fra mærkningen af dette stof. Tilsvarende vil reduktion af mængden af farligt affald og emission af chlorforbindelser ved forbrænding af pulvermaling være reel forudsat at alt TGIC substitueres.

Farligt affald kan dog kun betegnes som et miljøproblem i det omfang det ikke håndteres korrekt, ellers er det mere et økonomisk problem.

Derimod er ændringer i ressourceforbrug og drivhuseffekt mere usikker fordi der mangler oplysninger fra råvareleverandørerne. Dvs. det er primært ulemperne der ikke kan dokumenteres fuldt ud endnu.

128

Page 129: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

13Teknisk evaluering

13.1Brug af UMIPs PC-værktøj

UMIPs metode skiller sig ikke væsentligt ud fra andre LCA-metoder, bortset fra normaliseringen og vægtningen af miljøbelastningerne (og den iøvrigt fremragende beskrivelse af fremgangsmåder mv.). Netop vurderingsdelen fungerer dog usædvanlig godt og UMIPTOOL er et meget velegnet og hurtigt væktøj til at udføre miljøvurderinger og opsummere data (bogholderi), men det er et specialistværktøj, der kræver både øvelse og miljømæssig indsigt. Af deciderede mangler i demoversionen som var stillet til rådighed for projektet kan nævnes:

- der mangler helt dokumentation på affaldsområdet og det kan overvejes at opstille f.eks. regionale normaliserings- og vægtningsfaktorer for at udbedre denne mangel

- Der er ikke beskrevet konkrete fremgangsmåder for at anvende stedspecifikke faktorer, f.eks. vedrørende lokal eksponering for opløsningsmidler

- i den foreliggende version kan årsagen til en miljøeffekt ikke automatisk spores tilbage til f.eks. en bestemt proces eller et stof. Dette er dog ikke en stor mangel fordi simuleringer med forskellige forudsætninger kan foretages hurtigt med programmet.

Undervejs i projektet er et nyt EDB-værktøj (LCV-system version 2.06-BETA) udviklet i forlængelse af UMIP-projektet. Dette værktøj har dog ikke været afprøvet.

13.2Fremstillingsfasen

Datakvalitet Det er en generel erfaring at data indsamlet til miljøstyringsarbejde ikke altid opfylder kravene til data der skal bruges til livscyklusarbejde. Det har således været nødvendigt at kvalificere data fra miljøgennemgangen på TEKNOS SCHOU A/S yderligere for at sikre pålideligheden af de vurderinger der skal foretages. Det kan også udtrykkes således at en “normal” miljøgennemgang indeholder mange skønnede data og kvalitative vurderinger der ikke er så anvendelige i livscyklusvurderinger, hvor alt skal opgøres præcist og med usikkerhedsvurdering af data.

Detaljering af data Der blev anvendt meget tid på at fordele ydremiljø-belastningerne i produktionen på henholdsvis processer og produkter. Efterfølgende har det så vist sig at disse er forsvindende i forhold til miljøbelastninger i andre livscyklusfaser. Dette understreger betydningen af at nærme sig livscyklusvurderingen ved en overordnet screening, hvor man kun kigger på et overslag over de totale miljøbelastninger inden man går i detaljer med den enkelte fase.

129

Page 130: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Parametre Ved miljøgennemgangen er der taget udgangspunkt i de data der haves eller let kan fremskaffes. Det medfører at livscyklusvurderingen kan give et forkert resultat, fordi der mangler data for nogle parametre. Som eksempel kan nævnes at vurdering af spildevand i miljøgennemgangen tager udgangspunkt i de analyser der nu foreligger, fordi de afspejler de krav eller aftaler der er med myndighederne, men livscyklusvurderingen stiller krav til opgørelse af alle bidrag til de miljøeffekter der er defineret i UMIP, uanset om de betyder noget for recipienten.

Arbejdsmiljø Kvantificering af arbejdsmiljødata har været et stort problem i fremstillingsfasen idet den bygger meget på BST’s personlige erfaringsgrundlag (der ydermere er fortroligt). Det har medført at der ikke kan beskrives en generel reproducerbar metode til disse opgørelser. Det vanskeligste her er nok vurderingen af om en påvirkning af opløsningsmidler er over/under 10% af grænseværdien (se afsnit 5.3.6).

Lokale vægtningsfaktorer I forbindelse med vurderingen af miljøbelastningerne fra fremstillingsfasen blev mulighederne for at anvende lokale vægtningsfaktorer for affald undersøgt. Dette skyldes at reduktion af affaldsmængder generelt er højt prioriteret i Vejle Amt. Det måtte dog konstateres at der ikke var tilstrækkeligt grundlag til at sætte sådanne lokale vægtningsfaktorer endnu. Det må dog anbefales at der arbejdes hen mod dette i fremtiden.

13.3Brugsfasen

Afgrænsning Problemerne med at kortlægge miljøbelastninger fra maleprocesserne hos kunderne ligger primært i afgrænsningen af hvilket udstyr der er relevant at beskrive. Jo mere snæver afgrænsningen gøres, jo mindre anvendeligt bliver resultatet (man kan jo sortere efter hvilke miljøbelastninger man ønsker denne fase skal bidrage med). Der er forholdsvis stor variation i de forskellige typer udstyr.

Lakspild Oplysninger om lakspild er noget tvivlsomme, fordi leverandørerne af udstyr helst ikke vil anføre alt for negative oplysninger (en leverandør nægtede f.eks. at udstyret medførte spild). Det er nemmere at få oplysninger om f.eks. energiforbrug fordi de under alle omstændigheder kan aflæses af brochurer mv. Nogle former for lakspild er også vanskelige at kvantificere, f.eks. det spild der afsættes på udstyr, vægge mm. og derfor ikke opsamles.

Arbejdsmiljø For opgørelse af arbejdsmiljø i brugsfasen gælder de samme kommentarer som for fremstillingsfasen, idet samme metode blev brugt.

13.4Bortskaffelsesfasen

Der foreligger ingen præcis viden om stålkredsløbet i Danmark og endnu mindre viden om hvad der sker med malingen på stålet. Der er således store usikkerheder forbundet med at opgøre miljøbelastninger i denne fase.

En del af malingen slides af og ender diffust i miljøet, men UMIP indeholder ikke en mulighed for at opgøre denne slags “diffuse” miljøbelastninger, som derfor blot blev kategoriseret som "volumenaffald".

Bortskaffelses-scenarie

Diffuse miljøbelastninger

130

Page 131: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

13.5Råvarefasen

Datakilder Der har været store vanskeligheder med at fremskaffe data vedrørende miljøbelastninger fra fremstilling af råvarer til maling, fordi kemikalieproducenterne endnu ikke er villige til eller kan levere oplysninger. Det forventes dog at det med tiden vil blive nemmere. En råvareleverandør oplyste således at man endnu ikke var klar til at levere data fordi det var et meget stort og kompliceret arbejde som man endnu ikke var færdige med. Leverandørerne var ikke indstillet på seriøst at kvalitetskontrollere eller kommentere de data som blev indsamlet i projektet via litteratur og databaser. En leverandør oplyste bl.a. at de normalt ikke har mulighed for at gå så dybt i undersøgelserne. Meget af arbejdet hviler derfor på tidligere udførte LCA'er eller de databaser som kan købes.

Arbejdsmiljø Der findes stort set ingen LCA'er eller databaser der indeholder oplysninger om arbejdsmiljø ved produktion af råvarene. UMIP's metode der baseres på vurderinger af eksponering ved konkrete processer er kun anvendelig hvor man har adgang til processerne. Dette er normalt ikke tilfældet ved produktion af råvarerne som ofte foregår i andre lande. Her er man derfor henvist til en mere kvalitativ vurdering af indgående stoffer (mærkning) og farlige processer, f.eks. som angivet i almindelige lexika.

Litteraturstudier Projektet har vist at det faktisk at muligt at komme temmelig langt i en sammenlignende LCA af 2 råvarer ud fra de oplysninger der kan findes i litteraturen. Dette skyldes at selv ret komlicerede organiske forbindelser i sidste ende er opbygget af mere simple standard-råvarer som er undersøgt tidligere. Informationer om de "øverste" synteseled er endvidere dem der er nemmest at få fra leverandørerne, fordi de som regel har informationer om deres egen produktion eller udgiver grønne regnskaber.

