improve reliability and training of power plant electrical ...cnd v p 1b cooling water to rst lphdp...

10
Improve Reliability and Training of Power Plant Electrical Distribution System Operation by Dynamic Load-Flow Simulation By Sadashiva Godbole, et. al. nHance Technologies, Lynchburg, Virginia, USA 828 Main Street Suite #903 Lynchburg, VA 24504 Phone: (434) 582-6110, Ext. 16 Fax: (434) 582-6112 e-mail: [email protected] Power Plant Electrical Distribution System A typical three-phase electrical distribution system in a power plant consists of one or more synchronous generators interconnected with each other and connected to the electrical power grid and several house loads through busses at different voltages and interposing transformers. The house loads include 3-phase induction motors for components such as boiler feedwater pumps, circulating water pumps, condensate pumps, air and gas fans, coal pulverizer mills, (reactor coolant pumps for nuclear plants). Electric current limiting reactors may be used for interconnecting generators and grid. Circuit breakers are included in the system to change network configuration under normal and fault conditions (e.g., synchronizing a generator, changing load bus power supply from startup supply to plant auxiliary supply, adding or dropping a load, protecting connected equipment). Dynamic Load Flow Simulation Dynamic load flow simulation is a necessary component in a power plant operator training simulator. It is used to train the operator in following the procedures for tasks such as Synchronizing generators, Properly sequencing large motor startup to prevent trips due to large inrush currents and temporary voltage drop, Switching power supply path for load busses (e.g., grid to in-house), Switching speeds of multi-speed induction motors, and Monitoring generator stability margin via load angle during operation.

Upload: others

Post on 27-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Improve Reliability and Training of

    Power Plant Electrical Distribution System Operation by

    Dynamic Load-Flow Simulation

    By Sadashiva Godbole, et. al.

    nHance Technologies, Lynchburg, Virginia, USA 828 Main Street

    Suite #903 Lynchburg, VA 24504

    Phone: (434) 582-6110, Ext. 16

    Fax: (434) 582-6112 e-mail: [email protected]

    Power Plant Electrical Distribution System A typical three-phase electrical distribution system in a power plant consists of one or more synchronous generators interconnected with each other and connected to the electrical power grid and several house loads through busses at different voltages and interposing transformers. The house loads include 3-phase induction motors for components such as boiler feedwater pumps, circulating water pumps, condensate pumps, air and gas fans, coal pulverizer mills, (reactor coolant pumps for nuclear plants). Electric current limiting reactors may be used for interconnecting generators and grid. Circuit breakers are included in the system to change network configuration under normal and fault conditions (e.g., synchronizing a generator, changing load bus power supply from startup supply to plant auxiliary supply, adding or dropping a load, protecting connected equipment). Dynamic Load Flow Simulation Dynamic load flow simulation is a necessary component in a power plant operator training simulator. It is used to train the operator in following the procedures for tasks such as

    • Synchronizing generators, • Properly sequencing large motor startup to prevent trips due to large inrush

    currents and temporary voltage drop, • Switching power supply path for load busses (e.g., grid to in-house), • Switching speeds of multi-speed induction motors, and • Monitoring generator stability margin via load angle during operation.

  • Dynamic load flow simulation is also valuable for developing system operating procedures and verifying plant control system and equipment upgrades. It can play an important role in familiarizing electrical power staff and engineering students with various aspects of the power plant electrical distribution system and component dynamics. During dynamic load flow simulation, the voltages and currents, active and reactive power, and other parameters throughout the power plant electrical distribution system are dynamically calculated and displayed under changing system configuration caused by operation of circuit breakers. Through the HMI (Human-Machine Interface), the simulation allows virtual “hands-on” and “on-the-fly” operation of the system to verify

    • Synchronizing and loading/unloading of the generators, • Assignment of loads to busses, • Continuity of power supply to critical loads, • Settings of protective relays and frequency and voltage regulators.

