implantable optofluidic sensor for assessment of intraocular pressure christina antonopoulos md,...

10
Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian MD W.K. Kellogg Eye Center and Department of Mechanical Engineering University of Michigan, Ann Arbor, Michigan The authors of this poster have received research funding from the National Institutes of Health (Grant 1R21NS062313 ). The authors hold no proprietary interest in the material presented herein.

Upload: britney-black

Post on 30-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis

PhD, Shahzad Mian MD

W.K. Kellogg Eye Center and Department of Mechanical Engineering University of Michigan, Ann Arbor, Michigan

The authors of this poster have received research funding from the National Institutes of Health (Grant 1R21NS062313 ).

The authors hold no proprietary interest in the material presented herein.

Page 2: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Abstract

Purpose: To develop an implantable opto-fluidic IOP sensor that enables long-term continuous monitoring of intraocular pressure.

Methods: The design consists of an implantable MicroElectroMechanical Systems (MEMS) pressure sensor that converts IOP variations into spectral signals in the near infrared (NIR)region (700 nm-900 nm). The sensor integrates a pressure-tunable elastomeric microlens with

aQuantum Dot (QD) bilayer, each layer having a distinct emission wavelength. A collimated NIRlaser beam, focused through the microlens into the QD bi-layer, induces fluorescent excitation

ofthe bilayer.

Results: IOP variations can cause changes in the focal length of the microlens which result inchanges in the ratiometric fluorescent intensity emitted by the bilayer. Intraocular implantationmay occur with: (1) iris fixation, (2) integration into intraocular lenses, (3) integration intokeratoprosthesis devices.

Conclusion: An implantable, opto-fluidic sensor can enables long-term, continuous IOPmonitoring, and is small in size when compared to the other pressure transducers. This devicewill be used for ex vivo and in vivo testing to establish safety and efficacy.

Page 3: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Purpose

To develop an implantable opto-fluidic intraocular pressure sensor that enables long-term, continuous monitoring of intraocular pressure

To successfully implant the device into the optic of an intraocular lens, keratoprosthesis or iris-sutured for stand-alone monitoring for use in clinical scenarios in which frequent IOP monitoring is critical (advanced glaucoma) or otherwise unfeasible (keratoprosthetic eyes)

Page 4: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Methods: Sensor mechanism consists of a sealed system of two fluid

chambers covered by thin elastomeric membranes; one acts as a deflectable membrane and the other as a microlens coupled with a tunable Quantum Dot (QD) bilayer.

When external pressure (intraocular pressure, IOP) is applied the deflectable membrane deflects downwards and by virtue of fluid displacement induces a convex deflection of QD bilayer. The microlens focal length remains constant.

A collimated near infrared (NIR) laser beam, focused through the microlens onto the QD bilayer induces fluorescent excitation of the bilayer; the lower layer emits light at wavelength λ = 705nm; the upper layer emits wavelength λ = 800 nm

IOP variations cause QD bilayer position to change in the focal plane, bringing the upper layer out of focus and the lower layer in focus and therefore changes in the ratiometric fluorescent intensity emitted by the bilayer.

The signals are send back to the external unit for self-read-out

Page 5: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Methods

Page 6: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Results

0 5 10 15 20 25 30 35 40 452

4

6

8

10

12

14

16

18

20

Pressure (mmHg)

Dis

pla

cm

ent(

um

)

1.2 um X 1.2 um

1.0um X 1.0um

0.8um X 0.8 um

1.4um X 1.4um

Figure 1: Intraocular pressure versus deflection of deflectable membrane (square, silicone nitride, 297nm thickness) or differing sizes. The external pressure is increased from 1mmHg to 45mmHg. The experiment is repeated for six membranes of each size, all with identical fabrication. The deflection at maximum external pressure ±4.5% and ±3% for the largest and smallest

membranes, respectively.

Page 7: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Results

-10 0 10 20 30 40 500

1,000

2,000

3,000

4,000

.25

.5

.75

1

1.25

1.5

Pressure (mmHg)

Inte

nsity

rat

io

data1

data2

data3

705nm

800nm

705nm/800nm

200 400 600 800 1000 12000

500

1000

1500

2000

2500

3000

3500

wavelength (nm)

inte

nsity

200 400 600 800 1000 12000

500

1000

1500

2000

2500

wavelength (nm)

inte

nsity

200 400 600 800 1000 12000

500

1000

1500

2000

2500

3000

3500

wavelength (nm)

inte

nsity

Figure 2: The intensity and ratio of light emitted by the Quantum Dot channels as a function of intraocular pressure. The lens focuses on the 800nm QD monolayer at atmospheric pressure. As external pressure is increased, the membrane deflects and moves the 705 nm layer and 800nm layer into and out of the focal plane, respectively. Therefore, the ratio of the signal intensities of the 705nm QD layer and the 800nm QD layer increases. We repeated the experiment for six identically fabricated devices. There is up to ±6% variation in the ratio of channel across devices. The ratio change is statistically significant for 6mmHg change.

Page 8: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Results

0 5 10 15 20 251

1.05

1.1

1.15

1.2

1.25

1.3

1.35

day

ratio

Device 1

Device 2Device 3

0 5 10 15 20 250.3

0.35

0.4

0.45

0.5

0.55

day

ratio

Device 1

Device 2

Device 3

Figure 3: Long-term response of three identical devices submersed for three weeks in water. Each device response is

recorded every 3 days to 20mmHg (A) and 40mmHg (B). A variation in the ratio of ±5% and ±6% is observed for 20mmHg and 40mmHg external pressure, respectively.

(A) (B)

Page 9: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Discussion

We are developing an implantable, opto-fluidic sensor that (i) enables long-term, continuous IOP monitoring, (ii) is small in size, and (iii) is theoretically safely implantable into the eye

Safe implantation in the eye will theoretically generated a data set of continuous IOP measurements to enhance the management of any form of glaucoma

Our device is applicable to patients with glaucoma, ocular hypertension, glaucoma suspects, patients in whom prior anterior segment surgery precludes measurement or monitoring of IOP (e.g. keratoprosthetic eyes)

Page 10: Implantable Optofluidic Sensor for Assessment of Intraocular Pressure Christina Antonopoulos MD, Mostafa Ghannad-Rezaie, Nikos Chronis PhD, Shahzad Mian

Conclusions

An implantable, opto-fluidic sensor can potentially enable valuable, long-term, continuous IOP monitoring for clinicians

Future goals include in vivo testing to establish safety and efficacy and implantation into intraocular lenses and keratoprostheses