131

Page 132: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

132

Page 133: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

14Proces evaluering

Dette afsnit beskriver:

· TEKNOS SCHOU A/S', COWIs og Vejle Amts individuelle mål med projektet

· samarbejdet og rollefordelingen mellem TEKNOS SCHOU A/S, COWI og Vejle Amt

· en evaluering af den proces, projektet har gennemløbet, samt

· målopfyldelsen for de tre samarbejdspartnere.

Derudover er der også givet nogle anbefalinger til, hvordan det fremtidige samarbejde kan være i LCA-arbejdet.

14.1Organisering af arbejdet

Sammensætningen af styregruppe og arbejdsgruppe kan ses i forordet.

Projektpartnere Rådet vedrørende genanvendelseog mindre forurenende teknologi: Tilskudsgiver

TEKNOS SCHOU A/S: Tilskudsmodtager/virksomhed projektansvarlig)

COWI: Rådgiver

Vejle Amt: Samarbejdspartner og myndig

Styregruppe Styregruppen er øverste ansvarlige organ i forhold til projektet. Styregruppens arbejdsopgaver er:

· at vejlede og rådgive den projektansvarlige og Miljøstyrelsen således, at projektet kan gennemføres i overensstemmelse med forudsætningerne for tilsagnet for bevillingen fra Rådet vedrørende genanvendelse og mindre forurenende teknologi

· at vurdere projektets forløb og resultater

· at koordinere projektet med øvrige relevante projekter.

Arbejdsgruppe Arbejdsgruppens opgaver er følgende:

· daglig ledelse af projektet

· rapportering til styregruppen

133

Page 134: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

· planlægning

· koordinering

· opfølgning

· evaluering

Evaluering

Styregruppe Styregruppen har bidraget med væsentlige faglige input til projektet vedrørende UMIP's metode og værktøj, arbejdsmiljøkortlægning og fastlæggelse af en hensigtsmæssig funktionel enhed. Styregruppen har på denne måde haft et større fagligt engagement end normalt i projekter af denne type. Det har været til stor gavn for projektets gennemførelse.

Arbejdsgruppe Arbejdsgruppen har fungeret som et vigtigt diskussionsforum både med hensyn til den generelle fremgangsmåde og til de specifikke rapporter. Arbejdsgruppens opgave som daglig leder af projektet har været lidt nedtonet. Denne opgave har naturligt ligget hos TEKNOS SCHOU A/S og COWI, da arbejdet har været koncentreret hos virksomhed og rådgiver.

14.2TEKNOS SCHOU A/S', COWIs og Vejle Amts mål med projektet

Udgangspunktet for dette afsnit er projektets overordnede formål. Her understøttes formålet med hver af projektpartnernes individuelle forventninger til projektet.

Generelt Det har været positivt, at projektparterne har haft forskellige indgangsvinkler til projektet. Og det har været godt for samarbejdet, at hver af partnerne inden projektets start har tilkendegivet, hvilket mål de hver især havde med projektet. Det har givet en forståelse af de forskellige synspunkter, der løbende har været i projektet.

TEKNOS SCHOU A/S Målene for TEKNOS SCHOU A/S var:

· at få gennemprøvet og etableret et udviklingsværktøj, som bl.a. skal danne basis for fortsat udvikling af mere miljøvenlige industriprodukter,

· at få mulighed for opstilling af og indsigt i miljø- og sundhedsprofiler for produkter, hvilket vil øge det totale kendskab til produkternes miljø- og sundhedsmæssige forhold. TEKNOS SCHOU A/S kan således imødekomme krav fra kunder og andre interessenter til information om produkternes miljøpåvirkning i hele livsforløbet,

· at få basis for at arbejde mod eventuel miljømærkning af produkterne, hvorved virksomheden bl.a. får mulighed for at være på forkant med nye krav og standarder såvel nationalt som i EU-regi,

· at få kendskab til LCA, som kan være med til at sikre virksomhedens konkurrencedygtighed.

134

Page 135: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Evaluering Udviklingsværktøjet er ikke gennemprøvet hos TEKNOS SCHOU A/S, men hos COWI. Det vil sige "erfaringer" og "know-how" er overvejende etableret hos COWI. Dette skyldes den arbejdsdeling/rollefordeling, der blev lagt ved projektets start, hvor det blev besluttet, at COWI skulle være "pennefører" på projektet. Derudover er det COWI, der har bearbejdet alt talmateriale. Dette har ikke været en forudsætning fra starten men har været en naturlig arbejdsdeling i projektet. UMIP-TOOL, som bliver det værktøj, der skal benyttes fremover, er afprøvet hos virksomheden. En egentlig implementering i virksomheden sker efter projektets afslutning.

TEKNOS SCHOU A/S har fået en større indsigt i de udvalgte produktseriers miljø- og sundhedsmæssige forhold. Der er dermed skabt en basis for at arbejde med miljømærker. Projektet har dog ikke mundet ud i en kortlægning af hele livsforløbet af produktserierne. Dette skyldes de afgrænsninger på råvaresiden, som blev besluttet tidligt i projektet.

COWI Målet for COWI var, at der blev udviklet et salgbart produkt ved:

· at udvikle en metode til LCA, der skaber en naturlig overgang fra f.eks. COWI's metode til miljøgennemgang til LCA af produkterne. Princippet er, at alle forbedringsprojekter, som iværksættes på grund af miljøgennemgangen, livscyklusvurderes for at sikre, at der er tale om reelle forbedringer,

· at finde acceptable forenklinger og afgrænsninger, der gør arbejdet overkommeligt og meningsfyldt også for små virksomheder og herigennem udvide den potentielle kundekreds for COWI,

· at afklare, hvilken rolle COWI kan spille i et samarbejde mellem virksomheder, konsulenter og myndigheder om LCA.

Evaluering Med hensyn til metodeudvikling er projektet stort set gennemført som beskrevet i forprojektet. Dvs. rapporten beskriver den faktiske udvikling fra en miljøgennemgang til en livscyklusvurdering. Det var COWIs forventning, at projektet ville resultere i en slags "husmandsmodel" for LCA, der kunne danne grundlag for en manual til Green Network-virksomheder mv. Denne forventning er endnu ikke opfyldt, idet dette bl.a. kræver erfaringer fra flere brancher.

Projektrapporten er en detaljeret case-story fra en mellemstor virksomhed, der kan bruges som inspiration for andre virksomheder, der overvejer at starte på livscyklusarbejdet. Rapporten indeholder også en række generelle erfaringer om LCA-metode og dataindsamling, som kan være af værdi for andre virksomheder.

Det har ikke været muligt at pege på "simple metoder" og forenklinger af betydning i LCA-arbejdet. LCA er så kvantitativ, at de væsentlige forenklinger i virkeligheden er afgrænsninger, hvor man udelader dele af beskrivelsen. Projektet giver eksempler på afgrænsninger, der kan anvendes ved miljøforbedringer af egne produkter. Dog kan visse afgrænsninger "ophæves" til at gælde generelt for kemikalier med en vis toksicitet.

135

Page 136: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Startfasen af LCA er forholdsvis krævende for den enkelte virksomhed, fordi der både kræves indsamlinger af store mængder data og grundlæggende forståelse af metode og principper, men LCA-arbejdet vil gradvist blive lettere for virksomhederne, fordi man kan trække på tidligere indsamlede datablokke og kan nøjes med at kigge på mindre detaljer.

Det er erfaringen, at LCA-arbejde giver vidensopbygning hos forholdsvis få personer, idet det kræver en langvarig indsats at forstå metoder, dataværktøjer og datahåndtering. I forbindelse med projektet er den største vidensopbygning sket hos 2-3 personer hos COWI og hos TEKNOS SCHOU A/S.

Det vurderes, at rådgiver kan spille en betydelig rolle for virksomheden ved opbygningen af det grundlæggende datamateriale og ved introduktion af metode og EDB-værktøjer til LCA. Når først dette "værktøj" er etableret på virksomheden, vil det være lettere at anvende i det daglige udviklings- og miljøvurderingsarbejde, uden brug af hjælp udefra.

