independent component analysis applied to biophysical time ... · independent component analysis...

38
Independent component analysis applied to biophysical time series and EEG © Arnaud Delorme CERCO, CNRS, France & SCCN, UCSD, La Jolla, USA

Upload: hathu

Post on 29-Jul-2019

231 views

Category:

Documents


0 download

TRANSCRIPT

Independent component analysis applied to biophysical time series

and EEG

© Arnaud Delorme CERCO, CNRS, France & SCCN, UCSD, La Jolla, USA

Cocktail Party Mixture of Brain source activity

Independent component analysis

A

B

ICAY=[A;B] Linear Combination

-0.33

1.57

1

-2

X=YW

A

B

Y=W-1X~~

ICA is a method to recover a version, of the original sources by multiplying the data by a unmixing matrix

⎥⎥⎥

⎢⎢⎢

−−−−

−− ...

3011

23

1015

45

2120

23

⎥⎥⎥

⎢⎢⎢

310421235

⎥⎥⎥

⎢⎢⎢

∗+∗−∗∗+∗−∗∗+∗−+∗∗−∗+∗−∗+∗−+∗−∗−∗+∗

402515402515...422)2(12412013

)2(23)2(52)2(13053

**

*

Weight matrix W

Data X

ICA activity U

U = WX

DataICA activity

Channel 1

Channel 2

Channel 3

Comp. 1

Comp. 2

Comp. 3

⎥⎥⎥

⎢⎢⎢

−−−−

−− ...

3011

23

1015

45

2120

23

⎥⎥⎥

⎢⎢⎢

310421235

⎥⎥⎥

⎢⎢⎢

∗+∗−∗∗+∗−∗∗+∗−+∗∗−∗+∗−∗+∗−+∗−∗−∗+∗

402515402515...422)2(12412013

)2(23)2(52)2(13053

**

*

Inverse weight matrix W-1

ICA activity U

Data X

X=W-1U

Data

Chan 1

Chan 2

Chan 3

Comp. 1

Comp. 2

Comp. 3

Historical Remarks

• Herault & Jutten ("Space or time adaptive signal processing by neural network models“, Neural Nets for Computing Meeting, Snowbird, Utah, 1986): Seminal paper, neural network

• Bell & Sejnowski (1995): Information Maximization• Amari et al. (1996): Natural Gradient Learning• Cardoso (1996): JADE

• Applications of ICA to biomedical signals– EEG/ERP analysis (Makeig, Bell, Jung & Sejnowski, 1996).

– fMRI analysis (McKeown et al. 1998)

Courtesy of TP Jung

ICA Theory – Cost Functions

Family of BSS algorithms• Information theory (Infomax)• Bayesian probability theory (Maximum likelihood estimation)• Negentropy maximization• Nonlinear PCA • Statistical signal processing (cumulant maximization, JADE)

A unifying Information-theoretic framework for ICA• Pearlmutter & Parra showed that InfoMax, ML estimation are

equivalent.• Lee et al. (1999) showed negentropy has the equivalent

property to InfoMax.• Girolami & Fyfe showed nonlinear PCA can be viewed from

information-theoretic principle. Courtesy of TP Jung

ICA and PCA

Principal component analysis Independent component analysis

Central limit theorem

Brain source A

Brain source B

Scalp channels = linear mixture of A and B

(more gaussian)

binn

ing

time

Scalp channel 1

Scalp channel 2

ICA Training Process

• Remove the mean x = x - <x>

• ‘Sphere’ the data by diagonalizing its covariance matrix, x = <xxT>-1/2(x-<x>).

• Update W according to

Central limit theorem

YXS

Maximization of information transfer I(X,Y)

Non-linearity- Pick up higher moment in input distribution- Perform true redundancy reduction in the output- Perform independent source separation

From Bell & Sejnowski, Neural Computation, 1995

Entropy

Mutual Information

H(Y) is the entropy of the outputH(Y|X) is whatever entropy the output has

that did not come from the input

Entropy

Fake dice (make a 6 half of the time): entropy 2.16 (base 2)

Dice: 1/6

1/6

1 2 3 4 5 6

21 16 log 2.586 6

H ⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1/10

1 2 3 4 5 6

2 21 1 1 15 log log 2.16

10 10 2 2H ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Contingency table for stress and emotionality

33

12

11191

STRE

87

4166342

84

11

1864

3

35129

203

4

1314621

5

81322

6

36Total

105234603

142223EMOT= 1

Total

From http://tecfa.unige.ch/~lemay/thesis/THX-Doctorat/node149.html

60.010.020.0150.010.020.030.0240.010.010.080.070.060.013

0.010.250.240.0420.020.07EMOT= 1

654321STRE

Joint entropy 3.46; exercise: compute mutual information

Contingency frequencies for stress and emotionality

ICA learning rule

Natural gradient (Amari)

Entropyextremum

Kurtosis, Super- and Sub-Gaussian

Kurtosis: a measure of how peaked or flat of a probability distribution is.

