inddg: a new model for independent double-gate mosfet

19
indDG: A New Model for Independent Double-Gate MOSFET Santanu Mahapatra Nano-Scale Device Research Lab Indian Institute of Science Bangalore Email: [email protected] Web: http://www.cedt.iisc.ernet.in/nanolab/

Upload: najila

Post on 24-Feb-2016

66 views

Category:

Documents


0 download

DESCRIPTION

indDG: A New Model for Independent Double-Gate MOSFET. Santanu Mahapatra Nano-Scale Device Research Lab Indian Institute of Science Bangalore Email: [email protected] Web: http://www.cedt.iisc.ernet.in/ nanolab /. Common versus Independent double gate Development of indDG Core - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: indDG: A New Model for Independent Double-Gate MOSFET

indDG: A New Model for Independent Double-Gate MOSFET

Santanu Mahapatra

Nano-Scale Device Research LabIndian Institute of Science Bangalore

Email: [email protected]: http://www.cedt.iisc.ernet.in/nanolab/

Page 2: indDG: A New Model for Independent Double-Gate MOSFET

Outline

• Common versus Independent double gate• Development of indDG Core

Single Implicit Equation based IVE Solution Technique for IVE Charge Model

• Extension to Tri-Gate• SPICE Implementation• Future Works

Page 3: indDG: A New Model for Independent Double-Gate MOSFET

Common vs Independent DG MOSFET (1)

Courtesy:Endo et al.IEEE EDL 2009

Page 4: indDG: A New Model for Independent Double-Gate MOSFET

Common vs Independent DG MOSFET (2)

With IDG MOSFET the design space gets extended from 2D to 3D, which leads to novel circuit design possibilities e.g.,

1. High density reduced stack logic, IEEE T-ED 2006

2. Compact sequential circuit, IEEE T-ED 20063. Mixer, IEEE T-ED 20054. SRAM, IEEE EDL 2009

Vg1

Vds

Vg2

Dynamic Threshold Voltage Control: Use one gate to drive, other gate to Vth control

Page 5: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreSingle Implicit Equation Based IVE (1)

A Very Complex Problem

Requires Solution of COUPLED implicit equations which has DISCONTINUITY!!

Previous solution (Taur, and then Gildenblat)

SDG device has symmetric BC, that leads to additional implied BC (electric field =0 at y=0), which results in very simple trigonometric IVE

Page 6: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreSingle Implicit Equation Based IVE (2)

By indigenous handling of BC, we introduced single implicit equation based IVE that is 5x faster than coupled IVE.

Sahoo et al., IEEE T-ED, V 57, N 3, 2010

Page 7: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreSolution technique for IVE (1)

Discontinuity @ G = 0 for both Trig and Hyp IVE

Singularity @ γ = π for Trig IVE

Conventional NR method doesn’t GUARANTEE convergence!!

Page 8: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreSolution technique for IVE (1)

• We use RBM (Root Bracketing Method) instead of NR-based method to achieve guaranteed convergence.

• We did a rigorous study of all RBMs available in the literatures (~20). And finally choose LZ4 technique (D. Le, ACM T-MS 1985) to solve the IVEs.

But RBM requires solution space….

So we need to solve ONE more implicit equation, to find the solution space for Trig/Hyp IVE. We do some smart optimization of solution space to improve overall computational efficiency.

And so we need to solve THREE implicit equations SEQUENCIALLY (one to choose mode, one to find solution space and finally the main IVE) to calculate the surface potential.

Srivatsava et al., IEEE T-ED, V 58, N 6, 2011Abraham et al., IEEE T-ED, April, 2012

Page 9: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreThe Charge Model : Issues with existing Model

THRE

E M

ODE

S O

F O

PERA

TIO

N TT

HH

TH

Why this mismatch?

Line: Model (G. Dessai, IEEE T-ED 2010)Symbol : Numerical

Page 10: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreThe Charge Model: Charge linearization Concept

As the exact solution of the integrals are not available ‘charge linearization’ techniques are introduced over the years to approximate F as quadratic function of surface potentials (or charge densities) so that closed form expressions for terminal charges are obtained.

Page 11: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreThe Charge Model : The NLF Factor

To approximate F as quadratic function of ψ1 or ψ2 (Qi1 or Qi2 ), they should hold linear-relationship along the channel for a given bias condition.

Page 12: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreThe Charge Model: Piecewise Linearization Technique

We segment the channel, so that for each segment ψ1 holds linear relationship with ψ2 so that conventional charge linearization technique could be applied to formulate the Terminal Charges.

Srivatsava et al., Appearing in IEEE T-ED, 2012

Page 13: indDG: A New Model for Independent Double-Gate MOSFET

Development of indDG CoreThe Charge Model: Comparison of linearization

• indDG charge model is based on the relationship of the surface potentials

• It is derivative free and thus numerically robust

Page 14: indDG: A New Model for Independent Double-Gate MOSFET

SDG with small Tox asymmetry (indDG-c)

• There will always be some amount of asymmetry between the gate oxide thicknesses due to process variation and uncertainties

• indDG-c handles the asymmetry as it is based on the relationship between surface potential (which is linear for this case)

• We use an accurate analytical approximation of surface potential by novel perturbation technique

Srivatsava et al., IEEE T-ED, April, 2012

Simple closed form function of Bias and device parameters, derived from the IDG IVEs

Page 15: indDG: A New Model for Independent Double-Gate MOSFET

Including Body Doping

Tox1=Tox2=1nm; Tsi = 20nmTox1=1nm Tox2=1.5nm Tsi = 10nm

Page 16: indDG: A New Model for Independent Double-Gate MOSFET

Tri Gate Extension • Tri Gate MOSFET cannot be model like Bulk or DG as the 3D Poisson Equation

cannot be approximated as 1D Poisson for long channel cases.• Models for Tri Gate are developed on top of the planner DG Models

Page 17: indDG: A New Model for Independent Double-Gate MOSFET

Model ImplementationModel is implemented in Silvaco SmartSpice through Verilog-A interface

S/D Symmetry of Terminal Charge 101 Stage Ring Oscillator

Also successfully simulated 8-bit Ripple carry adder, Jhonson Counter

Page 18: indDG: A New Model for Independent Double-Gate MOSFET

Future Plans

To include Small geometry effects, NQS, Noise, extrinsic elements to make it applicable for practical devices…

Page 19: indDG: A New Model for Independent Double-Gate MOSFET

Acknowledgement

My Masters and Ph.D. students Department of Science and Technology (DST), Government of India Dr. Ivan Pesic and his team @ Silvaco International