Vejle Amt Vejle Amts mål var:

· at udvikle en metode, der skaber en naturlig overgang fra miljøgennemgang af virksomhedens produktion til LCA af produkterne. Metoden skal også kunne anvendes i små virksomheder,

· at udvikle Amtets rolle i miljøarbejdet, herunder finde myndighedernes rolle i LCA-arbejdet,

· at medvirke til at styrke regionens miljøprofil bl.a ved at skabe et lokalt demonstrationsprojekt, der senere skal bruges offensivt i Green Network,

· at sikre, at miljøet får gavn af LCA-indsatsen efter devisen "mest miljø for pengene",

· at opbygge kompetence inden for LCA-området.

Evaluering Metoden er udviklet. Det kunne dog være ønskeligt, hvis der efterfølgende blev udarbejdet en mere generel metodebeskrivelse (en "manual"), der kan bruges bredt i Green Networks medlemskreds. Projektet kan som ønsket fungere som et lokalt demonstrationsprojekt. Demonstrationsprojektet kan motivere virksomhederne til på sigt at gå skridtet videre til også at arbejde med produkterne. Dette vil klart kunne styrke regionens miljøprofil.

Gennem projektet er det forsøgt at definere myndighedernes deltagelse i LCA-arbejdet/LCA-projekter. For myndighederne er LCA central, fordi LCA sikrer, at miljøforbedringerne bliver reelle og ikke blot fører til en flytning af et miljøproblem til andre steder eller livscyklusfaser.

Myndighedernes deltagelse derudover skal ses i lyset af bl.a.:

at de kan fungere som igangsættere/katalysatorer. En rolle der er kendt fra miljøstyringsarbejdet,

at de kan bidrage med lokale målsætninger. Der vil ofte være nogle specifikke regionale miljøforhold, som der bør tages hensyn til. De regionale miljømål skal dog afvejes i forhold til det globale miljø,

136

Page 137: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

at de vil være diskussionspartnere i forhold til de vægtningsfaktorer, virksomheden benytter som beslutningsgrundlag. Der findes i dag flere forskellige vurderingsværktøjer - og der kommer sikkert flere. Disse vurderingsværktøjer har forskellige vægtninger af samme miljøforhold. Derfor vil det være fornuftigt, hvis myndighederne har en holdning til, om de benyttede vægtningsfaktorer er rimelige set i forhold til det, de konkret anvendes til,

at de er interesserede i prioriteringer og målsætninger,

at de kan formidle dataflow og være verifikatorer af data. Myndighederne kan tænkes, på sigt, at få opbygget en viden om, hvor man kan finde pålidelige data. Desuden besidder myndighederne en viden om f.eks. affalds- og spildevandsdata,

at de ofte besidder viden om kommende tiltag inden for miljølovgivningen, som vil være af interesse for LCA-arbejdet,

at de er netværksopbyggere og dermed kan sikre et generelt løft i LCA-arbejdet. Gennem netværk kan myndighederne også sikre at der sker en erfaringsopsamling til gavn for netværket,

at de er vidensformidlere og kan formidle en produktorienteret miljøstyring.

Desuden er myndighederne naturlige samarbejdspartnere inden for hele miljøområdet.

Som deltagere i LCA-arbejdet skal myndighederne naturligvis også ses som brugere af LCA, både ved vurdering af virksomhedernes miljøtiltag og som offentlige indkøbere.

Helt nye roller kan eventuelt tænkes i en produktorienteret miljøpolitik, f.eks. i forbindelse med rådgivning om produkter eller integrering af LCA-oplysninger i miljøgodkendelser.

Målet med at være miljøets talerør går igen i afsnittet om rollefordeling. Der henvises til evalueringen under dette afsnit.

14.3Roller og ansvarsområder

Dette afsnit beskriver rollerne mellem TEKNOS SCHOU A/S, Vejle Amt og COWI, som de er tænkt ved projektets start. Evalueringen af TEKNOS SCHOU A/S' og COWIs roller er samlet under ét. Vejle Amts evaluering er beskrevet separat.

Samspillet mellem virksomhed, myndighed og rådgiver har været vigtigt for at få et godt projekt. Dette har mest tydeligt vist sig i arbejdsgruppens diskussioner om den generelle fremgangsmåde.

Der blev brugt meget tid på at få klarhed over hele projektet, men den tid er givet godt ud, da projektet er forløbet rimeligt smertefrit, selv da en del ændringer måtte foretages på grund af det øgede kendskab til UMIP's metode.

TEKNOS SCHOU A/S TEKNOS SCHOU A/S' roller og ansvarsområder er:

137

Page 138: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

· tilskudsmodtager

· projekt- og økonomiansvarlig

· levering af:- leverandøroplysninger og -kontakter- produktdata fra fremstillingsprocessen- produktanvendelses- og bortskaffelsesdata- deltage i projektgranskning og QA i forhold til projektets mål- gennemføre projektevalueringer set fra virksomhedens synspunkt- regional formidler af projektet- kontaktled til Green Network.

COWI COWIs roller og ansvarsområder er:

· bidrage til idé- og projektformulering

· detaljering af fremgangsmåder for de enkelte projektfaser

· udarbejde oplæg til tekniske arbejdsnotater, slutrapport og formidlingsmateriale til diskussion i arbejdsgruppen

· omsætte ideer og kommentarer fra arbejdsgruppen og styregruppen til konkrete ændringer, notater, rapportafsnit mv.

· gennemføre projektgranskninger og kvalitetssikring i forhold til projektmål

· gennemføre projektevalueringer set fra rådgivers synspunkt.

Evaluering De roller, som COWI og TEKNOS SCHOU A/S fra projektets start var forudsat at skulle varetage, er i store træk blevet opfyldt. Rollefordelingen må derfor siges at være tilfredsstillende set ud fra de oprindelig forventninger.

Set i bakspejlet kunne en lidt anden rollefordeling måske have været ønskelig for at få en større vidensopbygning hos TEKNOS SCHOU A/S. Det er en kendsgerning, at den største vidensopbygning sker hos den, der skriver rapporterne og bruger EDB-modellen, dvs. i dette tilfælde hos COWI. Denne viden er delvist overført til TEKNOS SCHOU A/S og Vejle Amt ved afholdelse af små kurser og gennem diskussioner af oplæg og rapporter, men det kan aldrig give den helt samme effekt som at være pennefører på rapportskrivningen.

Vejle Amt Vejle Amts roller og ansvarsområder er:

· Generelt er Amtets rolle i de enkelte faser at være en diskussionspartner i forhold til afgrænsninger, forudsætninger og resultater af de forskellige delelementer i projektet. Derudover

· idé til projektet,

· sekretær for styregruppe og arbejdsgruppe,

· kontaktled til Green Network,

· varetage miljøets interesse specielt i prioriteringsfaserne med baggrund i den miljøviden, Amtet besidder,

138

Page 139: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

· kvalitetssikring med hensyn til den generelle anvendelighed af fremgangsmåder og resultater af projektet,

· regional formidler af projektet,

· formidler af projektet mellem miljømyndighederne.

Evaluering Med hensyn til rollen som diskussionspartner i forhold til afgrænsninger, forudsætninger og resultater af de forskellige delelementer i projektet har samarbejdet fungeret godt. Amtet har deltaget på lige fod med de øvrige samarbejdspartnere. Diskussionerne har været frugtbare og udviklende for projektet. Specielt har Amtets aktive rolle ligget i den første del af projektet, hvor arbejdet har koncentreret sig om fremstilling, brug og bortskaffelse. Diskussionerne i forhold til råvarefasen har primært foregået mellem TEKNOS SCHOU A/S og COWI.

Rollen som sekretær for arbejdsgruppe og styregruppe har været god, da Amtet dermed har fået en mere direkte rolle i projektet, bl.a. i form af opfølgning fra styregruppemøderne.

Den rolle, Amtet har set som deres primære, har været at sikre den generelle anvendelighed af fremgangsmåder og resultater af projektet, som er forudsætningen for, at projektet kan udbredes til store dele af Green Networks medlemskreds. Amtet har gennem hele forløbet gjort deres yderste for at udfylde denne rolle. Man kan se nu, at der mangler nogle flere erfaringer, inden der kan laves en egentlig manual for LCA. Det forhindrer dog ikke, at Amtet allerede nu kan anvende projektets resultater.

