impact of pandan leaf extract addition on the …epublication.cheme.utm.my/96/1/impact of pandan...

19
iii IMPACT OF PANDAN LEAF EXTRACT ADDITION ON THE QUALITY AND STABILITY OF SUNFLOWER OIL DURING MICROWAVE HEATING RAFIQQAH BINTI MOHAMAD SABRI A report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering (Chemical-Bioprocess) Faculty of Chemical Engineering Universiti Teknologi Malaysia MAY 2013

Upload: vunhu

Post on 16-Apr-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

iii

IMPACT OF PANDAN LEAF EXTRACT ADDITION ON THE QUALITY AND

STABILITY OF SUNFLOWER OIL DURING MICROWAVE HEATING

RAFIQQAH BINTI MOHAMAD SABRI

A report submitted in partial fulfillment of the requirements for the award of the

degree of Bachelor of Engineering (Chemical-Bioprocess)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

MAY 2013

v

ABSTRACT

The present study was conducted to investigate the effect of addition of

pandan leaf extract on the quality and stability of sunflower oil during microwave

heating. Extracts of pandan was prepared in different polarity solvents (80%

methanol in water, methanol and ethanol). Preliminary antioxidant activity

assessment among the extracts was conducted with 1,1’-diphenyl-2-picrylhydrazyl

(DPPH) radical scavenging activity and by measuring per cent inhibition of linoleic

acid peroxidation and total phenolic content. Since 80% methanolic extract showed

highest antioxidant activity among the extracts, it was then further evaluated using

sunflower oil during microwave heating. The vegetable oil was stabilized with

extract at a dosage of 0.1, 0.2 and 0.4% and subjected to microwave heating (0-24

min) and analysed periodically. Butylated hydroxyanisole (BHA) at 0.02% served as

standard beside the negative control. The amount of free fatty acids was found to be

higher in fresh samples. Peroxide values during microwave heating of all the samples

were increased until a maximum is reached and then decreased until the end of

heating. Apart from that, quality parameters such as p-anisidine value, viscosity,

specific extinction and polar compound values increased significantly in most of the

samples as heating time progressed. Meanwhile, there is progressive decrease in

iodine value during heating. In Gas Liquid Chromatography analysis, C18:2/C16:0

ratios were found to be decreased as heating time increased. Most of the degradation

indicators suggested that the degradation was rapid in fresh oil samples compared to

stabilized oils. In a nutshell, by adding this extracts, alteration of these parameters

were reduced and results from different parameters were in agreement with each

other, suggesting the highest efficiency of SFB, followed by SFP4, SFP2, SFP1, and

SFO. Results revealed pandan leaf to be a good natural alternative to existing

synthetic antioxidants in the food industry.

vi

ABSTRAK

Kajian ini telah dijalankan untuk mengkaji kesan penambahan ekstrak daun

pandan terhadap kualiti dan kestabilan minyak bunga matahari semasa pemanasan

gelombang mikro. Ekstrak pandan telah disediakan dalam pelarut kutub yang

berbeza (80% methanol dalam air, metanol dan etanol). Penilaian awal aktiviti

antioksidan dalam kalangan ekstrak telah dijalankan dengan 1,1 '-Diphenyl-2-

picrylhydrazyl (DPPH) aktiviti radikal memerangkap dan dengan mengukur peratus

perencatan pengoksidaan linoleik asid dan jumlah kandungan fenolik.

Memandangkan 80% ekstrak metanol menunjukkan aktiviti antioksidan yang

tertinggi dalam kalangan ekstrak, ia kemudian terus dinilai menggunakan minyak

bunga matahari semasa pemanasan gelombang mikro. Minyak sayur-sayuran telah

distabilkan dengan ekstrak pada dos sebanyak 0.1, 0.2 dan 0.4% dan tertakluk

kepada mikro pemanasan (0-24 min) dan dianalisis secara berkala. Hydroxyanisole

Butylated (BHA) pada 0.02% berkhidmat sebagai standard kawalan di sebelah

negatif. Jumlah asid lemak bebas telah didapati lebih tinggi dalam sampel segar.

