iii. nonparametric spectrum estimation for stationary...

49
09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods - - [p. 3] Periodogram - [p. 13] Periodogram properties - [p. 17] Modified periodogram - [p. 19] Bartlett’s method - [p. 24] Blackman-Tukey procedure - [p. 27] Welch’s procedure - [p. 32] Minimum Variance (MV) Method - [p. 39] MultiTaper Method (MTM) - [p. 42] Appendices - [p. 49] References

Upload: lebao

Post on 18-Mar-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 1

III. Nonparametric Spectrum Estimationfor Stationary Random Signals

- Non-parametric Methods -

-

[p. 3] Periodogram-

[p. 13] Periodogram properties

-

[p. 17] Modified periodogram-

[p. 19] Bartlett’s method

-

[p. 24] Blackman-Tukey

procedure- [p. 27] Welch’s procedure- [p. 32] Minimum Variance (MV) Method- [p. 39] MultiTaper Method (MTM) - [p. 42] Appendices- [p. 49] References

Page 2: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 2

Goal: To estimate the Power Spectral Density (PSD) of a wss

process.

- Two main types of approaches exist:- Non parametric methods:

- do not rely on data model- based on FT and FFT

- Parametric methods: - based on different parametric models of the data:

- Moving Average: MA, - AutoRegressive: AR, - AutoRegressive

& Moving Average: ARMA

- based on subspace methods

Section focus

Page 3: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 3

Classical methods (discussed here)use FT of the data sequence or its correlation sequence

1) Periodogram• Easy to compute• Limited ability to produce accurate PS estimate

Recall PSD defined as:

( ) ( )j j kx x

k

P e R k eω ω∞

=−∞

= ∑

In practice: Rx (k) is approximated with estimated correlation sequence ( )xR k

Page 4: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 4

Recall: Biased correlation estimate of x(n), n=0,…N-1, defined as

( ) ( ) ( )1

*

0

1ˆ 0 1N k

xk

R k x k x k NN

− −

=

= + ≤ < −∑

10% L N≤

( ) ( )ˆ ˆL

j j kx

k LP e R k e L Nω ω−

= −

= ≤∑

( ) ( )1

1

Assume L=N-1

ˆ ˆN

j j kx

k NP e R k eω ω

−−

=− +

= ∑ periodogram

PSD estimate sometimes known as correlogram

Page 5: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 5

( ) ( ) ( )

( ) ( ) ( )

1*

0

*

1ˆ , 0 1

1 , for 0 0 1

N k

xk

R k x k x k NN

x k x k x k k NN

− −

=

= + ≤ < −

= ∗ − ≠ ≤ < −

( ) ( ) ( )

( ) ( )

*

*

1ˆ *

1

jx N N

j jN N

P e FT x k x kN

X e X eN

ω

ω ω

⎡ ⎤⇒ = −⎢ ⎥⎣ ⎦

=

( ) ( ) 21ˆ j jx NP e X e

Nω ω= Periodogram directly

defined in terms of data

Recall

( ) ( ) ( ) ( )DFTN Nx n x n w n X k= ⋅ ⎯⎯⎯→

Define:

Page 6: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 6

How to Compute the Periodogram

( ) ( ) ( ) ( )( )( ) ( )

DFT

22 1ˆ = , 0,... 1

N N

j k Nx N

x n x n X k

P e X k k NN

w n

π

= ⋅ ⎯⎯⎯→

= −

Rectangular window of length N

Zero padding xN (n) in the time-domain increases the number of frequency PSD points available

Page 7: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 7

Example: x(n) white noise

( )

( )

x

jx

R k

P eω

=

⇒ =

Page 8: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 8

( ){ } ( )

( ){ }

1

1

1

1

ˆ ˆ

ˆ

Nj jk

x xN

Nj k

xk N

E P e E R k e

E R k e

ω ω

ω

−−

− +

−−

=− +

⎧ ⎫• = ⎨ ⎬⎩ ⎭

=

( ){ } ( ) ( )

( )

( ) ( ) ( )