Rollen som miljøets talerør har specielt i prioriteringsfasen været vanskelig. Dels er myndighedernes interesse varetaget i UMIP's vurderingsværktøj, hvori Miljøstyrelsens miljømålsætninger er integreret. Dels har Amtet ikke været klædt godt nok på til at bidrage med lokale/regionale målsætninger for miljøet.

Priorieterings- og handlingsplansarbejdet var fra starten udpeget som et område i projektet, hvor Amtet som myndighed ville have en stor interesse. Dette arbejde har imidlertid fået en lavere prioritet end ønsket og er primært foregået i et samarbejde mellem TEKNOS SCHOU A/S og COWI. Beslutningskompetencen vil altid ligge hos virksomheden, dog vil en diskussion mellem virksomhed og myndighed af mulige handlinger give et godt beslutningsgrundlag.

En erfaring er, at jo mere handlingsorienteret livscyklusarbejdet er, desto større er myndighedens interesse.

Efter projektets afslutning ser Amtet formidlingen som en vigtig opgave, både inden for Green Network-samarbejdet, amterne og andre interessenter i øvrigt. Denne formidlerrolle er naturligvis kun mulig, fordi Amtet har fulgt projektet så tæt, som det er sket.

139

Page 140: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

140

Page 141: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

15Referencer

/1/ Bent Scmidt Rasmussen, Det Danske Stålvalseværk: Personlig oplysning. Frederiksværk, december 1996.

/2/ Vibeke Folmers, Vejle Amt: Personlig oplysning. Vejle, december 1996.

/3/ Kirsten Pieter Jørgensen, Carl Bro as: Affald fra bilfragmenteringsanlæg, 1. del: Fase 1-3. For Miljøstyrelsen, Udkast af 2. juni 1993, upubliceret.

/4/ Niels Frees og Morten Als Pedersen, IPU/DTU: Enhedsprocesdatabase. IPU/DTU, Miljøstyrelsen og Dansk Industri, København, december 1996.

/5/ Peter Blinksbjerg, DK-Teknik: Personlig oplysning. Søborg, december 1996.

/6/ Jesper Kjølholt, Helle Vang Andersen, Christian Poll, Claus Dahl Thomsen og Niels Erik V. Freiesleben, COWIconsult: Miljøbelastning fra affaldsforbrændingsanlæg. Miljøprojekt nr. 269, 1994, Miljøstyrelsen, København.

/7/ Erik Hansen og Thomas Faarbæk, COWIconsult: Restprodukter - Karakteristika, mængder og bortskaffelse. August 1994, for Miljøstyrelsen. Upubliceret.

/8/ BUWAL: Schriftenreihe Umwelt Nr. 232: Vergleichende ökologische Bewertung von Anstrichstoffen im Baubereich, Bern, 1995

/9/ H. Kindler & A. Nickels: Energieaufwand zur Herstellung von Werkstoffen. Kunststoffe 70, Nr. 12, 1980 , Seite 806-807.

/10/ IWAM LCA database version 1.01, 1996. The environmental Re-search LCA-database on building materials from the University of Amsterdam.

/11/ ECOBILAN COMPANY: "The Life Cycle Analysis of eleven in-doors decorative paints" European Ecolabel ,Project for application to Paints and Varnishes Volume 5. Paris, December 1993

/12/ UMIP's enhedsprocesdatabase, Instituttet for Produktudvikling, DTU 1997

/13/ MUP/LCA: Livscyklusmodel til vurdering af nye materialer: Metoder, vurderingsgrundlag og fremgangsmåde. Det materialeteknologiske udviklingsprogram.

/14/ Ullmann's Encyclopaedia of Industrial Chemistry. Fifth Completely Revised Edition, Weinheim, 1985.

141

Page 142: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

/15/ Kirk-Othmer: Encyclopaedia of Chemical Technology. Fourth Edi-tion, New York, 1983

/16/ George T. Austin: Shreve's Chemical Process Industries. Fifth Edi-tion. McGraw-Hill International Editions, 1984

/17/ Tioxide Group Limited: Environmental Performance Report. 1995

/18/ Römpp, Lexikon der Chemie, Stuttgart, 1990

/19/ Compilation of Air Pollutant Emission Factors, U.S. Environmental Protection Agency, 1996

/20/ United States Patent #5101073, Philadelphia, 1992

/21/ Manufacture report b-Hydroxyalkylamide, FATIPEC Congress, Brus-sels, 1996

/22/ KRONOS TITAN A/S, Årsrapport 1996: helse, miljø, sikkerhet

/23/ Orientering fra Miljøstyrelsen nr. 5, 1996: Brancheorientering for Lak- og Farveindustrien

142

Page 143: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 1: Resumé af UMIP metodenDer er både i Dansk og internationalt regi arbejdet meget med livscyklusanalyser i de senere år. Det mest grundige danske arbejde er foretaget i UMIP-projektet, hvor der nu foreligger en samlet metodebeskrivelse “Miljøvurdering af produkter” december 1995, udgivet af Instittuttet for Produktudvikling (DTU), Miljø- og Energiministeriet, Miljøstyrelsen og Dansk Industri.

I det følgende er der givet en kort karakteristik af UMIPs metode.

Grundlæggende består metoden af følgende trin:

- Fastlæggelse af formålet med livscyklusvurderingen- valg af afgrænsninger i vurderingsmetoden- indsamling og bearbejdning af data- vurdering af data- opstilling af forslag til forbedringer

Metoden følger overordnet de principper der er angivet i SETACs “Guidelines for Life-cycle Assessment” men er detaljeret og konkretiseret på en lang række punkter.

Referenceprodukter Metoden tager udgangspunkt i et eller flere referenceprodukter der er udgangspunkt for udvikling af nye og miljømæssigtbedre produkter. Referenceproduktet kan være et aktuelt produkt der indgår i virksomhedens produktsortiment eller et tænkt produkt der består af en kombination af råvarer og processer som kendes i forvejen.

Stykliste For referenceprodukterne opstilles en stykliste over de komponenter produktet er sammensat af. Styklisten indeholder oplysninger om mængde og type af materialer og hjælpestoffer og de produktionsprocesser der indgår ved fremstillingen af komponenten.

Livsforløbmodel Ud fra styklisten opstilles “livsforløbsmodellen” for produktet idet uvæsentlige komponenter og sidestrømme fravælges i modellen (UMIP angiver detaljerede kriterier herfor).

Livsforløbsmodellen er en kvalitativ beskrivelse af hvilke processer der er involveret i hele procestræet for fremstilling af hver komponent.

“Grundkort” For hver enkelt proces udarbejdes et “Grundkort” der sammenfatter grunddata om processen og normaliserede in/outputs af materialer samt arbejdsmiljøbelastninger.

“Bundkort” Disse data bearbejdes herefter så de kan lægges sammen over hele produktets livscyklus. Det indebærer bl.a. at in- og output fra processerne skal omregnes til de afledte stofemissioner (“termineres”) og henføres til en af de 6 følgende kilder, uanset hvilken livscyklusfase der er tale om:

143

Page 144: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

- materialeforbrug- hjælpestofforbrug- proces el- proces termisk energi- proces “overhead”- materialebortskaffelse

Datapræsentation Resultatet bliver således at der stof for stof kan redegøres for det samlede forbrug eller den samlede emission over hele livscyklus og forbrug/emission fordelt på kilder og processer.

De opgjorte forbrug/emissioner klassificeres efter de miljøeffekter de giver anledning til (23 forskellige typer) og omregnes til belastningspotentialer vha. personeqvivalent-begrebet, dvs. en given emission sammenholdes med f.eks. emissionen på verdensplan/antal mennesker i verden.

Vægtning Endelig foretages en vægtning af belastningspotentialerne i forhold til hinanden, dvs. belastningspotentialerne ganges med en vægtningsfaktor hvis størrelse afhænger af hvor alvorlig den pågældende effekt er. For ressourceforbrug er faktoren f.eks. 1/forsyningshorisonten.