Nilai peroksida semasa pemanasan gelombang mikro semua sampel telah meningkat

sehingga maksimum dicapai dan kemudian menurun sehingga akhir pemanasan.

Selain daripada itu, parameter kualiti seperti nilai-p anisidine, kelikatan, kepupusan

tertentu dan nilai-nilai kompaun kutub meningkat dengan ketara dalam kebanyakan

sampel sebagai masa pemanasan maju. Sementara itu, terdapat penurunan progresif

dalam nilai iodin semasa pemanasan. Dalam analisis Gas Kromatografi cecair,

C18:2/C16:0 nisbah telah didapati menurun masa pemanasan meningkat Kebanyakan

petunjuk kemerosotan mencadangkan bahawa kemerosotan itu pesat dalam sampel

minyak segar berbanding dengan minyak stabil. Secara ringkas, dengan menambah

ekstrak ini, perubahan parameter ini telah dikurangkan dan hasil daripada parameter

yang berbeza dalam perjanjian antara satu sama lain, menunjukkan kecekapan

tertinggi SFB, diikuti oleh SFP4, SFP2, SFP1, dan SFO. Keputusan mendedahkan

vii

pandan sebagai alternatif semula jadi yang baik untuk antioksida sintetik yang sedia

ada dalam industri makanan.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGEMENTS

ABSTRACT

ABSTRAK

ii

iii

iv

v

vi

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF SYMBOLS

viii

xii

xiii

xiv

xv

1 INTRODUCTION

2 PROBLEM STATEMENT, OBJECTIVE AND

SCOPE OF STUDY

2.1 Problem Statement

2.2 Objective

2.3 Scope of Study

1

3

3

4

4

ix

3 LITERATURE REVIEW

5

3.1 A brief description of Sunflower Oil 5

3.1.1 Health Benefits of Sunflower Oil 8

3.1.1.1 Sunflower Oil and Skin protection

3.1.1.2 Sunflower Oil and Cardiovascular

benefits

3.1.1.3 Sunflower Oil and Anti-

inflammatory

3.2 Antioxidant

3.2.1 Natural Antioxidant

3.2.2 Synthetic Antioxidant

8

9

bbbb10

10

3.3 Microwave Heating 13

3.3.1 Introduction

3.3.2 Mechanism of Microwave Heating

13

14

3.4 Chemical Reactions during Heating 15

3.4.1 Hydrolysis of Oils

3.4.2 Oxidation of Oils

3.4.3 Polymerization of Oils

3.4.4 Colour Formation

15

16

17

19

3.5 Previous Studies Related to this Work 20

4 METHODOLOGY 22

4.1 Plant Materials and Chemicals 22

4.2 Experimental Methods

4.2.1 Preparation of Pandan Leaf Extracts

4.2.2 Evaluation of Antioxidant Activity

22

22

23

11

12

x

4.2.2.1 DPPH Scavenging Assay

4.2.2.2 Linoleic Acid System

4.2.2.3 Total Phenolic Content

4.2.3 Microwave Heating

4.2.4 Analysis of Oil Quality

4.2.4.1 Free Fatty Acid

4.2.4.2 Peroxide Value

4.2.4.3 p-Anisidine Value

4.2.4.4 Iodine Value

4.2.4.5 Specific Extinction

4.2.4.6 Viscosity

4.2.4.7 Total Polar Compound by Mini

Column Method

4.2.4.8 Fatty Acid Composition by GLC

4.2.4.9 Statistical Analysis

23

24

24

25

26

26

27

28

30

32

33

35

37

38

5 RESULTS AND DISCUSSION 39

5.1 Introduction

5.2 Yield of extracts with antioxidative properties

5.3 Evaluation of Antioxidant Activity

5.3.1 DPPH Radical Scavenging Assay

5.3.2 Linoleic Acid Peroxidation System

5.3.3 Total Phenolic Content

39

39

40

40

41

42

5.4 Analysis of Oil Quality

5.4.1 Changes in Free Fatty Acid

5.4.2 Changes in Peroxide Value

43

44

44

xi

5.4.3 Changes in p-Anisidine Value

5.4.4 Changes in Total Oxidation (TOTOX)

5.4.5 Changes in Iodine Value

5.4.6 Changes in Specific Extinction

5.4.7 Changes in Viscosity

5.4.8 Changes in Total Polar Compound

5.4.9 Changes in Fatty Acid Composition

46

48

48

49

51

51

53

6 CONCLUSION AND RECOMMENDATIONS

54

REFERENCE 55

Appendices A-B 66-67

55

REFERENCES

Al-Harbi, M.M. and H.A. Al-Kabtani, (1993). Chemical and biological evaluation of

discarded fring palm oil in commercial restaurants. Food. Chem., 48: 395-401

Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S., and Ghazali, H.M.

(2007). Frying quality and stability of high-oleic Moringa oleifera seed oil in

comparison with other vegetable oils. Food. Chem., 105: 1382–1389

Albi, T., Lanzón, A., Guinda, A., Pérez-Camino, M.C., and León, M. (1997).

Microwave and conventional heating effects on some physical and chemical

parameters of edible fats. J. Agr. Food. Chem., 45: 3000–3003.

Ali R.F.M (2010) Effect of Pomposia (Syzygium cumini) fruit juice on the stability

of fried sunflower oil. J. Food. Tech., 8: 30–38

Allman-farinelli, M.A., Gomes, K., Favaloro, E.J., and Petocz, P. (2005). A diet rich

in high-oleic-acid sunflower oil favorably alters low-density lipoprotein

cholesterol, triglycerides, and factor VII coagulant activity. J. Am. Diet. Assoc.,

105: 1071–1079.

Anwar, F., Bhanger, M.I., and Yasmeen, S. (2003). Antioxidant activity of some

natural extracts in corn oil. In N. Murata, M. Yamada, I. Nishida, H. Okuyama,

J. Sekiya, and W. Hajime (Eds.), Advanced research of plant lipid (pp. 24–27).

Netherlands: Kluwer Publishers.

56

Anwar, F., Manzoor, M., and Bajwa, J.R. (2004). Antioxidant activity of solvent

extracts of strawberry (F. Ananassa) using various antioxidant assays. Pakistan

J. Anal. Chem+., 5: 28–37.

Anwar F, Qayyum HMA, Hussain AI, Iqbal S. (2010). Antioxidant activity of 100

and 80% methanol extracts from barley seeds (Hordeum vulgare L.):

Stabilization of sunflower oil. Grasas Aceites., 61: 237-243.

AOCS (1987). Official Methods and Recommended Practices of the American Oil

Chemists' Society, 4th ed., AOCS press, Champaign.

AOCS (1989). Official Methods and Recommended Practices of the American Oil

Chemists' Society, 4th ed., AOCS press, Champaign.

AOCS (1990). Official Methods and Recommended Practices of the American Oil

Chemists' Society, 4th ed., AOCS press, Champaign.

Bhattacharjee P, Kshirsagar A, Singhal RS (2005) Supercritical carbon dioxide

extraction of 2-acetyl-1-pyrroline from Pandanus amaryllifolius Roxb. Food.

Chem., 91: 255–259.

Billek G., Guhr G., Waibel J., 1978. Quality assessment of used frying fats: A

comparison of four methods. J. Am. Oi.l Chem. Soc,. 55: 728-732.

Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical,

Nature., 181: 1199-1200.

Bogim, G., Yong, J.C. and Suk, H. Y. 2004. Rapid determination of polar

compounds in frying fats and oils using image analysis. Lebensmittel-

Wissenschaft und –Technologie., 37: 657-661.