1*

0

1

| |

0

N k

x

x

x B B

E R k E x k xNN k R k

NN k k N

R k w k w k Now

− −

=

⎡ ⎤• = +⎣ ⎦

−=

−⎧ ⎫≤⎪ ⎪= ⋅ =⎨ ⎬⎪ ⎪⎩ ⎭

Average behavior of the periodogram

Page 9: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 9

( ){ } ( ){ }1

1

ˆ ˆN

j j kx x

k NE P e E R k eω ω

−−

=− +

• = ∑

( ){ } ( ) ( ) ( )| |

,0

x x B B

N k k NE R k R k w k w k N

ow

−⎧ ⎫≤⎪ ⎪• = ⋅ = ⎨ ⎬⎪ ⎪⎩ ⎭

( ){ } ( ) ( )( )1

1

ˆN

j j kx x B

k NE P e R k w k eω ω

−−

=− +

⇒ = ∑

( ){ } ( ) ( )1ˆ *2

jj jBx xE P e P e W eω ω ω

π=

21 sin( /2)

sin( / 2)N

Nωω

⎡ ⎤⎢ ⎥⎣ ⎦

Page 10: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 10

Note: the MATLAB function periodogram.m computes a “normalized”

periodogram defined as

( ) ( ) ( ) ( )( )( ) ( )

DFT

22 1ˆ = , 0,... 1

N N

j k Nx

sN

x n x n X k

P e X

w

k k NNF

n

π

= ⋅ ⎯⎯⎯→

= −

Normalization parameter (sampling frequency)

Page 11: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 11

( ) ( ) ( )0sinx n A n v nω φ= + +

{ }0 0

2( ) ( )2

1( ) ( ) ( )2

( ) ( )4

j j jx x B

j jv B B

E P e P e W e

A W e W e

ω ω ω

ω ω ω ω

π

σ + −

= ∗

⎡ ⎤= + +⎣ ⎦

Example: x(n) is 1 tone in white noise

[Px,f]=periodogram(x,[],'twosided',1024,fs);plot(f,10*log10(fs*Px))title('Periodogram'),ylabel('Magnitude

(dB)')xlabel('Frequency

(Hz)')

Computes the two-sided

periodogram(note: better to stick to one-sided when dealing with real-data)

To compensate for the MATLAB sampling frequency normalization (optional)

Page 12: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 12

x(n) = sin(2π*150*t) + 2*sin(2*π*140*t) + 0.1*randn(size(t)); fs

=1KHz

Example: x(n) is 2 tones in white noise

[Px,f]=periodogram(xn,[],‘onesided',1024,fs);plot(f,10*log10(fs*Px))title('Periodogram'),ylabel('Magnitude

(dB)')xlabel('Frequency

(Hz)')

Page 13: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 13

Properties of the Periodogram1)

Periodogram is biased when dealing with finite windows2)

Periodogram is asymptotically unbiasedi.e.,

lim ( ) ( )j jxN xE P e P eω ω

→+∞⎡ ⎤ =⎣ ⎦

3) Periodogram has limited ability to resolve closely spaced narrowband components

(limiting factor due to the rectangular window, the shorter the data length, the worse off) (not good)4) Values of the periodogram spaced in frequency by integer multiples of 2π/N are approximately uncorrelated . As data length increases, rate of fluctuation in the periodogram increases

(not good).5) Variance of the periodogram does not decrease as data length increases

(not good).In statistical terms, it means the periodogram is not a

consistent estimator of the PSD. Nevertheless, the periodogram can be a useful tool for spectral estimation in situations whereSNR is high, and especially if the data is long.

Page 14: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 14

xn

= sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024;

[6]

Comments (1)Periodogram has limited ability to resolve closely spaced narrowband components (limiting factor due to the rectangular window, the shorter the data length, the worse off) (not good)

Page 15: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 15

Comments (2)Variance of the periodogram does not decrease as the data length increases (not good).