Referenceprodukternes miljøprofil er gennem ovenstående 3 trin beskrevet på et niveau der er anvendeligt som sammenligningsgrundlag ved forbedringer af produktet eller sammenligning med konkurrerende produkter.

Miljødiagnose Miljøvurderingen anvendes til at identificere de største potentialer for miljøforbedringer af produktet.

Forslag til detailændringer af produktet eller helt nye produkter miljøvurderes efter samme principper som referenceproduktet.

Klassificering og normalisering

Miljøvurdering af referenceproduktet

Miljøvurdering af koncepter og detaljer

144

Page 145: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

0Bilag 2.1: Massebalance for 1 ton TGICværdierne i bilag 2.1 er baseret på støkiometriske beregninger ud fra reaktionsskemaerne i afsnit 12.1.1

Forbruget af naturgas og mineralolie til produktion af brint og propylen kan ikke beregnes støkiometrisk fordi naturgas og mineralolie ikke har en veldefineret kemisk formel.

Forbruget af disse to råmaterialer er derfor i stedet fundet ud fra litteraturen som vist i bilag 2.2.

145

Page 146: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.1: Massebalance for fremstilling af TGICProcestrin Molvægt Antal mol Vægt(stof) Kg/mol pr.tons TGIC Kg pr. tons TGIC

TGIC 0,297 3367 1000Cyanursyre 0,129 3367 434Epichlorhydrin 0,092 10101 929Allylchlorid 0,076 10101 768Hypochlorsyre 0,052 10101 525Propylen 0,042 10101 424Chlor 0,07 20202 1414Vand 0,018 10101 182kalciumkarbonat 0,08 10101 808Urea 0,06 10101 606Ammoniak 0,017 20202 343Kuldioxid 0,044 10101 444Nitrogen 0,028 10101 283Brint 0,002 30303 61

146

Page 147: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

1Bilag 2.2: Energiforbrug for 1 ton TGICOplysninger om energiforbruget ved fremstilling af propylen, chlor og calciumcarbonate er hentet i BUWAL /8/. Data fra BUWAL omfatter både energiforbrug ved de aktuelle processer og for produktion af råvarerne.

Dette betyder at tallet for energiforbrug ved propylen også omfatter energiforbrug for produktion af den nødvendige mængde af råmaterialerne mineralolie, naturgas og vand.

Tallet for energiforbrug ved Chlor omfatter også energiforbruget til produktion af den nødvendige mængde af råmaterialet natriumchlorid.

Energiforbruget er opdelt i materialeenergi, termisk energi, elektrisk energi og transportenergi ud fra oplysninger i BUWAL /8/. Materiale energi er energiindholdet at stoffet der frigives f.eks. når det brændes.

For urea og ammoniak har det kun været muligt at finde oplysninger om et elforbrug.

Tallet for energiforbrug ved urea omfatter også energiforbruget til fremstilling af den nødvendige mængde af råmaterialerne kvælstof og brint jf. Kirk-Othmer /15/.

Se iøvrigt kollonnen "reference" for kilden til oplysningerne

147

Page 148: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.2: Energiforbrug ved fremstilling af 1 ton TGICProces trin Materiale Termisk Elektrisk Transport Total Reference(stof) GJ pr kg GJ pr kg GJ pr kg Gj pr kg GJ pr kg

TGIC no data no data no data no data no dataCyanursyre no data no data no data no data no dataEpichlorhydrin no data no data no data no data no dataAllylchlorid no data no data no data no data no dataHypochlorsyre no data no data no data no data no dataPropylen 0,0473 0,02089 0,00134 0 0,06953 BuwalChlor 0 0,00516 0,01631 0 0,02147 BuwalCalciumcarbonat 0 0 0,00143 0,0004 0,00183 BuwalUrea no data no data 0,0005 no data 0,0005 Kirk-OthmerAmmoniak 0,048 no data 0,02 no data 0,068 Kirk-Othmer

Proces trin Vægt i Materiale Termisk Elektrisk Transport Total(stof) kg pr ton GJ pr ton GJ pr ton GJ pr ton GJ pr ton GJ pr ton

TGIC TGIC TGIC TGIC TGIC TGIC

TGIC 1000 no data no data no data no data no dataCyanursyre 434 no data no data no data no data no dataEpichlorhydrin 929 no data no data no data no data no dataAllylchlorid 768 no data no data no data no data no dataHypochlorsyre 525 no data no data no data no data no dataPropylen 424 20,06 8,86 0,57 0,00 29,49Chlor 1414 0,00 7,30 23,06 0,00 30,36Calciumcarbonat 808 0,00 0,00 1,16 0,32 1,48Urea 606 no data no data 0,30 no data 0,30Ammoniak 343 16,46 no data 6,86 no data 23,32

Energiforbrug Ialt 36,52 16,16 31,95 0,32 84,95

148

Page 149: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

2Bilag 2.3: Ressourceforbrug for 1 ton TGICData for ressourceforbruget har forskellig oprindelse som det fremgår af kollonnen "referencer".

Ressourceforbruget for energi er opdelt i temisk og elektrisk energi jf. bilag 2.2. Der er set bort fra ressourceforbruget til transport fordi det er så lille.

Ressourceforbruget for elektrisk og termisk energi er beregnet ved hjælp af UMIPTOOL.

For at kunne benytte databasen har det været nødvendigt at opdele det termiske energiforbrug på brændsler. Dette er gjort ved at anvende en typisk brændselssammensætning ved produktion af industriel damp i Tyskland.Ifølge BUWAL /8/ er dette:

Kul: 31.1 %Gasolie: 22,4 %Naturgas: 46,5 %

149

Page 150: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.3: Råvareforbrug ved fremstilling af 1 ton TGICParameter Proces trin Forbrug kg pr Forbrug kg Reference

(stof) kg pr kg ton TGIC pr ton TGIC

Propylen 0,34 424 144,16 BUWALBrint 7,77 61 473,97 Kirk-OthmerElektricitet 195,25 UMIP-DTUTermisk energi 1887,56 UMIP-DTU

Naturgas 2700,94

Propylen 0,64 424 271,36 BUWALElektricitet 268,91 UMIP-DTUTermisk energi 1072,42 UMIP-DTU

Råolie 1612,69

Urea 70,00 606 42420 Kirk-OthmerPropylen 1,67 424 708,08 BUWALChlor 0,90 1414 1272,6 BUWALBrint 0,45 61 27,45 Kirk-OthmerElektricitet 149,1 UMIP-DTUTermisk energi 274,73 UMIP-DTU

Vand 44851,96

Elektricitet 0,05 UMIP-DTUTermisk energi 0,41 UMIP-DTU

Aluminium 0,46

Elektricitet 0,02 UMIP-DTUTermisk energi 0,07 UMIP-DTU

Jern 0,09

Elektricitet 967,38 UMIP-DTUTermisk energi 2008,9 UMIP-DTU

Kul 2976,28

Elektricitet 721,54 UMIP-DTUBrunkul 721,54

Hypochlorsyre 808,00 Mass balanceChlor 0,02 1414 28,28 BUWALElektricitet 0,03 UMIP-DTUTermisk energi 0,13 UMIP-DTU

Calciumcarbonate 836,44

Elektricitet 0,01 UMIP-DTUTermisk energi 0,03 UMIP-DTU

Ler 0,04

Chlor 1,21 1414 1710,94 BUWALElektricitet 0,08 UMIP-DTUTermisk energi 0,64 UMIP-DTU

Natriumchlorid 1711,66

Elektricitet 46,07 UMIP-DTUBiomasse 46,07

Elektricitet 0,1 UMIP-DTUUran 0,1

150

Page 151: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

3Bilag 2.4: Luftemissioner for 1 ton TGICData for emissioner stammer mest fra BUWAL /8/, undtagen for urea og ammoniak.

For Urea og ammoniak er oplysninger om procesemissioner fundet i USEPA /19/ som kun indeholder emissionsfaktorer for selve produktionsprocessen, ikke for energiforbruget eller for råmaterialerne.