    This virtual hands-on, on-the-fly aspect of the dynamic simulation described here provides increased insights into the electrical system use and behavior over what may be achieved from a typical load flow analyses. Modular Modeling System The dynamic load flow model and simulation described in this paper are developed by using MMS (Modular Modeling System1). MMS is a graphical software system for developing simulation of power plant dynamics. It includes graphical icons that correspond to pre-engineered software modules of power plant components (e.g., boiler, steam generator, reactor, pumps, fans, valves, pipes, tanks, heat exchangers, turbine, and condenser) that can be selected and connected to represent a power plant system. Electrical modules include synchronous generators, two- and three-winding transformers, one- and two-speed induction motors, reactors, circuit breakers, busses, and others. The generator module uses saturation characteristics and “V curves” supplied by the generator manufacturer to determine the pre- and post-synchronization induced voltage and expected excitation current. The 3-winding transformer module uses the impedance data supplied by the transformer manufacturer to determine the reactance of the windings. The induction motor module uses the nameplate data and motor efficiency to calculate the stator and rotor resistance and reactance. Control logic modules corresponding to control functional blocks (e.g., PID, Hi/Lo alarm, set/reset, AND, OR) are also available. Another software tool permits the user to develop custom modules. The load flow solution is based on first principles; i.e., on the fact that all current vectors (voltage/impedance) entering a node must add up to zero. MMS simulation tools also includes HMI and hard panel emulation to mimic control room displays, dials and gauges, switches, push buttons, indicator lights, and other

    1 MMS is developed and distributed by nHance Technologies.

  • control/instrumentation animation. Tools for generating trends of any simulator variable and for monitoring/changing parameters on-line are also available. Control logic and HMI translators for several DCS (e.g., ABB-Bailey, Westinghouse, Honeywell, …) are also supported. MMS employs an easy-to-use and efficient graphical drag-and-drop procedure for configuring the system to be simulated. An extensive on-line help system is available. MMS is also used to provide or upgrade the electrical system models for simulators based on third-party platforms. Procedure for Developing a Dynamic Load Flow Simulation The electrical system simulation development starts with identifying portions of the one-line diagram of the electrical distribution system to define the scope of the simulation, i.e., what is to be included in the simulation model and what part of system operation is to be simulated. The next step is to select the MMS modules from the on-line list and connect them according to the one-line diagram. Each icon typically has an input data form for specifying the attributes of the component, e.g., rated voltage, current, power factor, impedance, horsepower, speed, moment of inertia. The data is next entered in US or SI units. The units can be readily toggled by a mouse click. The simulation model is then built by clicking the “Build Model” button. The model can be executed in two ways: verification and analysis, and real-time on-the-fly interaction. In the verification and analysis mode, the model is executed by a combination of on-line and pre-built commands. In the real-time mode, the model is executed from the HMI as the actual system is operated in the plant. Example Dynamic Load Flow Model The example load flow simulation pertains to the power plant electrical distribution system (see Figures 1 and 2) described next. As shown in the one-line diagram of Figure 1, the system consists of a 618 MVA, 0.9 pf, 22 kV generator connected to the 230 kV grid bus through a 620 MVA step-up transformer, and connected with two 4.16 kV station service busses through a 18-30 MVA 3-winding step-down transformer. These busses receive startup power from the grid through another 24-40 MVA 3-winding step-down transformer when the generator is off-line. Major loads on the station service busses (8 motors totaling 9000 hp on bus 1A and 9 motors totaling 11800 hp on bus 1B) are shown in the one-line diagram of Figure 2.

  • Figure 1. One-line diagram of generator and busses

    Figure 2. One-line diagram of major loads on busses

  • The MMS simulation model schematic is shown in Figure 3. One of the HMI screens (plant one-line) is shown in Figure 4, while the hard panel emulations featuring the synchroscope and startup loads are shown in Figures 5 and 6.