Burfoot, D., James, S.J., Foster, A.M., Self, K.P Wilkins, T.J., and Philips, I. (1990).

Temperature uniformity after reheating in microwave ovens. Processing

57

Engineering in the Food Industry. Vol.2, edited by Field, R.W. and Howell, J.A.,

Elsevier Applied Science, NewYork pp. 1-14.

Carelli A.A, Franco C.I, Crapiste H.G (2005) Effectiveness of added natural

antioxidants in sunflower oil. Grasas Aceites., 56: 303–310.

Chavan, R.S. and Chavan, S.R. (2010). Microwave baking in food industry: a

review. Int. J. Dairy. Sci., 5: 113-127.

Choe, E. and D.B. Min, (2007). ‘‘Chemistry of Deep-Fat Frying Oils,’’ J. Food. Sci.,

72:77

Chung J, Lee J, Choe E. (2004). Oxidative stability of soybean and sesame oil

mixture during frying of flour dough. J. Food. Sci., 69: 574–8.

Crapiste G.H., Brevedan M.I.V. and Carelli A.A. (1999). Oxidation of sunflower oil

during storage. J. Am. Oil. Chem. Soc., 76: 1437-1443.

Cuesta C, Sanchez-Muniz F.J, Garrido-Polonio C, Lopez-Varela S, Arroyo R.

(1993). Thermooxidative and hydrolytic changes in sunflower oil used in frying

with a fast turnover of fresh oil. J. Am. Oil. Chem. Soc., 70: 1069–73.

Decareau R. V, Peterson R.A. "Microwave processing and engineering". Chichester :

Ellis Horwood, (1986). 224.

Dobarganes, M.C., Velasco, J., Dieffenbacher, A. (2000). The determination of polar

compounds, polymerised triacylglycerols, oxidised triacylglycerols and

diacylglycerols in fats and oils. Pure Appl. Chem., 72: 1563−1575.

Dostálová J., Hanzlík, P., éblová Z. and Pokorný J. (2005). Oxidative changes of

vegetable oils during microwave heating. Czech. J. Food. Sci., 23: 230–239.

58

Dunn R.O (2005). Effect of Antioxidants on the Oxidative Stability of Methyl Soyate

(Biodiesel). Fuel. Process. Technol., 86: 1071–1085.

El Anany A.M. (2007). Influence of pomegranate (Punica granatum) peel extract on

the stability of sunflower oil during deep-fat frying process. Electron. J. Food.

Plants. Chem., 2: 14–19.

Farag, R.S., Hewedi, F.M., Abu-Raiia, S. H., and Elbaroty, G.S. (1992). Comparative

study on the deterioration of oils by microwave and conventional heating. J.

Food. Protect., 55:722-727.

Frankel, E.N. (2005). Lipid Oxidation, 2nd Edition, (The Oily Press).

Frega, N., Mozzon, M., and Lercker, G. (1999). Effect of free fatty acids on the

oxidative stability of vegetable oils. J. Am. Oil. Chem. Soc., 76: 325–329.

Gertz C., Klosternmann S., Kochhar S.P. (2000) Testing and comparing oxidative

stability of vegetable oils and fats at frying temperature. Eur. J. Lipid. Sci. Tech.,

102: 543–551.

Ghazali H.M., Tan A., Abdulkarim S.M. (2009). Oxidative stability of virgin coconut

oil compared with RBD palm olein in deep-fat frying of fish crackers, J. Food.

Agric. Environ., 7: 23-27

Giese, J.H, (1992). Special report, in advances in microwave food processing. J. Agr.

Food. Chem., 45: 3244-3249

Grompone M (2005) Sunflower oil. In: Shahidi F (ed) Bailey’s industrial oil and fat

products. Edible oil and fat products: Edible oils. Vol 2., J. Wiley and Sons,

New Jersey, USA pp 655–725.