Emissioner fra energiforbruget ved produktion af urea og ammoniak er beregnet ud fra elektricitetsforbruget opgjort i bilag 2.2 og emissionsfaktorer for elektricitetsforbrug fra BUWAL /8/.

Naturgas anvendes både til produktion af propylen og brint. Emissioner fra propylen i BUWAL indeholder også emissioner fra produktion af den nødvendige mængde naturgas til propylenproduktionen. Derfor er kun emissioner fra naturgasforbruget til brint vist i bilag 2.4.

151

Page 152: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.4: Luftemissioner ved fremstilling af 1 ton TGICParameter Proces Emission kg pr Emission kg Reference

(stof) kg pr kg ton TGIC pr ton TGIC

Propylen 0,000800 424 0,34 BUWALChlor 0,003500 1414 4,95 BUWALNaturgas (brint) 0,000400 473 0,19 BUWALCaCO3 0,002740 836 2,29 BUWALUrea (energi) 0,02 BUWALAmmoniak (energi) 0,38 BUWAL

Støv 8,16

Propylen 0,000400 424 0,17 BUWALChlor 0,000800 1414 1,13 BUWALNaturgas (brint) 0,000200 473 0,09 BUWALCaCO3 0,000170 836 0,14 BUWALAmmoniak (proces) 0,007900 343 2,71 USEPAAmmoniak (energi) 0,67 BUWALUrea (energi) 0,03 BUWAL

CO 4,95

Propylen 0,004000 424 1,70 BUWALChlor 0,012000 1414 16,97 BUWALNaturgas (brint) 0,000600 473 0,28 BUWALCaCO3 0,000460 836 0,38 BUWALAmmoniak (proces) 0,000029 343 0,01 USEPAAmmoniak (energi) 4,77 BUWALUrea (energi) 0,21 BUWAL

SO2 24,32

Ammoniak (proces) 0,004720 343 1,62 USEPAUrea (proces) 0,126000 606 76,36 USEPA

TOC 77,97

Ammoniak (proces) 0,002100 343 0,72 USEPAUrea (proces) 0,011650 606 7,06 USEPA

NH3 7,78

Propylen 1,000000 424 424,00 BUWALChlor 1,210000 1414 1710,94 BUWALNaturgas (brint) 0,208000 473 98,38 BUWALCaCO3 0,092000 836 76,91 BUWALAmmoniak (proces) 1,223400 343 419,63 USEPAUrea (proces) -444,00 Mass balanceAmmoniak (energi) 841,8 BUWALUrea (energi) 36,79 BUWAL

CO2 3164,45

Propylen 0,008000 424 3,39 BUWALChlor 0,006000 1414 8,48 BUWALNaturgas (brint) 0,002500 473 1,18 BUWALCaCO3 0,000470 836 0,39 BUWALAmmoniak (energi) 4,03 BUWALUrea (energi) 0,18 BUWAL

HC 17,66

Propylen 0,006000 424 2,54 BUWALChlor 0,007000 1414 9,90 BUWALNaturgas (brint) 0,002700 473 1,28 BUWALCaCO3 0,000570 836 0,48 BUWALAmmoniak (energi) 2,36 BUWALUrea (energi) 0,1 BUWAL

NOx 16,66

Propylen 0,000010 424 0,004 BUWALH2S 0,004

Naturgas 0,000010 614 0,006 BUWALChlor 0,000180 1414 0,255 BUWAL

HCl 0,26

152

Page 153: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

4Bilag 2.5: Vandforurening for 1 ton TGIC

Data for vandforurening stammer kun fra BUWAL /8/.

Data for propylen omfatter også vandforurening fra produktion af den nødvendige mængde raåmaterialer mineralolie, naturgas og vand.

Naturgas anvendes både til produktion af propylen og brint. Vandforurening fra propylen i BUWAL indeholder også vandforurening fra produktion af den nødvendige mængde naturgas til propylenproduktionen. Derfor er kun vandforurening fra naturgasforbruget til brint vist i bilag 2.5.

Data for chlor omfatter også vandforurening fra produktion af den nødvendige mængde af råmaterialet natriumchlorid.

Vandforurening fra energiforbrug ved produktion af urea og ammoniak er beregnet ud fra elektricitetsforbruget opgjort i bilag 2.2 og emissionsfaktorer for spildevand fra BUWAL /8/.

153

Page 154: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.5: Spildevand ved fremstilling af 1 ton TGICParameter Proces Emission kg pr Emission kg Reference

(stof) kg pr kg ton TGIC pr ton TGIC

Propylen 0,00020 424 0,08 BUWALNaturgas (brint) 0,00008 473 0,04 BUWALChlor 0,00200 1414 2,83 BUWAL

SS (suspenderet stof) 2,95

Propylen 0,00040 424 0,17 BUWALNaturgas (brint) 0,00007 473 0,03 BUWALCaCO3 0,00012 836 0,10 BUWALChlor 0,00005 1414 0,07 BUWALUrea (energi) 0,03 BUWALAmmoniak (energi) 0,6 BUWAL

DS (opløste salte) 1,00

Propylen 0,00020 424 0,08 BUWALChlor 0,00001 1414 0,01 BUWAL

COD 0,10

Propylen 0,00003 424 0,01 BUWALBOD 0,01

Propylen 0,00002 424 0,01 BUWALNaturgas (brint) 0,00004 473 0,02 BUWAL

DOC 0,03

Propylen 0,00004 424 0,02 BUWALNaturgas (brint) 0,00008 473 0,04 BUWALChlor 0,00034 1414 0,48 BUWAL

Syrer 0,54

Propylen 0,00001 424 0,00 BUWALChlor 0,00720 1414 10,18 BUWAL

Sulfat 10,19

Propylen 0,00005 424 0,02 BUWALChlor 0,04200 1414 59,39 BUWAL

Chlorid 59,41

Propylen 0,00001 424 0,00 BUWALNH3 0,00

Propylen 0,00010 424 0,04 BUWALNaturgas (brint) 0,00007 473 0,03 BUWALAmmoniak (energi) 0,01 BUWAL

Olie 0,09

Naturgas 0,00001 614 0,01 BUWALMineralolie 0,00001 271 0,00 BUWALChlor 0,00009 1414 0,13 BUWAL

Metaller 0,14

Naturgas 0,00001 614 0,01 BUWALMineralolie 0,00002 271 0,01 BUWAL

HC 0,01

Page 155: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

5Bilag 2.6: Affaldsproduktion for 1 ton TGIC

Data for affaldsproduktion stammer kun fra BUWAL /8/.

Data for propylen omfatter også affald fra produktion af de nødvendige råmaterialer mineralolie, naturgas og vand.

Naturgas anvendes både til produktion af propylen og brint. affald fra propylen i BUWAL indeholder også affald fra produktion af den nødvendige mængde naturgas til propylenproduktionen. Derfor er kun affald fra naturgasforbruget til brint vist i bilag 2.6.

Data for chlor indeholder også affald fra produktion af den nødvendige mængde af råmaterialet natriumchlorid.

Affald fra energiforbrug til produktion af urea og ammoniak er beregnet ud fra elektricitetsforbruget opgjort i bilag 2.2 og emissionsfaktorer for affald i BUWAL /8/.

Page 156: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 2.6: Fast affald ved fremstilling af 1 ton TGICParameter Proces Emission kg pr Emission kg Reference

(stof) kg pr kg ton TGIC pr ton TGIC

Propylen 0,0090 424 3,82 BUWALChlor 0,0990 1414 139,99 BUWALNaturgas (brint) 0,0048 473 2,26 BUWALCaCO3 0,0074 836 6,16 BUWALUrea (energi) 4,1 BUWALAmmoniak (energi) 93,6 BUWAL

Fast affald 249,92

Page 157: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

6Bilag 3.1: Massebalance for 1 ton b-hydroxyalkylamidværdierne i bilag 3.1 er baseret på støkiometriske beregninger ud fra reaktionsskemaerne i afsnit 12.2.1

Forbruget af naturgas og mineralolie til produktion af benzen, ethylen, brint og methanol kan ikke beregnes støkiometrisk fordi naturgas og mineralolie ikke har en veldefineret kemisk formel.

Forbruget af disse to råmaterialer er derfor i stedet fundet ud fra litteraturen som vist i bilag 3.3.

