image warping 15-463: computational photography alexei efros, cmu, fall 2011 some slides from steve...

30
Image Warping 15-463: Computational Photograph Alexei Efros, CMU, Fall 201 Some slides from Steve Seitz tp://www.jeffrey-martin.com

Upload: curtis-lawson

Post on 05-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Image Warping

15-463: Computational PhotographyAlexei Efros, CMU, Fall 2011

Some slides from Steve Seitz

http://www.jeffrey-martin.com

Page 2: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Image Transformations

image filtering: change range of imageg(x) = T(f(x))

f

x

Tf

x

f

x

Tf

x

image warping: change domain of imageg(x) = f(T(x))

Page 3: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Image Transformations

T

T

f

f g

g

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of imageg(x) = f(T(x))

Page 4: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Parametric (global) warpingExamples of parametric warps:

translation rotation aspect

affineperspective

cylindrical

Page 5: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?• Is the same for any point p• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)

y

x

y

xM

'

'

Page 6: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

ScalingScaling a coordinate means multiplying each of its components by

a scalarUniform scaling means this scalar is the same for all components:

2

Page 7: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Non-uniform scaling: different scalars per component:

Scaling

X 2,Y 0.5

Page 8: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Scaling

Scaling operation:

Or, in matrix form:

byy

axx

'

'

y

x

b

a

y

x

0

0

'

'

scaling matrix S

What’s inverse of S?

Page 9: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2-D Rotation

(x, y)

(x’, y’)

x’ = x cos() - y sin()y’ = x sin() + y cos()

Page 10: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2-D Rotation

x = r cos ()y = r sin ()x’ = r cos ( + )y’ = r sin ( + )

Trig Identity…x’ = r cos() cos() – r sin() sin()y’ = r sin() cos() + r cos() sin()

Substitute…x’ = x cos() - y sin()y’ = x sin() + y cos()

(x, y)

(x’, y’)

Page 11: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2-D RotationThis is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?• Rotation by –• For rotation matrices

y

x

y

x

cossin

sincos

'

'

TRR 1

R

Page 12: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2x2 MatricesWhat types of transformations can be

represented with a 2x2 matrix?

2D Identity?

yyxx

''

yx

yx

1001

''

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

y

x

s

s

y

x

y

x

0

0

'

'

Page 13: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2x2 MatricesWhat types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxyyxx

*cos*sin'*sin*cos'

y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x

*'

*'

y

x

sh

sh

y

x

y

x

1

1

'

'

Page 14: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2x2 MatricesWhat types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

yyxx

''

yx

yx

1001

''

2D Mirror over (0,0)?

yyxx

''

yx

yx

1001

''

Page 15: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2x2 MatricesWhat types of transformations can be

represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx

'

'

Only linear 2D transformations can be represented with a 2x2 matrix

NO!

Page 16: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

All 2D Linear Transformations

Linear transformations are combinations of …• Scale,• Rotation,• Shear, and• Mirror

Properties of linear transformations:• Origin maps to origin• Lines map to lines• Parallel lines remain parallel• Ratios are preserved• Closed under composition

y

x

dc

ba

y

x

'

'

yx

lkji

hgfe

dcba

yx''

Page 17: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Consider a different Basisj =(0,1)

i =(1,0)

q

q=4i+3j = (4,3) p=4u+3v

v =(vx,vy)

u=(ux,uy)

p

Page 18: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Linear Transformations as Change of Basis

Any linear transformation is a basis!!!

j =(0,1)

i =(1,0)pij = 4u+3v

px=4ux+3vx

py=4uy+3vy

v =(vx,vy)

u=(ux,uy)

puv pij

puv = (4,3)

puvpij

yy

xx

yy

xx

vu

vu

vu

vu

3

4

Page 19: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

What’s the inverse transform?

• How can we change from any basis to any basis?• What if the basis are orthogonal?

v =(vx,vy)

u=(ux,uy)

puv

j =(0,1)

i =(1,0)pij = (5,4)

pij

puv = (px,py) = ?= pxu + pyv

pijpuv

yy

xx

yy

xx

vu

vu

vu

vu

4

5-1-1

Page 20: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Projection onto orthogonal basisv =(vx,vy)

u=(ux,uy)

puv

j =(0,1)

i =(1,0)pij = (5,4)

pij

puv = (u·pij, v·pij)

pijpuv

yx

yx

yy

xx

vv

uu

vv

uu

4

5

Page 21: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Homogeneous CoordinatesQ: How can we represent translation as a 3x3

matrix?

y

x

tyy

txx

'

'

Page 22: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Homogeneous CoordinatesHomogeneous coordinates

• represent coordinates in 2 dimensions with a 3-vector

1

coords shomogeneou y

x

y

x

Page 23: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point• (x, y, w) represents a point at location (x/w, y/w)• (x, y, 0) represents a point at infinity• (0, 0, 0) is not allowed

Convenient coordinate system to

represent many useful transformations

1 2

1

2(2,1,1) or (4,2,2) or (6,3,3)

x

y

Page 24: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Homogeneous CoordinatesQ: How can we represent translation as a 3x3

matrix?

A: Using the rightmost column:

100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx

'

'

Page 25: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

TranslationExample of translation

11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2ty = 1

Homogeneous Coordinates

Page 26: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Basic 2D TransformationsBasic 2D transformations as 3x3 matrices

1100

0cossin

0sincos

1

'

'

y

x

y

x

1100

10

01

1

'

'

y

x

t

t

y

x

y

x

1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear

1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

Page 27: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Matrix CompositionTransformations can be combined by

matrix multiplication

wyx

sysx

tytx

wyx

1000000

1000cossin0sincos

1001001

'''

p’ = T(tx,ty) R() S(sx,sy) p

Page 28: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Affine Transformations

Affine transformations are combinations of …• Linear transformations, and

• Translations

Properties of affine transformations:• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

• Models change of basis

Will the last coordinate w always be 1?

wyx

fedcba

wyx

100''

Page 29: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

Projective Transformations

Projective transformations …• Affine transformations, and

• Projective warps

Properties of projective transformations:• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

wyx

ihgfedcba

wyx

'''

Page 30: Image Warping 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Some slides from Steve Seitz

2D image transformations

These transformations are a nested set of groups• Closed under composition and inverse is a member