59

Hassanein, M.M.; El-Shami, S.M. and El-Mallah, M.H. (2003). Changes occurring in

vegetable oils composition due to microwave heating. Grasas Aceites., 54: 343-

349.

Houhoula D.P, Oreopoulou V, Tzia C. (2003). The effect of process time and

temperature on the accumulation of polar compounds in cottonseed oil during

deep-fat frying. J. Sci. Food. Agric., 83: 314–9.

Hsu, B., Coupar, I. M., and Ng, K. (2006). Antioxidant activity of hot water extract

from the fruit of the Doum palm, Hyphaene thebaica. Food. Chem., 98: 317–

328.

Jeong S, Kim S, Kim D, Jo S, Nam K, Ahn D, Lee S. (2004). Effect of heat treatment

on the antioxidant activity of extracts from citrus peels. J. Agric. Food. Chem.,

52: 3389-3393.

Jung, U.K., Lee, S.K., Hun, S., Kyung and Chung, G.H. (2001). Antioxidant effects

of natural lecithin on borage oil. Food. Sci. Biotech., 10: 1–6.

IFT (1989). Institute of Food Technologists, Microwave Food Processing. A

Scientific Status Summary by IFT Expert Panel on Food Safety and Nutrition,

Food. Technol., 43: 117-126.

Iqbal, S., Bhanger, M. I., and Anwar, F. (2005). Antioxidant properties and

components of some commercially available varieties of rice bran in Pakistan.

Food. Chem., 93: 265–272.

Iqbal, C., and Bhanger, M. I. (2007). Stabilization of sunflower oil by garlic extract

during accelerated storage. Food. Chem., 100: 246–254.

IUPAC (2000). Determination of polar compounds, polymerized and oxidized

triacylglycerols, and diacylglycerols in oils and fats: A technical report. Pure.

Appl. Chem., 72: 1563–1575.

60

Kikuzaki H., Nakatani N., (1993). Antioxidant effects of some ginger constituents. J.

Food. Sci. 58: 1407-1410.

Laksanalamai, V. and Ilangantileke, S. (1993). Comparison of aroma compound (2-

acetyl-1-pyrroline) in leaves from pandan (Pandanus amaryllifolius) and Thai

fragrant rice (Khao Dawk Mali-105). Cereal. Chem., 70: 381–384.

Lascaray L. (1949). Mechanism of fat splitting. Ind. Eng. Chem. Res., 41: 786–90.

Liang, Y.C., May, C.Y., Foon, C.S., Ngan, M.A., Hock, C.C., and Basiron, Y.

(2006). The Effect of Natural and Synthetic Antioxidants on The Oxidative

stability of Palm Diesel. J. Fuel. 85: 867-870.

Lose Weight and Get Fit With Diet, Nutrition and Fitness Tool www.livestrong.com

Lukešová, D., J. Dostálová, E. El -Moneim Mahmoud and M. Svárovská (2009).

Oxidation changes of vegetable oils during microwave heating. Czech. J. Food.

Sci., 27: S178-S181.

Lusas, E.W. (1985). Sunflower Seed Protein. In: New Protein Foods. Eds. Altschul,

A.M. and Wilcke, H, L. Academic Press, pp.393-433.

Malheiro, R., Oliveira, I., Vilas-Boas, M., Falcão, S., Bento, A. and Pereira, J.A.

(2009). Effect of microwave heating with different exposure times on physical

and chemical parameters of olive oil. Food. Chem. Toxicol., 47: 92-97.

National Sunflower Association www.sunflowernsa.com

Nawar W.W. (1969). Thermal degradation of lipids. A review. J. Agric. Food.

Chem., 17: 18–21.

61

Nawar W.W. (1985). Chemistry of thermal oxidation. In: Min DB, Smouse TH,

editors. Flavor chemistry of fats and oils. Champaign, Ill.: J. Am. Oil. Chem.