    ACSL integration in gen MMS integration in motors. Layout per 2839-1ES-1. !G1 can be synchronized by 1927 (normal) or 1928. !The breaker selected for synchronizing is slaved to breaker G2R !If either 1927 or 1928 are closed, sync status Lsync_G1 is true

    21 kV

    230 kV

    tc_gen

    GRID Bus 1 0

    -2

    1

    bus, component dummy bus Leg macro or Label N_bus connections

    1 0

    n_bus

    1 GB

    4.16 kV

    EGLOBAL 1

    480 V 480 V

    4.16 kV

    480 V

    230 kV GRID Bus 2

    3 230 kV

    2 230 kV

    230 kV 4 230 kV PL3

    230 kV modified csl

    TO Fuel Oil Burner Pump 1A TO FD FAN 1A

    TO FD FAN 1B

    TO LPHDP 1B

    Fuel Oil bus

    480v bus 1A-1B

    480 1B

    4160 V bus 1A 4160 V bus 1B

    480v Plant Service Bus

    1 Gen G1

    TO CND V P 1B

    TO LPHDP 1A

    480 1A

    TO Cooling Water Pump 1A TO CND V P 1A TO CND XFER PUMP

    4.16 kV 4.16 kV

    4.16 kV 4.16 kV

    4.16 kV

    480 V 480 V 480 V

    480 V 480 V 480 V 480 V

    480 V 480 V

    480 V 480 V

    TO Fuel Oil Burner Pump 1C

    TO Service Air Comp 3

    TO Service Air Comp 1

    TO Dilution Pump 1A TO Circ Water

    Pump 1A TO Boiler Circ Pump 1A TO Boiler Circ Pump 1C TO Condensate Pump 1A TO Gas Recirc Fan TO Condensate Pump 1B TO Boiler Circ Pump 1B TO Boiler Circ Pump 1D TO Circ Water Pump 1B TO Circ Water Pump 1C TO Dilution Pump 1B TO Fuel Oil Burner Pump 1B TO

    Fire Pump

    TO Aux Oil Pump 1A TO Aux Oil Pump 1B TO Cooling Wtr Pump 1C

    TO Fuel Oil Booster Pump 1A TO Fuel Oil Booster Pump 1B TO Fuel Oil Booster Pump 1C

    TO Cooling Wtr Pump 1B

    Ignitor Oil Pump 1B

    Seal Air Fan F.O. Additive Meter Pump GRF TG

    I.A. Comp 3

    I.O. Pump 1A WU Oil Pump FDF 1A LOP A FDF 1A LOP B FDF 1B LOP A FDF 1B LOP B

    I.A. Comp 2

    WPP 1 WPP 2

    Gen Stator Cooling Pump 1A Turbine TG Motor Turbine TG Oil Pump Gen Leads Cooling Fan 1A HPH Drain

    Pump 1A BFP 1A Trb TG Motor BFP 1A Trb Main Oil Pump A BFP 1B Trb Main Oil Pump A BFP Seal Water Inj Pump 1B Service Water Pump 1 Air Pre-heater 1A Cond Vac Priming Pump 1A

    Gen Stator Cooling Pump 1B Gen Leads Cooling Fan 1B HPH Drain

    Pump 1B BFP 1B Trb TG Motor BFP 1B Trb Main Oil Pump B BFP 1A Trb Main Oil Pump B Service Water Pump 2 Cond Vac Priming Pump 1B

    modified csl

    480 V

    480 V

    modified csl modified csl modified csl

    modified csl modified csl

    operated from control room operated from control room operated from control room

    Air Pre-heater 1B

    modified csl

    TO Service Air Comp 2

    EXC Ji1 Ji2 Ji3 Ji4 EMF G1

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3

    OUT2 OUT1 GI

    EIN1 EIN2 EIN3 EIN4 EIN5 EOUT10 EOUT9 EOUT8 EOUT7 EOUT6 EOUT5 EOUT4 EOUT3 EOUT2 EOUT1 out GB

    EIN1 EIN2 EIN3 EIN4 EIN5 EOUT10 EOUT9 EOUT8 EOUT7 EOUT6 EOUT5 EOUT4 EOUT3 EOUT2 EOUT1 out 230_1

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 GR1

    OPN POS

    EOUT EIN CLS TRP RST 1927 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 TX