( )4

lim var 0

var ( )

xj

N

jx x

P e

P e

ω

ω σ

→+∞⎡ ⎤ ≠⎣ ⎦

⎡ ⎤ =⎣ ⎦

For white noise x(n) one can show [Therrien, p.590]

Page 16: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 16

Comments (3)As data length increases, rate of fluctuation in the periodogram increases (not good).

Page 17: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 17

2. Modified Periodogram─

Apply a general window

wR (n) to x(n) prior to computing the periodogram (periodogram extension)

( ) ( ) ( ) 21ˆ j jnRx

nw nP e x n e

Nω ω

+∞−

=−∞

= ∑

( ) ( ) ( ) 21ˆ *2

jR

j jx xE W eP e P e

Nω ωω

π⎡ ⎤ =⎣ ⎦

Note: amount of smoothing is determined by the window type

Matlab implementation:Hs = spectrum.periodogram('Hamming'); create modified periodogram objectpsd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType',‘onesided') plot

Page 18: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 18

Example:

[6]

Note: lower Hamming window sidelobes, but wider mainlobes with the Hamming window than with the rectangular window

xn

= sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024; data length=100.

Hamming window Rectangular window

Page 19: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 19

3. Bartlett’s Method

( ) ( ) ( )1

1ˆ ˆD efine: K

kj jB x

kP e P e

Kω ω

=

= ∑

• Averages several periodograms (rectangular window applied to each)

• Leads to consistent estimate of the PSD

where K: number of segments in the data.

x(n)

…L

pointsL

pointsL points

n

x1

(n)

…n n n

x2

(n) xK (n)

12

1 0

1( ) | ( ( 1) ) |K L

j jnB

k nP e x n k L e

KLω ω

−−

= =

= + −∑ ∑

Page 20: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 20

Note:

( ) ( ) ( )1ˆ ˆvar var kj jB xP e P e

Kω ω⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦

Examples: ─

white noise

two sinusoids in noise

Page 21: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 21Following [2, Fig. 8.9]

Compare: basic periodograms / Bartlett estimatesPeriodogram of white

noise with variance 1.

Overlay 50 plots, N=32 & average.

Overlay 50 plots, N=128 & average.

Overlay 50 plots, N=256 & average.

Page 22: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 22Following [2, Fig. 8.14]

K: number of segmentsL: segment length

Bartlett estimatesof white noise N(0,1)

50-plot overlay, N=512 & average.

Overlay of 50 Bartlett estimates with K=4 & L=128, N=512, & average.

Overlay of 50 Bartlett estimates with K=8 & L=64, N=512, & average.

Page 23: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 23Following [2, Fig. 8.15]

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

Note: Spectral peaks broadening, why?

Bartlett estimates of 2 tones in white noise

A) 50-plot overlay, N=512, average.

B) Overlay of 50 Bartlett estimates with K=4 & L=128, N=512, & average.

C) Overlay of 50 Bartlett estimates with K=8 & L=64, N=512, & average.

Note: For a given data length N=K*L, tradeoff between good spectral resolution (large L) and reduction in variance (Large K)

Page 24: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 24

4. Blackman-Tukey (BT) Procedure

( ) ( ) ( )ˆ ˆM

j j kBT x

k MP e w k R k eω ω−

=−

= ∑

apply windowing to correlation samples prior to transformation to reduce variance of the estimator

where the window w(k) length is much smaller than data length, w(k) = 0 for |k| > M where M << N

Maximum recommended window length M<N/5

Page 25: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 25

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

BT estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512

Rectangular wind. length=21

Rectangular wind. length=41

Rectangular wind. length=81

Page 26: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 26

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

BT estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512

Hamming wind. length=81

Rectangular wind. length=81

Page 27: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 27

5. Welch’s Procedure─

Modification to the Bartlett procedure: Averaging modified periodograms

Dataset split into K possibly overlapping segments of length L

where

Window applied to each segment

All K periodograms are averaged

( ) ( ) ( )1

1ˆ ˆK

kj jw x

kP e P e

Kω ω

=

= ∑

( ) ( ) ( ) ( )1 2

0

1ˆL

k jx

n

k nP ewN

x nn ω−

=

= ∑window data x(n) located in Kth

segment

MATLABHs = spectrum.welch('rectangular', segmentLength, overlap %); define Welch spectrum objectpsd(Hs,xn,'Fs',fs,'NFFT',512); plot