Soc., P 39–60.

Nelson, S.o., and Kraszewski, A.W. (1990). Grain moisture content determination by

microwave measurements. Trans. ASAE., 33: 1303-1307.

Nor, F., Mohamed, S., Idris, N., and Ismail, R. (2008). Antioxidative properties of

pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying

studies. Food. Chem., 110: 319-327.

Normand L., Eskin N.A.M. and Przybylski R. (2001), Effects of tocopherols on the

frying stability of regular and modified canola oils, J. Am. Oil. Chem. Soc., 78:

369-373.

Nzikou J.M., Matos L., Moussounga J.E., Ndangui C.B., Pambou-Tobi N.P.,

Bandzouzi E.M., Kimbonguila A., Linder M., Desobry S. (2009). Study of

oxidative and thermal stability of vegetable oils during frying. Res. J. Appl. Sci.,

4: 94–100.

Osawa T., Namiki M. (1981). A novel type of antioxidant isolated from leaf wax of

Eucalyptus Leaves. J. Agr. Food. Chem., 45: 735-739.

Oyedeji F.O., Oderinde R.A. (2006). Characterization of Isopropanol Extracted

Vegetable Oils. J. Appl. Sci., 6: 2510-2513.

Pal, D. (2011) Sunflower (Helianthus annuus L.) Seeds in Health and Nutrition in

Preedy V.R., Watson R.R. Patel V.B., Nuts and Seeds in Health and Disease

Prevention. Elsevier.

Paul S., Mittal G.S. (1997). Regulating the use of degraded oil/fat in deep-fat/oil

food frying. Crit. Rev. Food. Sci. Nutr., 37: 635–62.

62

Peers K.E., Swoboda P.A.T. (1982). Deterioration of sunflower seed oil under

simulated frying conditions and during small-scale frying of potato chips. J. Sci.

Food. Agr., 33: 389–95.

PORIM, (1995). PORIM test methods. Malaysia: Palm Oil Research Institute of

Malaysia, Ministry of Primary Industries.

Rehab F.M.A. (2010). Improvement the stability of fried sunflower oil by using

different levels of Pomposia (Syzyygium Cumini) Electron. J. Environ. Agric.

Food. Chem., 9: 396–403.

Rice-Evans, C., and Miller, N.J. (1995). Antioxidants – The Case for Fruit and

Vegetables in The Diet. Brit. Food. J., 97: 35-40.

Rochea, J., Alignana, M., Bouniolsa, A., Cernya, M., Moulounguia, Z., Vearc, F., et

al. (2010). Sterol content in sunflower seeds (Helianthus annuus L.) as affected

by genotypes and environmental conditions. Food. Chem., 2: 990-995.

Ryley, 3. (1985). The Nutritional Effect of Microwave Heating. BNF. Nutr. Bull., 14:

46-62.

Sanchez-Muniz F.J., Cuesta C, Lopez-Varela M.C., Garrido-Polonio M.C., Arroyo

R. 1993a. Evaluation of the thermal oxidation rate of sunflower oil using various

frying methods. In: Applewhite TH, editor. Proceedings of World Conference on

Oilseed and Technology and Utilization. Champaign, Ill.: J. Am. Oil. Chem. Soc

., p 448–52.

Sanchez-Muniz F.J., Cuesta C, Garrido-Polonio C. 1993b. Sunflower oil used for

frying: combination of column, gas and high-performancesize-exclusion

chromatography for its evaluation. J. Am. Oil. Chem. Soc., 70: 235–40.

63

Sanchez-Moreno, C., Larrauri, J.A., and Saura-Calixto, F. (1999). Free radical

scavenging capacity and inhibition of lipid oxidation of wines, grape juices and

related polyphenolic constituents. Food. Research. International., 32: 407–412.

Shahidi, F., Janitha, P.K., and Wanasundara, P.D. (1992). Phenolic antioxidants.