Page 158: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 3.1: Massebalance for fremstilling af b-HydroxyalkylamideProcestrin Molvægt Antal mol Vægt(stof) Kg/mol pr.tons b-hydroxy- kg pr. tons b-hydroxy-

alkylamide alkylamideb hydroxyalkylamid 0,322 3106 1000Dimethyl adipate 0,174 3106 540Diethanolamine 0,105 6212 652Ammoniak 0,017 10353 176Kvælstof 0,028 5177 145Brint 0,002 24849 50Ethylene oxide 0,044 12424 547Ethylene 0,028 14497 406Ilt 0,032 23812 762Methanol 0,032 6212 199Adipinsyre 0,146 3106 453Salpetersyre 0,063 4141 261Cyclohexane 0,084 3106 261Benzen 0,078 3106 242

Page 159: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

7Bilag 3.2: Energiforbrug for 1 ton b-hydroxyalkylamidOplysninger om energiforbruget ved fremstilling af methanol, ethylen og benzen er hentet i BUWAL /8/. Data fra BUWAL omfatter både energiforbrug ved de aktuelle processer og for produktion af råvarerne.

Dette betyder at tallet for energiforbrug ved propylen også omfatter energiforbrug for produktion af den nødvendige mængde af råmaterialerne mineralolie, naturgas og vand.

Energiforbruget er opdelt i materialeenergi, termisk energi, elektrisk energi og transportenergi ud fra oplysninger i BUWAL /8/. Materiale energi er energiindholdet at stoffet der frigives f.eks. når det brændes.

For ammoniak har det kun været muligt at finde oplysninger om et elforbrug.

Tallet for energiforbrug ved ammoniak omfatter også energiforbruget til fremstilling af den nødvendige mængde af råmaterialerne kvælstof og brint jf. Kirk-Othmer /15/.

Energiforbruget for fremstilling af b-hydroxyalkylamid er oplyst af producenten, EMS-Chemie AG/Switzerland.

Se iøvrigt kollonnen "reference" for kilden til oplysningerne

Page 160: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 3.2: Energiforbrug ved fremstilling af 1 ton b -HydroxyalkylamideProcestrin Materiale Termisk Elektrisk Transport Total Reference(stof) GJ pr kg GJ pr kg GJ pr kg GJ pr kg GJ pr kg

Ammoniak 0,0480 no data 0,0200 no data 0,0680 Kirk-OthmerBenzen 0,0477 0,0247 0,0012 0 0,0740 BUWALEthylen 0,0473 0,0203 0,0019 no data 0,0690 BUWALEthylenoxid ingen data ingen data ingen data ingen data ingen dataCyclohexan ingen data ingen data ingen data ingen data ingen dataBrint ingen data 0,2970 0,0110 no data 0,3080 Kirk-OthmerMethanol 0,0298 0,0462 0,00007 0,00003 0,0770 BUWALAdipinsyre ingen data ingen data ingen data ingen data ingen dataSalpetersyre ingen data ingen data ingen data ingen data ingen dataDimethyladipat ingen data ingen data ingen data ingen data ingen dataDiethanolamin ingen data ingen data ingen data ingen data ingen datab-Hydroxyalkylamid no data 0,0013 no data no data 0,0013 EMS-ChemieProcestrin Vægt i Materiale Termisk Elektrisk Transport Total(stof) kg pr ton GJ pr ton GJ pr ton GJ pr ton GJ pr ton GJ pr ton

b-HA b-HA b-HA b-HA b-HA b-HA

Ammoniak 176 8,45 ingen data 3,52 ingen data 11,97Benzen 242 11,54 5,98 0,29 0 17,91Ethylen 406 19,20 8,24 0,77 ingen data 28,01Ethylenoxid 547 ingen data ingen data ingen data ingen data ingen dataCyclohexan 261 ingen data ingen data ingen data ingen data ingen dataBrint (cyclohexan) 19 ingen data 5,64 0,21 no data 5,85Methanol 199 5,93 9,19 0,01 0,01 15,32Adipinsyre 453 ingen data ingen data ingen data ingen data ingen dataSalpetersyre ingen data ingen data ingen data ingen data ingen data ingen dataDimethyladipat 540 ingen data ingen data ingen data ingen data ingen dataDiethanolamin 652 ingen data ingen data ingen data ingen data ingen datab-Hydroxyalkylamid 1000 ingen data 1,30 ingen data ingen data 1,30Energiforbrug pr ton b -hydroxyalkylamid 45,13 30,36 4,80 0,01 80,37

Page 161: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

8Bilag 3.3: Ressourceforbrug for 1 ton b-hydroxyalkylamidData for ressourceforbruget har forskellig oprindelse som det fremgår af kollonnen "referencer".

Ressourceforbruget for energi er opdelt i temisk og elektrisk energi jf. bilag 3.2. Der er set bort fra ressourceforbruget til transport fordi det er så lille.

Ressourceforbruget for elektrisk og termisk energi er beregnet ved hjælp af UMIPTOOL.

For at kunne benytte databasen har det været nødvendigt at opdele det termiske energiforbrug på brændsler. Dette er gjort ved at anvende en typisk brændselssammensætning ved produktion af industriel damp i Tyskland. Ifølge BUWAL /8/ er dette:

Kul: 31.1 %Gasolie: 22,4 %Naturgas: 46,5 %

Page 162: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 3.3: Ressourceforbrug ved fremstilling af b hydroxyalkylamidParameter Procestrin Forbrug kg pr Forbrug Reference

(stof) kg pr kg ton b Hydroxy- kg pr ton b-Hy-alkylamide droxyalkylamid

Methanol 0,550 199 109,450 BUWALBenzen 0,550 242 133,100 BUWALEthylen 0,420 406 170,520 BUWALBrint 7,770 50 388,500 Kirk-OthmerElektricitet 29,330 UMIP-DTUTermisk energi 3548,440 UMIP-DTU

Naturgas 4379,340

Benzen 0,460 242 111,320 BUWALEthylen 0,550 406 223,300 BUWALElektricitet 40,400 UMIP-DTUTermisk energi 2015,250 UMIP-DTU

Råolie 2390,270

Methanol 0,420 199 83,580 BUWALBenzen 2,210 242 534,820 BUWALEthylen 1,900 406 771,400 BUWALBrint 0,450 50 22,500 Kirk-OthmerElektricitet 22,400 UMIP-DTUTermisk energi 516,300 UMIP-DTU

Vand 1951,000

Elektricitet 0,007 UMIP-DTUTermisk energi 0,780 UMIP-DTU

Aluminium 0,787

Elektricitet 0,002 UMIP-DTUTermisk energi 0,120 UMIP-DTU

Jern 0,122

Elektricitet 145,330 UMIP-DTUTermisk energi 3778,810 UMIP-DTU

Kul 3924,140

Elektricitet 108,400 UMIP-DTUBrunkul 108,400

Elektricitet 0,004 UMIP-DTUTermisk energi 0,240 UMIP-DTU

Calciumcarbonate 0,244

Elektricitet 0,001 UMIP-DTUTermisk energi 0,050 UMIP-DTU

Ler 0,051

Elektricitet 0,010 UMIP-DTUTermisk energi 1,200 UMIP-DTU

Natriumchlorid 1,210

Elektricitet 6,920 UMIP-DTUBiomasse 6,920

Elektricitet 0,010 UMIP-DTUUran 0,010

Page 163: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

9Bilag 3.4: Luftemissioner for 1 ton b-hydroxyalkylamidData for emissioner stammer mest fra BUWAL /8/, undtagen for brint, salpetersyre, adipinsyre, ethylenoxid og ammoniak.

For adipinsyre, salpetersyre og ammoniak er oplysninger om procesemissioner fundet i USEPA /19/ som kun indeholder emissionsfaktorer for selve produktionsprocessen, ikke for energiforbruget eller for råmaterialerne.

Emissioner fra energiforbruget ved produktion af brint til cyclohexan er beregnet ud fra elektricitetsforbruget opgjort i bilag 3.2 og emissionsfaktorer for elektricitetsforbrug fra BUWAL /8/.

