impact of distributed generation units on short circuit capacity calculations by shabanzadeh

72
In the name of Allah, Most Gracious, Most Merciful Impact of Distributed Generation Units on Short-Circuit Capacity (SCC) Calculations By : Morteza Shabanzadeh Supervisor : Professor Mahmoud-Reza Haghi-Fam © Morteza Shabanzadeh & TMU 2013

Upload: bubo28

Post on 15-Sep-2015

228 views

Category:

Documents


4 download

DESCRIPTION

Impact of Distributed Generation Units on Short Circuit Capacity Calculations by Shabanzadeh

TRANSCRIPT

  • In the name of Allah, Most Gracious, Most Merciful

    Impact of Distributed Generation Unitson Short-Circuit Capacity (SCC) Calculations

    By : Morteza ShabanzadehSupervisor : Professor Mahmoud-Reza Haghi-Fam

    Morteza Shabanzadeh & TMU 2013

  • P t ti O tliPresentation Outline

    Introduction Introduction SCC Calculation According to IEC 60909 Standard Impact of DGs on Fault Locating Methods DGs Effects in Different Types of Dis. Networks Limitation of Short-Circuit Power due to DGs

    2/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Short-Circuit Currents : Initial symmetrical short-circuit current ( ) Peak short-circuit current ( ) Steady state short-circuit current ( )

    3/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    4/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Peak Short-Circuit Currents ( ):

    Ip causes high dynamic and mechanical stresses on the components.

    It ill b h d ithi 10 ft f th f lt It will be reached within 10 ms after occurrence of the fault.

    Conventional circuit breakers in the network will not be fast enough tointerrupt this current and therefore components have to be designed suchinterrupt this current and therefore components have to be designed such

    that they are able to withstand these currents.

    6/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Initial & Steady-state Short-Circuit Currents ( , ):

    They will result in large losses , And therefore cause thermal overloading.g

    6/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Fault level calculations are indispensable tools during the Grid Design Phase.

    The purpose of short-circuit calculations is to determine: Thermal effect of fault currents on grid components.g p Mechanical stresses on grid components. Coordination of protection devices.

    7/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Distribution networks are characterized by: Max acceptable fault current (related to the switchgear) Thermal withstand capability (of the equipment) Mechanical withstand capability (of the equipment and constructions)

    8/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    Main inhibiting factor for the interconnection of DGs: Combined Isc contribution of the upstream grid and DGs should remain

    below the network design value.

    SCC of existing distribution network (esp. MV) is close to the design value(little margin for the connection of DGs).

    9/72MortezaShabanzadehandTMU2013

  • IntroductionIntroduction

    DGs Isc depends on : DGs size DGs control mode (Technology) The number of connection points of DGs in the system

    10/72MortezaShabanzadehandTMU2013

  • P t ti O tliPresentation Outline

    Introduction Introduction SCC Calculation According to IEC 60909 Standard Impact of DGs on Fault Locating Methods DGs Effects in Different Types of Dis. Networks Limitation of Short-Circuit Power due to DGs

    11/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Basic Principles: Equivalent Voltage Source Method Several simplifications in calculation procedures Isc Calculation using Vn and rated values of the equipment Various correction factors Network neutral is earthed

    12/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit current definitions: Initial Symmetrical Short-Circuit Current ( ):

    rms value of the ac symmetrical component of a prospective

    short-circuit current

    Initial Symmetrical Short-Circuit Power ( ):

    hasnophysicalmeaning

    13/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit current definitions: Peak Short-Circuit Current ( ):

    Max instantaneous value of the fault current.

    Decaying aperiodic component ( ):

    14/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit current definitions: Steady-state Short-Circuit Current ( ):

    The rms value of the current after the decay of the transient

    components.

    For far-from-generator faults :

    15/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Calculation of : Equivalent Voltage Source :

    Voltage of an ideal source applied at the short-circuit location in positive

    sequence system, whereas all other sources in the system are ignored

    (short-circuited)(short-circuited).

    16/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :

    17/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :1) Equivalent impedance of the upstream network :

    Fornetworkswithanominalvoltagehigherthan35kV,theIECStandardsuggestsRQ=0. Inallothercases,itrecommendsRQ/XQ=0.1asasafeassumption.

    18/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :2) Equivalent impedance of a Transformer:

    These Eqs are also applicable to shortcircuit current limiting reactors

    19/72MortezaShabanzadehandTMU2013

    TheseEqs.arealsoapplicabletoshort circuitcurrentlimitingreactors.

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :3) Equivalent impedance of Lines:

    Theimpedanceofoverheadlinesandcables iscalculatedfromconductorandlinegeometrydataanditistypicallyknownforstandardlinetypes.