Page 28: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 28Following [2, Fig. 8.17]

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

Welch estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512, overlap: 50%

Rectangular wind. length=16

Rectangular wind. length=64

Rectangular wind. length=128

Page 29: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 29Following [2, Fig. 8.17]

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

Welch estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512, overlap: 50%

Hamming wind. length=16

Hamming wind. length=64

Hamming wind. length=128

Page 30: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 30

Note: what do we gain with the Welch’s method?Reduction in spectral leakage that takes place

through the sidelobes of the data window

Page 31: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 31

Performance comparison

variability resolution Figure of merit

Periodogram 1 0.89 (2π/N) 0.89 (2π/N)

Bartlett 1/K 0.89 K(2π/N) 0.89 (2π/N)

Welch (50% overlap, triangular window)

9/8K 1.28 (2π/L) 0.72 (2π/N)

BT 2M/3N 0.64 (2π/M) 0.43 (2π/N)

[2, Table 8.7]

{ }{ }2

Definitions:

var ( )variability ( )

( )

figure of merit variability resoluti

normalized variance

should be as small on

.resolution mainlobe width a

as possibt its 1/2

le

jx

jx

P e

E P e

ω

ω

×⇒

power (6dB) down level

K: number of data segmentsN: overall data lengthL: data section lengthM: BT window length

All schemes limited by data length

Page 32: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 32

6. Minimum Variance (MV) Spectrum Estimate – Capon PSD

PSD estimate adapts itself to the data characteristics and exhibits smaller leakage amounts than previous schemes discussed.

• Provides better resolution than DFT based schemes.

• Basic idea behind MV PSD scheme:Estimate the power content estimated at a certain

frequency without being influenced by the power at other frequencies.

Design PSD estimate as a filterbank where each filter of length

P<=N (data length) adapts itself to data characteristics, i.e.,

-

has center frequency fi (spread between 0 and fs

)-

has bandwidth Δ∼fs

/P

(

filters spread over [0,fs

] )-

depends on data correlation matrix Rx-

designed so components at fi are passed without distortionand rejects maximum amount of out-of-band power [1, p.474]

Page 33: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 33

MV Spectrum Estimate, cont’

• Resulting PSD estimate is given as:

( ) 1

( 1)

ˆ ,

[1, ,..., ]

jMV H

x

j j P T

PP ee R e

e e e

ω

ω ω

=

=

[1, Section 9.5, p.474]

• MV PSD advantages/drawbacks:o Achieves higher resolution than that obtained with DFT schemes

o

Very sensitive to frequency partitioning selected need very fine frequency spacing to accurately measure PSD (computational costs may be an issue)

Page 34: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 34

( ) ( 1)1

ˆ , [1, ,..., ]j j j P TMV H

x

PP e e e ee R e

ω ω ω−−

= =

MATLAB implementation

1 1 1

1

Note:

( )

= ( ) ( )

H H HH Hx

H H H

e R e e U U e e U U e

e U e U

− − −

= Λ = Λ

Λ

[ ]

( 1)1

1

[1, ,..., ]

= FT( ), , FT( )

H j j PP

P

e U e e u u

u u

ω ω− − −

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

Page 35: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 35

[ ][ ]

1 1

11

1

2 211 P

P1 2

kk=1

( ) ( )

FT( ), , FT( )

FT( ), , FT( )