    OPN POS

    EOUT EIN

    CLS TRP RST BLPHDP1B

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 480_1BM

    OPN POS

    EOUT EIN CLS TRP RST 1111 OPN POS EOUT EIN CLS TRP RST 1112

    PRIe SECL PRIL SECe GSU

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4

    OUT3 OUT2 OUT1 UBND

    OUT IN TO_PS1_TRB

    OUT IN TOLPHDP1B

    OUT1 OUT2 IN1 IN2 DCS_CONVERSIONS

    OUT IN TO_PS1_TG

    Lin Rin Lm1 Rm1 Lm2 Rm2 1A

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 SS1AM

    PRI SEC1 SEC2 SU

    Lin Rin Lm1 Rm1 Lm2 Rm2 480_1AB

    PRIe SECL PRIL SECe SS1AX

    OPN POS

    EOUT EIN CLS TRP RST 1113

    OPN POS

    EOUT EIN CLS TRP RST 1121

    OPN POS

    EOUT EIN CLS TRP RST 1211 OPN POS EOUT EIN CLS TRP RST 1212 Lin Rin

    Lm1 Rm1 Lm2 Rm2 1B

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 SS1BM

    PRIe SECL PRIL SECe SS1BX1

    OPN POS

    EOUT EIN CLS TRP RST 1213 OPN

    POS EOUT EIN CLS TRP RST 1221

    OPN POS

    EOUT EIN CLS TRP RST BFDF1A OUT IN TOFDF1A

    OPN POS

    EOUT EIN CLS TRP RST BFDF1B Lin Rin

    Lm1 Rm1 Lm2 Rm2 480_PS

    PRIe SECL PRIL SECe SU1AX

    OPN POS

    EOUT EIN CLS TRP RST 1321

    E

    OUT IN TOFDF1B

    OPN POS

    EOUT EIN CLS TRP RST 1925 OPN POS EOUT EIN CLS TRP RST 1924

    EIN1 EIN2 EIN3 EIN4 EIN5 EOUT10 EOUT9 EOUT8 EOUT7 EOUT6 EOUT5 EOUT4 EOUT3 EOUT2 EOUT1 out 230_2

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 GR2

    EIN1 EIN2 EIN3 EIN4 EIN5 EOUT10 EOUT9 EOUT8 EOUT7 EOUT6 EOUT5 EOUT4 EOUT3 EOUT2 EOUT1 out PL3

    RXp RXs RX1 RXp

    RXs RX2 OPN

    POS EOUT EIN CLS TRP RST 1928

    OPN POS

    EOUT EIN CLS TRP RST BFOBP1A OPN POS EOUT EIN CLS TRP RST BCWP1A OUT IN TOCWP1A OUT IN TOFOBP1A

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 PSM

    OPN POS

    EOUT EIN

    CLS TRP RST BAOP1A OPN POS

    EOUT EIN

    CLS TRP RST BAOP1B

    OPN POS

    EOUT EIN CLS TRP RST 2324

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4

    OUT3 OUT2 OUT1 PB

    Lin Rin Lm1 Rm1 Lm2 Rm2 SS1A

    OPN POS

    EOUT EIN CLS TRP RST 1116 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10

    OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 DG1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4

    OUT3 OUT2 OUT1 DG_AUX

    RXp RXs RXD

    OPN POS

    EOUT EIN CLS TRP RST 1115 IN

    O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 SS1B

    Lin Rin Lm1 Rm1 Lm2 Rm2 480_FO

    PRIe SECL PRIL SECe SS1BX2

    OPN POS

    EOUT EIN CLS TRP RST 1214

    OPN POS

    EOUT EIN CLS TRP RST 1421

    OPN POS

    EOUT EIN CLS TRP RST 2421

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 U2_FO

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 SU1B

    OPN POS

    EOUT EIN

    CLS TRP RST BSAC3 OPN POS

    EOUT EIN

    CLS TRP RST BFP

    JiNo PWR MSAC3 JiNo

    PWR MFP

    OPN POS

    EOUT EIN CLS TRP RST 1114 OPN

    POS EOUT EIN CLS TRP RST 2320 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10

    OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 U2_PS IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4

    OUT3 OUT2 OUT1 480_PSL

    OPN POS

    EOUT EIN

    CLS TRP RST BCDWP1C

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 480_1BLOAD

    OPN POS

    EOUT EIN CLS TRP RST 1222 OPN

    POS EOUT EIN

    CLS TRP RST BCVP1B

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 480_1ALOAD

    OPN POS

    EOUT EIN

    CLS TRP RST BLPHDP1A

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 480_1AM

    OUT IN TOLPHDP1A3

    OPN POS

    EOUT EIN

    CLS TRP RST BCDWP1A

    OUT IN TOCDWP1A

    OPN POS

    EOUT EIN

    CLS TRP RST BCVP1A

    JiNo PWR MCVP1A

    OPN POS

    EOUT EIN

    CLS TRP RST BCXP

    OUT IN TOCXP

    Lin Rin Lm1 Rm1 Lm2 Rm2 ES

    OPN POS

    EOUT EIN CLS TRP RST 1124

    OPN POS

    EOUT EIN CLS TRP RST 1128 Lin Rin

    Lm1 Rm1 Lm2 Rm2 IH OPN

    POS EOUT EIN CLS TRP RST 1125

    OPN POS

    EOUT EIN CLS TRP RST BWTR

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 U2_WT

    OPN POS

    EOUT EIN CLS TRP RST BIHR

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 U2_IH

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 1BA

    OPN POS

    EOUT EIN

    CLS TRP RST BSAF OPN POS EOUT

    EIN CLS TRP RST BFOAMP OPN POS

    EOUT EIN

    CLS TRP RST BGRFTG

    EIN ZL_SAF EIN ZL_GRFTG EIN ZL_FOAMP

    OPN POS

    EOUT EIN CLS TRP RST 1226

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 1TAA

    OPN POS

    EOUT EIN

    CLS TRP RST BGSCP1A OPN POS

    EOUT EIN

    CLS TRP RST BTTGM OPN POS

    EOUT EIN

    CLS TRP RST BTTGOP OPN POS EOUT

    EIN CLS TRP RST BGLCF1A OPN POS EOUT

    EIN CLS TRP RST BHPHDP1A OPN POS EOUT

    EIN CLS TRP RST BBFP1ATTGM

    EIN ZL_GSCP1A EIN ZL_TTGOP EIN ZL_GLCF1A EIN

    ZL_HPHDP1A EIN ZL_BFP1ATTGM

    OPN POS

    EOUT EIN CLS TRP RST 1122

    EIN ZL_TTGM

    OPN POS

    EOUT EIN

    CLS TRP RST BBFP1ATMOPA

    EIN ZL_BFP1ATMOPA

    OPN POS

    EOUT EIN

    CLS TRP RST BBFPSWIP1B

    EIN ZL_BFPSWIP1B

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 1TAA1

    OPN POS

    EOUT EIN

    CLS TRP RST BAPH1A OPN POS EOUT

    EIN CLS TRP RST BCVPP1A

    EIN ZL_APH1A EIN ZL_CVPP1A

    OPN POS

    EOUT EIN CLS TRP RST 1122A

    OPN POS

    EOUT EIN

    CLS TRP RST BBFP1BTMOPA

    EIN ZL_BFP1BTMOPA

    OPN POS

    EOUT EIN

    CLS TRP RST BSWP1

    EIN ZL_SWP1

    OPN POS

    EOUT EIN

    CLS TRP RST BIOP1B

    EIN ZL_IOP1B

    OPN POS

    EOUT EIN

    CLS TRP RST 2422

    JiNo PWR MAOP1A JiNo PWR MCDWP1C

    OUT IN TOCDWP1C

    JiNo PWR MFOBP1A

    OPN POS

    EOUT EIN CLS TRP RST BFOBP1C OUT IN TOFOBP1C

    JiNo PWR MFOBP1C