    20/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :4) Equivalent of Synchronous Generators:

    Xd isthesubtransientreactance.

    21/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :5) Equivalent of Power Station units with Syn. Generators:

    TheimpedanceisreferredtotheHVside.

    tr istheratedtransformationratiooftheunittransformer.

    22/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :6) Equivalent of Asynchronous Motors:

    ILR/IrM istheratiooflockedrotor toratedcurrentofthemachine..

    23/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Short-circuit Impedances :

    Shuntcapacitorsandnonrotatingloadsareignored.

    24/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Correction factors:

    IEC60909introducesimpedancecorrectionfactorsfor:

    Transformers(KT) Synchronousgenerators(KG) Powerstationunits(KS)

    whichmultiplytherespectiveimpedancesinallcalculationformulae.

    25/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:

    o Resultingfaultlevelisthephasorsumofthemaxfaultcurrentsfrom: UpstreamGrid Step down Transformer StepdownTransformer VariousDGs

    o AccordingtoIEC60909:Thegridcontributioniseasilycontributed,butThecontributionofnovelDGtypesisnotaddressedinthisStandard.

    26/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    DG

    Directly coupled

    Decoupled via converter interface

    Asynch. Generator

    Synch. Generator

    Static Conversion

    Rotating Conversion

    SCIG & DFIG wind generators

    CHP Fuel CellPVDirect drive WTs

    -CHP

    27/72MortezaShabanzadehandTMU2013

    g

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:1) Contributionoftheupstreamgrid

    28/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type ITypeI TypeII TypeIII TypeIV

    29/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type I :Synch.Generatorsdirectlycoupledtothegrid

    Type ISHEP, CHP

    30/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type II :ASynch.Generatorsdirectlycoupledtothegrid

    Type IISmall SHEP,

    constant speed WTs

    31/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type III:DFIG,withpowerconvertersintherotorcircuit

    Type IIIDFIG

    (variable speed WTs)

    32/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type III:DFIG,withpowerconvertersintherotorcircuit

    LimitedovercurrentcapabilityofRotor Statorcurrentisdominant Crowbar protectionCrowbarprotection RoughlyapproximatedasTypeII Statorisdisconnectedafter30~50ms Isc(max)

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type IV:Powerconverterinterfacedunits,withorwithoutrotatinggenerator

    Type IVPVs, -Turbines

    variable speed WTs

    34/72MortezaShabanzadehandTMU2013

  • Overview of the IEC 60909 StandardOverview of the IEC 60909 Standard

    o Fault level calculation in networks with DG:2) ContributionoftheDGstations

    Type IV:Powerconverterinterfacedunits,withorwithoutrotatinggenerator

    AretreatedasASynch.Machines

    orort isthedurationofthecontribution(100msmaybeadoptedhereaswell)

    35/72MortezaShabanzadehandTMU2013

  • Case StudyCase Study

    PLOAD =35MVA

    T II

    Type IV

    PDG =17.16MW

    Type I

    Type II

    Type III

    36/72MortezaShabanzadehandTMU2013

  • Case StudyCase Study

    Type IV

    Type III

    Type II

    37/72MortezaShabanzadehandTMU2013

    Type I

  • Case StudyCase Study

    Results

    Asexpected,thecontributionofTypeIVDGunitsismuchlowerthanallotherTypes.

    Type IV

    Type III

    38/72MortezaShabanzadehandTMU2013

  • Case StudyCase StudyResults

    Type II

    Type I

    39/72MortezaShabanzadehandTMU2013

  • Case StudyCase Study

    Resulting fault level at the MV busbars :

    Algebraic sum

    Phasor sum (with contribution of WF1 added algebraically)(with contribution of WF1 added algebraically)

    40/72MortezaShabanzadehandTMU2013

  • DGs short-circuit current SimulationDGs short-circuit current Simulation

    Technical Softwares to simulate DGs Protection behavior:

    DIgSILENTPowerFactory PSCAD ATPEMTP

    41/72MortezaShabanzadehandTMU2013

  • Example (2) :Example (2) :

    Resulting fault level in Netherland test network:

    Peak Short Circuit Current (KA)

    42/72MortezaShabanzadehandTMU2013

  • Solutions for fault level reductionSolutions for fault level reduction

    1. Increasethedesignmaximumfaultlevel

    2. Reducetheprospectiveshortcircuitcurrentofthegrid Reconfigurationofthenetwork Increasetheshortcircuitimpedanceofthetransformers Reduce the prospective shortcircuit current of the DGReducetheprospectiveshort circuitcurrentoftheDG