= (1/ )|FT( ) | +(1/ )|FT( ) |

= (1/ )|FT( ) |

H H H Hx

P

HP

P

Hkx

e R e e U e U

u u

u u

u u

e R e u

λ λ

λ

− −

= Λ

= Λ

×

⎡ ⎤+⎣ ⎦

⇒ ∑

( ) P2

kk=1

ˆ(1/ )|FT( ) |

jMV

k

PP eu

ω

λ=

Page 36: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 36

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0,0.1)x n n n

v n v n Nπ π= +

+

MV estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512,

Filter length: 6

Filter length: 16

Page 37: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 37

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000) ( ), ( ) ~ (0, )x n n n

v n v n N Kπ π= +

+

MV estimates of 2 tones in white noise, 50-plot overlay, & average, data size=512, NFFT=512,variable noise power

Noise ~N(0,0.1) Noise ~N(0,1)

Page 38: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 38

MATLAB Implementation

x=x-mean(x); % remove mean to prepare for covariance estimationxc=xcorr(x,P,'biased'); % compute covariance sequenceR=toeplitz(xc(P+1:end)); % compute covariance matrix[v,d]=eig(R);UI=diag(inv(d)+eps); % extract eigenvalues

VI=abs(fft(v,nfft)).^2;Px=10*log10(P)-10*log10(VI*UI);

In practice -

Pick P <N

-

Zero pad FFT to insure more accuratemeasurements

Page 39: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 39

7. MultiTaper Spectrum Estimate Method (MTM) (Thompson)•

Periodogram can be viewed as obtained by using a filterbank structure, (using rectangular windows).

Multitaper

method (MTM) can be viewed the same way, with different filters, i.e., different orthogonal windows applied to the full data length. Thompson (1982) proposed to use discrete prolate spheroidal sequences (DPSS). Other sequences can also be used.

[4, 5, 7][6, statistical signal processing, spectral analysis, non parametric methods]

Several independent PSD estimates are computed by pre-multiplying the data by orthogonal tapered windows designed to minimize spectral leakage.

Final PSD estimate obtained by combining set of PSD estimates

Page 40: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 40

7. MultiTaper Method (MTM) cont’

PSD estimate variance is reduced by using the full data over different windows. Since the data length is not shortened, the overall PSD bias is smaller than that obtained using data segments instead.

PSD estimate uses Km DSPS sequences of length N, bandwidth [-W, W] and order 0 to Km -1, where Km ≤2NW-1, typical choices for NW are 2, 2.5, 3, 4, 3.5.

•The time-bandwidth parameter NW balances the PSD estimate variance and resolution. MATLAB implementation uses 2*NW-1 sequences to form the estimate.

• As NW increases,-

More estimates of the power spectrum are combined to form the MT PSD estimate, and the variance of the PSD decreases, -

each estimate exhibits more spectral leakage (i.e., wider peaks) and the overall spectral estimate is more biased.

For each data set, there is usually a value for NW that allows an optimal trade-off between bias and variance. [6, statistical signal processing,

spectral analysis, non parametric methods]

Page 41: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 41

fs

= 1000Hz; N=1000; 2 sine components, Amplitude = [1 2]; Sinusoid frequencies f = [150;140]; Hs1 = spectrum.mtm(4,'adapt'); psd(Hs1,xn,'Fs',fs,'NFFT',1024)

Periodogram

MTM, NW=3/2 MTM, NW=4

MT estimates of 2 tones in white noise, data size=512, NFFT=512,

Note, as NW increases

• Variance decreases

• Peaks get larger

Page 42: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 42

Appendices

Page 43: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 43

The periodogram can be viewed as obtained by using a filterbank structure.

Recall periodogram defined for x(n), n=0,…N-1, as:

( )( ) ( ) 22 1ˆ = , 0,... 1j k Nx NP e X k k N

Nπ = −

Appendix A: Connections between Periodogram and filterbank

( ) ( ) ( ) ( )

( )

DFT 2 /

12 /

0

( )

( )

j kp NN N N

p

Nj kp N

N Np

x n x n w n X k x p e

X k x p e

π

π

+∞−

=−∞

−−

=

= ⋅ ⎯⎯⎯→ =

=

Page 44: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 44

For x(n) defined over a finite time window {x(n-N+1),…x(n)}

( ) ( ) ( ) ( )1

DFT 2 /

0( )