Page 164: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag3.3: Luftemissioner ved fremstilling af b -HydroxyalkylamidParameter Procestrin Emission kg pr ton Emission kg pr Reference

(stof) kg pr kg b Hydroxy- ton b-Hydroxy-alkylamid alkylamid

Methanol 0,00169 199 0,336 BUWALEthylen 0,00100 406 0,406 BUWALBenzen 0,00090 242 0,218 BUWALNaturgas (brint) 0,00040 388 0,155 BUWALAmmoniak (energi) 0,196 BUWALBrint (energi) 0,168 BUWALb hydroxyalkylamid (energi) 0,037 BUWAL

Støv 1,516

Methanol 0,00172 199 0,342 BUWALEthylen 0,00060 406 0,244 BUWALBenzen 0,00060 242 0,145 BUWALAdipinsyre 0,03439 453 15,579 BUWALNaturgas (brint) 0,00020 388 0,078 BUWALAmmoniak (proces) 0,00790 176 1,390 USEPAAmmoniak (energi) 0,342 BUWALBrint (energi) 0,223 BUWALb hydroxyalkylamid (energi) 0,050 BUWAL

CO 18,393

Methanol 0,01422 199 2,830 BUWALEthylen 0,00400 406 1,624 BUWALBenzen 0,00300 242 0,726 BUWALNaturgas (brint) 0,00060 388 0,233 BUWALAmmoniak (proces) 0,00003 176 0,005 USEPAAmmoniak (energi) 2,444 BUWALBrint (energi) 2,761 BUWALb hydroxyalkylamid (energi) 0,606 BUWAL

SO2 11,229

Ammoniak (proces) 0,00472 176 0,831 USEPAAdipinsyre 0,00949 453 4,299 USEPA

TOC 5,130

Ammonia (process) 0,00210 176 0,370 USEPANH3 0,390

Methanol 3,25861 199 648,463 BUWALEthylen 0,53000 406 215,180 BUWALEthylenoxid 0,33319 547 182,253 calc.Benzen 0,54000 242 130,680 BUWALAdipinsyre 0,08030 453 36,376 USEPANaturgas (brint) 0,20800 388 80,704 BUWALAmmoniak (proces) 1,22340 176 215,318 USEPAAmmoniak (energi) 434,775 BUWALBrint (energi) 448,226 BUWALb hydroxyalkylamid (energi) 97,339 BUWAL

CO2 2489,315

Methanol 0,03253 199 6,473 BUWALEthylen 0,00700 406 2,842 BUWALBenzen 0,00830 242 2,009 BUWALNaturgas (brint) 0,00250 388 0,970 BUWALAmmoniak (energi) 2,063 BUWALBrint (energi) 34,766 BUWALb hydroxyalkylamid (energi) 7,987 BUWAL

HC 57,110

Methanol 0,00823 199 1,638 BUWALEthylen 0,00600 406 2,436 BUWALBenzen 0,00680 242 1,646 BUWALAdipinsyre 0,00811 453 3,674 USEPASalpetersyre 0,03549 261 9,263 USEPANaturgas (brint) 0,00270 388 1,048 BUWALAmmoniak (energi) 1,212 BUWALBrint (energi) 1,123 BUWAL

Page 165: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Ethylen 0,00001 406 0,004 BUWALBenzen 0,00001 242 0,002 BUWAL

H2S 0,006

Methanol 0,00001 199 0,002 BUWALBenzen 0,00002 242 0,005 BUWALNaturgas (brint) 0,00001 388 0,004 BUWAL

HCl 0,011

Adipinsyre 0,00013 453 0,059 USEPACH4 0,060

Adipinsyre 0,29130 453 131,959 USEPAN2O 131,960

Page 166: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

10Bilag 3.5: Vandforurening for 1 ton b-hydroxyalkylamidData for vandforurening stammer kun fra BUWAL /8/.

Det medfører at de oplyste mængder for f.eks. benzen også omfatter vandforurening fra fremstilling af de nødvendige mængder mineral olie og naturgas til fremstilling af benzen.

Vandforurening fra energiforbrug ved fremstilling af brint (til cyclohexan), b-hydroxyalkylamid og ammoniak er beregnet from energiforbruget givet i bilag 3.2 og emissionsfaktorer for vandforurening fra BUWAL /8/.

Bilag 3.5: Vandforurening fra fremstilling af b -hydroxyalkylamidParameter Procestrin Udledning kg pr ton Udledning kg pr Reference

(stof) kg pr kg b hydroxy- ton b hydroxy-alkylamid alkylamid

Methanol 0,00014 199 0,028 BUWALEthylen 0,00020 406 0,081 BUWALBenzen 0,00012 242 0,029 BUWALNaturgas (brint) 0,00008 388 0,031 BUWAL

Suspenderet stof (SS) 0,169

Methanol 0,00290 199 0,577 BUWALEthylen 0,00050 406 0,203 BUWALBenzen 0,00054 242 0,131 BUWALNaturgas (brint) 0,00007 388 0,027 BUWALAmmoniak (energi) 0,313 BUWALBrint (energi) 4,217 BUWALb hydroxyalkylamid (energi) 1,280 BUWAL

Opløste salte (DS) 6,747

Ethylen 0,00020 406 0,081 BUWALBenzen 0,00020 242 0,048 BUWAL

COD 0,130

Methanol 0,00006 199 0,012 BUWALEthylen 0,00004 406 0,016 BUWALBenzen 0,00002 242 0,005 BUWAL

BOD 0,033

Methanol 0,00002 199 0,004 BUWALEthylen 0,00002 406 0,008 BUWALBenzen 0,00002 242 0,005 BUWALNaturgas (brint) 0,00004 388 0,016 BUWAL

DOC 0,032

Methanol 0,00004 199 0,008 BUWALEthylen 0,00006 406 0,024 BUWALBenzen 0,00004 242 0,010 BUWALNaturgas 0,00008 388 0,031 BUWAL

Syrer 0,073

Ethylen 0,00005 406 0,020 BUWALBenzen 0,00009 242 0,022 BUWAL

Chlorid 0,042

Benzen 0,00001 242 0,002 BUWALNH3 0,002

Methanol 0,00009 199 0,018 BUWALEthylen 0,00020 406 0,081 BUWALBenzen 0,00010 242 0,024 BUWALNaturgas (brint) 0,00007 388 0,027 BUWALBrint (energi) 0,065 BUWALb hydroxyalkylamid (energi) 0,017 BUWAL

Olie 0,232

Page 167: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

11Methanol 0,00001 199 0,002 BUWALBenzen 0,00036 242 0,087 BUWALNaturgas (brint) 0,00001 388 0,004 BUWAL

Metaller 0,093

Methanol 0,00001 199 0,002 BUWALBenzen 0,00080 242 0,194 BUWALNaturgas (brint) 0,00001 388 0,004 BUWAL

Kulbrinter 0,199

Page 168: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

12Bilag 3.6: Affaldsproduktion for 1 ton b-hydroxyalkylamidData for affaldsproduktion stammer kun fra BUWAL /8/.

Data for methanol omfatter også affald fra produktion af de nødvendige råmaterialer mineralolie, naturgas og vand.

Affald fra energiforbrug til produktion af brint til cyclohexan, b-hydroxyalkylamid og ammoniak er beregnet ud fra energiforbruget opgjort i bilag 3.2 og emissionsfaktorer for affald i BUWAL /8/.

Page 169: Indholdsfortegnelse · Web viewScreeningen viste at de vigtigste råvarer i miljømæssig henseende er opløsningsmidlet xylen, hærderen TGIC og det hvide pigment TiO2. Xylen Det

Bilag 3.6: affaldsproduktion ved fremstilling af b hydroxyalkylamidParameter Proces Affald kg pr ton Affald kg pr Reference

(stof) kg pr kg b hydroxy- tons b hy-alkylamid droxyalkylamid

Methanol 0,25550 199 50,845 BUWALEthylen 0,01280 406 5,197 BUWALBenzen 0,00966 242 2,338 BUWALNaturgas (brint) 0,00477 388 1,851 BUWALAmmoniak (energi) 48,009 BUWALBrint (energi) 409,156 BUWALb hydroxyalkylamid (energi) 93,645 BUWAL

Affald total 611,039