    OPN POS

    EOUT EIN

    CLS TRP RST BSAC1

    JiNo PWR MSAC1

    JiNo PWR MDP1A

    OUT IN TODP1A

    JiNo PWR MCWP1A

    OPN POS

    EOUT EIN CLS TRP RST BBCP1A JiNo PWR

    MBCP1A OUT IN TOBCP1C

    JiNo PWR MBCP1C

    OPN POS

    EOUT EIN CLS TRP RST BCP1A OUT IN TOCP1A

    JiNo PWR MCP1A OPN POS EOUT

    EIN CLS TRP RST BGRF

    OUT IN TOGRF

    JiNo PWR MGRF

    OPN POS

    EOUT EIN CLS TRP RST BCP1B OUT IN TOCP1B

    JiNo PWR MCP1B

    OPN POS

    EOUT EIN CLS TRP RST BBCP1B OUT IN TOBCP1B

    JiNo PWR MBCP1B

    OPN POS

    EOUT EIN CLS TRP RST BBCP1D OUT IN TOBCP1D

    JiNo PWR MBCP1D

    OPN POS

    EOUT EIN CLS TRP RST BCWP1B OUT IN TOCWP1B

    JiNo PWR MCWP1B

    OPN POS

    EOUT EIN CLS TRP RST BCWP1C OUT IN TOCWP1C

    JiNo PWR MCWP1C JiNo PWR

    MDP1B OPN

    POS EOUT EIN

    CLS TRP RST BDP1B

    OUT IN TODP1B

    OPN POS

    EOUT EIN CLS TRP RST BFOBP1B OUT IN TOFOBP1B

    JiNo PWR MFOBP1B

    JiNo PWR MLPHDP1B

    JiNo PWR MLPHDP1A

    OPN POS

    EOUT EIN

    CLS TRP RST B1AFOBP

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 480_FOM

    OUT IN TO1AFOBP

    JiNo PWR M1AFOBP

    OPN POS

    EOUT EIN

    CLS TRP RST B1BFOBP

    OUT IN TO1BFOBP

    JiNo PWR M1BFOBP

    OPN POS

    EOUT EIN

    CLS TRP RST B1CFOBP

    OUT IN TO1CFOBP

    JiNo PWR M1CFOBP

    OPN POS

    EOUT EIN

    CLS TRP RST BCDWP1B

    JiNo PWR MCDWP1B

    OUT IN TOCDWP1C1

    JiNo PWR MCDWP1A JiNo

    PWR MCXP

    JiNo PWR MCVP1B

    OPN POS

    EOUT EIN

    CLS TRP RST BIAC3

    EIN ZL_IAC3

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 1ES

    OPN POS

    EOUT EIN

    CLS TRP RST BIOP1A OPN POS EOUT

    EIN CLS TRP RST BWUOP OPN POS

    EOUT EIN

    CLS TRP RST BFDF1ALOPA OPN POS EOUT

    EIN CLS TRP RST BFDF1ALOPB OPN POS EOUT

    EIN CLS TRP RST BFDF1BLOPA OPN POS EOUT

    EIN CLS TRP RST BFDF1BLOPB

    EIN ZL_IOP1A EIN ZL_FDF1ALOPA EIN ZL_FDF1ALOPB EIN ZL_FDF1BLOPA EIN ZL_FDF1BLOPB EIN ZL_WUOP

    OPN POS

    EOUT EIN

    CLS TRP RST BIAC2

    EIN ZL_IAC2

    OPN POS

    EOUT EIN

    CLS TRP RST BWPP1

    EIN ZL_WPP1

    OPN POS

    EOUT EIN

    CLS TRP RST BWPP2

    EIN ZL_WPP2

    IN O1 O2 O3 O4 O5 O7 O8 O6 O9 O10 1TAB

    OPN POS

    EOUT EIN

    CLS TRP RST BGSCP1B OPN POS EOUT

    EIN CLS TRP RST BGLCF1B OPN POS

    EOUT EIN

    CLS TRP RST BHPHDP1B OPN POS

    EOUT EIN

    CLS TRP RST BBFP1BTTGM

    EIN ZL_GSCP1B EIN ZL_GLCF1B EIN ZL_HPHDP1B EIN ZL_BFP1BTTGM

    OPN POS

    EOUT EIN

    CLS TRP RST BBFP1BTMOPB

    EIN ZL_BFP1BTMOPB

    OPN POS

    EOUT EIN

    CLS TRP RST BCVPP1B

    EIN ZL_CVPP1B

    OPN POS

    EOUT EIN

    CLS TRP RST BBFP1ATMOPB

    EIN ZL_BFP1ATMOPB