    3.ReducetheprospectiveshortcircuitcurrentoftheDG Selectequipmentwithincreasedshortcircuitimpedance Installation of current limiting reactors Installationofcurrentlimitingreactors Connectionviapowerelectronicsconverters

    4.Activelimitationoftheshortcircuitcurrent

    43/72MortezaShabanzadehandTMU2013

  • P t ti O tliPresentation Outline

    Introduction Introduction SCC Calculation According to IEC 60909 Standard Impact of DGs on Fault Locating Methods DGs Effects in Different Types of Dis. Networks Limitation of Short-Circuit Power due to DGs

    44/72MortezaShabanzadehandTMU2013

  • Impact of DGs on Fault Locating MethodsImpact of DGs on Fault Locating Methods

    o Effect of DG on Impedance Measurement Based Method :

    Single-line diagram of network DG unit placed at upstream DG unit placed at downstream

    45/72MortezaShabanzadehandTMU2013

  • Impact of DGs on Fault Locating MethodsImpact of DGs on Fault Locating Methods

    o Simulation Result :

    Scenario (2): Inverter based DG = 5 MW

    Scenario (1): Synchronous DG = 30 MW

    46/72MortezaShabanzadehandTMU2013

    single-phase to ground fault

  • Impact of DGs on Fault Locating MethodsImpact of DGs on Fault Locating Methods

    o Simulation Result :Calculation error with DG at upstream of fault Calculation error with DG at downstream of fault

    d

    o

    w

    n

    s

    t

    r

    e

    a

    m

    f

    f

    a

    u

    l

    t

    u

    p

    s

    t

    r

    e

    a

    m

    f

    f

    a

    u

    l

    t

    D

    G

    a

    t

    d

    o

    f

    D

    G

    a

    t

    o

    f

    1. InverterbasedDGsinjectless shortcircuitcurrenttothefault.

    47/72MortezaShabanzadehandTMU2013

    2. UpstreamDGshavemorenegative effectsonfaultlocatingmethodsincomparisontodownstreamDGs.

  • P t ti O tliPresentation Outline

    Introduction Introduction SCC Calculation According to IEC 60909 Standard Impact of DGs on Fault Locating Methods DGs Effects in Different Types of Dis. Networks Limitation of Short-Circuit Power due to DGs

    48/72MortezaShabanzadehandTMU2013

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    o Three types of distribution systems:

    RadialL Loop

    Network

    49/72MortezaShabanzadehandTMU2013

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    A. RadialC (1) C (2)C (3)Case(1) Case(2)Case(3)

    50/72MortezaShabanzadehandTMU2013

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    A. RadialDGat7,PF

    DGat7,VC

    DGat2~7,

    u

    .

    )

    ,5MW,PFDGat2~7,5MW,VC

    B

    u

    s

    V

    o

    l

    t

    a

    g

    e

    (

    p

    .

    u

    B #

    51/72MortezaShabanzadehandTMU2013

    Bus#

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    A. Radial

    Isc (KA)

    We can see that the more connection points of DG in the system, the lower values

    52/72MortezaShabanzadehandTMU2013

    of short circuit currents.

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    B. Loop

    h f h d d d b f l d

    53/72MortezaShabanzadehandTMU2013

    The case of shared sized DG at two connection points provides better profile around 1.0 p.u.

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    B. Loop

    Isc (KA)

    d f l d h f l l f f h d

    54/72MortezaShabanzadehandTMU2013

    As expected, fault currents decrease as the fault location gets far away from the grid.

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    C. Network

    55/72MortezaShabanzadehandTMU2013 34.5 kV network type test system

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    C. Network

    56/72MortezaShabanzadehandTMU2013

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    C. Network

    57/72MortezaShabanzadehandTMU2013

  • DGs Effects in Different Types of Dis NetworksDGs Effects in Different Types of Dis. Networks

    Dispersedlylocated DGresultsinbettervoltageprofilecomparedtosinglespotlocatedDG.

    If di t ib ti t h t id ti f lt t t Ifadistributionsystemhasastronggridconnection,faultcurrentsmaynotsignificantlyincreasewiththeadditionofDG.

    AnumberofDGhavingaunitarypowerfactorcontrolshouldbelocatedalongg y p f gdistributionsystemsothatbettervoltageprofileisobtained.

    58/72MortezaShabanzadehandTMU2013

  • P t ti O tliPresentation Outline

    Introduction Introduction SCC Calculation According to IEC 60909 Standard Impact of DGs on Fault Locating Methods DGs Effects in Different Types of Dis. Networks Limitation of Short-Circuit Power due to DGs

    59/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    Fault Current Limiters (FCLFCL) :

    The most important requirements of an FCL are1) Limitation of peak current (Ip) within 10ms.