Critical Reviews in Food Science and Nutrition, 32: 67–103.

Shahidi, F., and Wanasundara, U. N. (1997). Measurement of lipid oxidation and

evaluation of antioxidant activity. In Natural antioxidants, chemistry, health

effects and applications (pp. 1–10). IL, USA: AOCS Press Champaign.

Shaker, E.S. (2006). Antioxidant effect of extracts from red grape seed and peel on

lipid oxidation in oils of sunflower. LWT, 39: 883–892.

Siddiq, A., Anwar, F., Manzoor, M., and Fatima, M. (2005). Antioxdant activity of

different solvent extracts of Moringa oleifera leaves under accelerated storage

conditions of sunflower oil. Asian. J. Plant. Sciences., 4: 630–635.

Singh, R.P., Murthy, K. N.C., and Jayaprakasha, G.K. (2002). Studies on antioxidant

activity of pomegranate (Punica granatum) peel and seed extracts using in vitro

models. J. Agr. Food. Chem., 50: 81–86.

Sultana B., Anwar F., Przybylski R. (2007). Antioxidant potential of corncob extracts

for stabilization of corn oil subjected to microwave heating. Food. Chem., 104:

997–1005

Sumnu G. (2001): A review on microwave baking of foods. Int. J. Food. Sci. Tech.,

36: 117–127.

Takeoka G.R., Full G.H., Dao L.T. (1997). Effect of heating on the characteristics

and chemical composition of selected frying oil and fat. J. Agr. Food. Chem., 45:

3244–9.

64

The World’s Healthiest Foods www.whfoods.org

Tompkins C., Perkins E.G. (2000). Frying performance of low-linolenic acid

soybean oil. J. Am. Oil. Chem. Soc., 77: 223–9.

Tseng Y-C., Moreira R.G., Sun X. (1996). Total frying—use time effects on soybean

oil deterioration and on tortilla chip quality. Intl. J. Food. Sci. Tech., 31: 287–94.

Vichi S., Zitterl-Eseer, Jugl K. and Franz M.C. (2001). Determination of the presence

of antioxidants derived from sage and organic extracts added to the animal fat by

means of assessment of the radical scavenging capacity by

photochemilumenescence analysis. Nahrung., 45: 101-104.

Vieira, T.M.F.S. and Regitano-D'arce, M.A.B. (1998). Stability of oils heated by

microwave: UV-spectrophotometric evaluation. CieLncia e ¹ecnologia de

Alimentos, 18: 433-437.

Warner K. and Mounts T.L. (1993), Frying stability of soybean and canola oils with

modified fatty acid compositions, J. Am. Oil. Chem. Soc., 70: 983-988.

Warner, K., and Gupta, M. (2003). Frying quality and stability of low and ultra-low

linoleic acid soybean oils. J. Am. Oil. Chem. Soc. , 80: 275–280.

Wikipedia, the Free Encyclopedia. Sunflower oil. www.wikipedia.org.

Wikipedia, the Free Encyclopedia. Antioxidant. www.wikipedia.org

Williams K.A. (1966). Oils, Fats and Fatty Foods – Their Practical Examination. 4th

Edition. American Elsevier Publishing Company Inc.,52 Vanderbilt Avenue,

New York.

Yen G.C., Duh P.D., Tsai C.L. (1993). Relationship between antioxidant activity and

maturity of peanut hulls. J. Agr. Food. Chem., 41: 67–70.

65

Yoon S.H., Jung M.Y., Min D.B. (1988). Effects of thermally oxidized triglycerides

on the oxidative stability of soybean oil. J. Am. Oil. Chem. Soc., 65: 1652–6.

Yoshida, H., Tatsumi, M. and Kajimoto, G. (1992). Influence of Fatty Acids on the

Tocopherol Stability in Vegetable Oils During Microwave Heating. J. Am. Oil.

Chem. Soc., 69: 119-125.