Nj kp N

N N Np

x n x n w n X k x n p e π−

=

= ⋅ ⎯⎯⎯→ = −∑( )h p

( ) ( ) ( ) ( )1

DFT

0( ) ( )

N

N N Np

x n x n w n X k x n p h p−

=

= ⋅ ⎯⎯⎯→ = −∑k=0, …N-1

Page 45: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 45

For x(n) defined over a finite time window {x(n-N+1),…x(n)}

( ) ( ) ( ) ( )1

DFT

0( ) ( )

N

N N Np

x n x n w n X k x n pp h−

=

= ⋅ ⎯⎯⎯→ = −∑

2xN (n) ( )( )2ˆ j k NxP e π

- 2 /

Filter ( )1( ) j kp N

H z

h p eN

π=

Periodogram DFT filterbank

k=0, …N-1( )( ) ( ) 22 1ˆ = j k Nx NP e X k

2 /j kp Ne π−

Page 46: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 46

xN (n)

2( )( )2 0ˆ j N

xP e π

0

Filter ( )1( ) , 0

H z

h p kN

= =

2 ( )( )2ˆ j NxP e π

- 2 /1

Filter ( )1( ) , 1j p N

H z

h p e kN

π= =

2

( )( )2 ( 1)ˆ j N NxP e π −

- 2 ( 1) /1

Filter ( )1( ) , 1j p N N

N

H z

h p e k NN

π −− = = −

( )( ) ( ) 22 1ˆ = j k Nx NP e X k

Page 47: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 47

xN (n)

2( )( )2 0ˆ j N

xP e π

0

Filter ( )1( ) , 0

H z

h p kN

= =

2 ( )( )2ˆ j NxP e π

- 2 /1

Filter ( )1( ) , 1j p N

H z

h p e kN

π= =

2

( )( )2 ( 1)ˆ j N NxP e π −

- 2 ( 1) /1

Filter ( )1( ) , 1j p N N

N

H z

h p e k NN

π −− = = −

Lowpass filter

Modulation term

( )( ) ( ) 22 1ˆ = j k Nx NP e X k

Page 48: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 48

2

2 / 2 ( 1) /

2 ( 1) / 2 ( 1) /

1 1 1(0)1(1)

( 1) 1

1/ N ( )( 1)1/ N

( 1)1/ N

Nj N j N N

N

j N N j N NN

Xe eX

X N e e

x nx n

x n N

π π

π π

− − −

− − − −

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥× ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎣ ⎦⎣ ⎦

⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Periodogram DFT matrix formulation

( )( ) ( ) 22 1ˆ = j k Nx NP e X k

May be viewed as a rectangular window applied to data before FT operation

k=0

k=N-1

Page 49: III. Nonparametric Spectrum Estimation for Stationary ...faculty.nps.edu/fargues/teaching/ec4440/ec4440-III-DL.pdf · 09/27/11 EC4440.MPF -Section III 1 III. Nonparametric Spectrum

09/27/11 EC4440.MPF -Section III 49

References[1] Statistical and Adaptive Signal Processing, D. Manolakis, V. Ingle, S. Kogon, 2005, Artech

House.

[2] Statistical Digital Signal Processing and Modeling, M. M. Hayes, 1996, Wiley.

[3] Modern spectral estimation, S. M. Kay, 1988, Prentice Hall.

[4] A. Victorin, Multi-Taper Method for Spectral Analysis and Signal Reconstruction of Solar Wind Data, MS Plasma Physics, Sept. 2007, Royal Institute of Technology, Sweeden, http://www.ee.kth.se/php/modules/publications/reports/2007/TRITA-EE_2007_054.pdf

[5] D.J. Thomson, “Spectrum estimation and harmonic analysis,”

Proc. IEEE, vol. 70, no. 9, pp. 1055–1096, 1982.

[6] www.mathworks.com

[7] T. P. Bronez, “On the performance advantage of multitaper

spectral analysis,”

IEEE Trans. on Signal Processing, vol. 40, no. 12, pp. 2941-2946, Dec. 1992.