- 3

Gaussian Dist. Kurtosis = 0

Super-Gaussian: kurtosis > 0

Sub-Gaussian: kurtosis < 0

Moments, Cumulants

Moments

Central moments

Cumulants meanvarianceskewnesskurtosis

Sphering

ICA

Sub-gaussian Super-gaussian

ICA/EEG Assumptions

• Mixing is linear at electrodes

• Propagation delays are negligible

• Component time courses are independent

• Number of components less than the number of channels.

OK

OK

~

Con

trib

utio

nto

EEG

Number of independent components

ICA limit

Characteristics of Independent Component of the EEG

• Concurrent Activity

• Maximally Temporally Independent

• Overlapping Maps and Spectra

• Dipolar Scalp Maps

• Functionally Independent

• Between-Subject Regularity

Independent component analysisTheoryExamples and localization

ICA reliabilityICA repetitionsDifferent ICA algorithmsData reduction

Outline

Largest 30 Independent Components (single subject)

Onton, Delorme and Makeig, 2005

From Jung et al., Clinical Neurophysiology, 2000

Adapted from Jung et al., Clinical Neurophysiology, 2000

0 0 0 0 0 0 ...0 2 5 1 1 1 ...0 0 0 0 0 0 ......

⎡ ⎤⎢ ⎥− − − −⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

5 3 2 ...1 2 4 ...0 1 3 ......

−⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦

3 5 0 3 1 ( 2) 2 5 ( 2) 3 2 ( 2) ...3 1 0 2 1 4 2 1 ( 2) 2 2 4 ...5 1 5 2 0 4 5 1 5 2 0 4 ...

... ...

∗ + ∗ − ∗ − ∗ + − ∗ + ∗ −⎡ ⎤⎢ ⎥∗ + ∗ − ∗ ∗ + − ∗ + ∗⎢ ⎥⎢ ⎥∗ − ∗ + ∗ ∗ − ∗ + ∗⎢ ⎥⎣ ⎦

**

*

Inverse weight matrix W-1

ICA activity U

Data X

X=W-1U

Data

Chan 1Chan 2Chan 3

Comp. 1Comp. 2Comp. 3

Artifact removal using ICA

Adapted from Delorme et al., submitted

Adapted from Delorme et al., submitted

From Makeig, Delorme, et al., PLOS biology, 2004

From Makeig, Delorme, et al., PLOS biology, 2004

From Makeig, Delorme, et al., PLOS biology, 2004

From Makeig, Delorme, et al., PLOS biology, 2004

Localization

Time (ms)

Ele

ctro

des

Com

pone

nts

-

0

+ICA

Localization

ICA componentscalp maps

From Delorme, et al., submitted

Localization of activity

From Delorme, et al., submitted

Subject MRI MNI model (Loreta)Subject scanned

electrode positionsSubject components

scalp map

Front

EEG

LAB

EE

GLA

B &

FI

LED

TRIP

Normalization of subject MRI to MNI brain

LORETAEEGLAB

SPM2

Head mesh

BRAI

NVI

SAEE

GLA

BEE

GLA

B

Coregistration

* **

⎥⎥⎥

⎢⎢⎢

⎡...

4,33,3

4,23,2

4,13,1

2,31,3

2,21,2

2,11,1

uuuuuu

uuuuuu

⎥⎥⎥

⎢⎢⎢

−−−

−−−

−−−

13,3

12,3

11,3

13,2

12,2

11,2

13,1

12,1

11,1

wwwwwwwww

⎥⎥⎥

⎢⎢⎢

++++++++++++

−−−−−−

−−−−−−

−−−−−−

13,32,3

12,32,2

11,32,1

13,31,3

12,31,2

11,31,1

13,22,3

12,22,2

11,22,1

13,21,3

12,21,2

11,21,1

13,12,3

12,12,2

11,12,1

13,11,3

12,11,2

11,11,1

...wuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwu

* **

Inverse weight matrix W-1

ICA activity U

Data X (EEG/MEG time series)

X=W-1UChan 1Chan 2Chan 3

Comp. 1Comp. 2Comp. 3

⎥⎥⎥

⎢⎢⎢

⎡...

4,33,3

4,23,2

4,13,1

2,31,3

2,21,2

2,11,1

uuuuuu

uuuuuu

⎥⎥⎥

⎢⎢⎢

−−−

−−−

−−−

13,3

12,3

11,3

13,2

12,2

11,2

13,1

12,1

11,1

wwwwwwwww

⎥⎥⎥

⎢⎢⎢

++++++++++++

−−−−−−

−−−−−−

−−−−−−

13,32,3

12,32,2

11,32,1

13,31,3

12,31,2

11,31,1

13,22,3

12,22,2

11,22,1

13,21,3

12,21,2

11,21,1

13,12,3

12,12,2

11,12,1

13,11,3

12,11,2

11,11,1

...wuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwu

Inverse weight matrix W-1

ICA activity U

Data X (EEG/MEG voxel activities)

Time 1Time 2Time 3

Comp. 1Comp. 2Comp. 3

Temporal ICA

X=W-1U

Spatial ICA