    (The minimum opening time of the circuit breakers is much longer

    , and therefore they are not able to protect the components)

    2) Ratio between nominal current and limited short-circuit current.

    3) Low impedance and low losses in normal situation.

    60/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    1. Choke coil

    2. Superconductorsp

    3. Semiconductors

    4. Magnetic fault current limiter

    5. Is Limiter

    61/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    1. Choke coil

    (high) impedance( g ) p simple and robust voltage drop & losses during normal operation big size

    62/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    2. Superconductors

    use the relationship between the resistance and temperature to limit Ip, Ik.

    R = 0 (when they are cooled below their critical temperature)

    During fault, due to losses their temperature will increase and FCL will get a much higher R.

    low losses very fast response (Ip can be limited quite well) very expensive are still in development stage (not commercially available yet) are still in development stage (not commercially available yet)

    63/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    3. Semiconductors

    use semiconductor switches

    good controllability fast response losses in the semiconductors

    64/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    4. Magnetic fault current limiter

    Based on the fact that a coil, or transformer, has a very low impedance when it is in saturation At the moment a fault occurs the large fault current forces the coil out of saturation, implying a muchAt the moment a fault occurs the large fault current forces the coil out of saturation, implying a much

    higher impedance.

    reliable operation gradual and smooth change of impedance good limiting capabilities (R8) commercially available large dimensionsg high price

    65/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    5. Is Limiter consists of two conductors in parallel.

    The main conductor carries the nominal current

    (up to 5kA).

    After tripping the parallel fuse limits Ip in a very short time

    ( 1 )(< 1 ms).

    66/72MortezaShabanzadehandTMU2013

  • Limitation of Short-Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    The most important types of FCLFCL :

    5. Is Limiter very fast good R-ratio small size low losses after each operation fuses have to be replaced;

    h lThis implies :

    relatively high costs longer interruption times incorrect operation incorrect operation

    67/72MortezaShabanzadehandTMU2013

  • Limitation of Short Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    SelectionofFCLFCL:

    ThegoaloftheprocedureistofindaconfigurationforwhichCtot isaslowaspossible(i.e.findingmin[Ctot]):

    thecostsofrepairing orreplacing componentswhichhavebeendestroyedbecauseoftohighfaultcurrents,butalsothecostsof

    68/72MortezaShabanzadehandTMU2013

    customerminuteslost.

  • Limitation of Short Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    SelectionofFCLFCL:10 d l h b FCL10stepproceduretoselectthebestFCL:

    Step1. Createalistofpossiblefaultlocations;Step2. Foreachofthepossiblefaultlocations,

    conductashortcircuitcalculationusingIEC(60)909;

    Step7.Determinepossiblefaultcurrentlimiterlocations;Step8.Foreach(combination)ofthelocations:calculate

    thetotalcostsofafault,usingthetwodifferentco duc a s o c cu ca cu a o us g (60)909;Step3. Removethefaultlocationsforwhichnopeakfault

    currentproblemoccurs;Step4. Foreachoftheremainingfaultlocations:

    Determinetheprobabilityofafaulttooccur;St 5 S l t th f lt l ti ith th hi h t f lt

    e o a cos s o a au , us g e o d e etypesoffaultcurrentlimitersatthelocation(s);

    Step9.Selectthesituationwiththelowesttotalcostscausedbyafaultandpermanentlyaddthefaultcurrentlimiter.

    St 10 R th f lt l ti f th li t dStep5. Selectthefaultlocationwiththehighestfaultoccurrenceprobability.

    Step6.Calculatethetotalcostsofafaultatthislocation,withoutaddingfaultcurrentlimiting.

    Step10.Removethefaultlocationfromthelistandrestartfromstep2,repeatinguntilthereisnofaultlocationleftinthelist

    69/72MortezaShabanzadehandTMU2013

  • Limitation of Short Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    SelectionofFCLFCL: CHP

    CHP

    The rated Ipeak of the substation is 50kATheratedIpeak ofthesubstationis50kA

    70/72MortezaShabanzadehandTMU2013

    ArealnetworkinthesouthwesternpartoftheNetherlands

  • Limitation of Short Circuit Power due to DGsLimitation of Short-Circuit Power due to DGs

    SelectionofFCLFCL:Theresultsaccordingto10stepprocedure:

    71/72MortezaShabanzadehandTMU2013

  • th h t l ithose who struggle in our cause, we will surely guide them to our ways;

    and Allah is with those who do good.

    AL ANKABOOT (6 )AL-ANKABOOT (69)

    72/72MortezaShabanzadehandTMU2013