    OPN POS

    EOUT EIN

    CLS TRP RST BSWP2

    EIN ZL_SWP2

    IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 OUT10 OUT9 OUT8 OUT7 OUT6 OUT5 OUT4

    OUT3 OUT2 OUT1 480L

    Lin Rin Lm1 Rm1 Lm2 Rm2 SUS

    Lin Rin Lm1 Rm1 Lm2 Rm2 WT

    PRI SEC1 SEC2 AUX

    OPN POS

    EOUT EIN

    CLS TRP RST BDP1A OPN POS EOUT

    EIN CLS TRP RST BBCP1C

    JiNo PWR MAOP1B

    JiNo PWR MFDF1A

    JiNo PWR MFDF1B

    Lin Rin Lm1 Rm1 Lm2 Rm2 480_PS1 Lin Rin

    Lm1 Rm1 Lm2 Rm2 480_PS2

    Lin Rin Lm1 Rm1 Lm2 Rm2 480_1A Lin Rin

    Lm1 Rm1 Lm2 Rm2 480_1B OPN

    POS EOUT EIN CLS TRP RST 1120

    OPN POS

    EOUT EIN CLS TRP RST 1220 OPN

    POS EOUT EIN CLS TRP RST 1320

    OPN POS

    EOUT EIN CLS TRP RST 2120 OPN POS EOUT EIN CLS TRP RST 2220

    OPN POS

    EOUT EIN

    CLS TRP RST BAPH1B

    EIN ZL_APH1B

    OPN POS

    EOUT EIN CLS TRP RST FIELD

    OUT IN TOBCP1A

    OPN POS

    EOUT EIN

    CLS TRP RST BSAC2

    JiNo PWR MSAC2

    NE SAC1 NE SAC2

    NE SAC3 NE FP

    NE CVP1A NE CVP1B

    NE AOP1A NE AOP1B

    Figure 3. MMS model schematic

  • Figure 4. Plant’s one-line HMI screen

  • Figure 5. Emulation of generator synchronization hard panel

  • Figure 6. Emulation of startup load, start/stop hard panel Example Dynamic Load Flow Simulation Before the generator is synchronized, the power for the startup and station service loads is obtained from the startup power supply by closing the appropriate breakers and starting the motors. Startup loads include auxiliary oil pump, cooling water pump, service air compressor, instrument air compressor, etc. Station service loads include condensate pump, forced draft fan, fuel oil burner pump, etc. Then the generator is brought up to synchronous speed by operating the turbine steam valves, the excitation current is adjusted to obtain matching terminal voltage, and the generator is synchronized from the synchroscope. The generator power output is then increased by opening the turbine throttle valves, and adjusting the excitation current from the automatic voltage regulator. The power for the station service loads is then changed from startup supply to the generator by closing and opening appropriate breakers. Trends in Figures 7 and 8 show typical motor starting current and important parameters of the generator, respectively.

  • Figure 7. Motor starting current

  • Figure 8. Generator parameters Biography Sadashiva Godbole performs power plant simulation development at nHance Technologies, Lynchburg, Virginia, USA. Earlier he was an Advisory Engineer and Framatome Expert at Areva NP Inc. He holds a Ph.D. in Electrical Engineering from Virginia Polytechnic Institute and State University. He has numerous publications.