ignition and stabilization of lean flames by nonequilibrium...

40
Christophe Laux Laboratoire EM2C / CNRS CentraleSupelec Work supported by: ANR PLASMAFLAME, ANR FAMAC, Chaire d’Excellence on Optical Diagnostics, INCA MUSAF III Toulouse, September 27-29, 2016 Ignition and Stabilization of Lean Flames by Nonequilibrium Plasmas

Upload: others

Post on 23-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Christophe Laux

Laboratoire EM2C / CNRS

CentraleSupelec

Work supported by:

ANR PLASMAFLAME,

ANR FAMAC,

Chaire d’Excellence

on Optical Diagnostics,

INCA

MUSAF III – Toulouse, September 27-29, 2016

Ignition and Stabilization of Lean Flames by

Nonequilibrium Plasmas

Page 2: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Contributors

• Da Xu

• Guillaume Pilla

• David Galley

• Diane Rusterholtz

• Séverine Barbosa

• Marien Simeni Simeni

• Sara Lovascio

• Sergey Stepanyan

• Deanna Lacoste

• Gabi Stancu

• Jonas Moeck (TUB)

• Jun Hayashi (Osaka)

2

• Maria Castela

• Benoît Fiorina

• Nasser Darabiha

• Axel Coussement

• Olivier Gicquel

• Denis Veynante

Page 3: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Motivation

• Improvement of combustion efficiency

• Ignition of lean or diluted flames

• Stabilization of lean flames

• Reduction of pollutant emissions (NOx, Soot)

• Control of thermo-acoustic instabilities

Potential benefits of

plasma-assisted combustion

Page 4: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Outline

• Nanosecond Repetitively Pulsed (NRP) discharges

• Demonstrations of plasma-assisted combustion:

• Lean flame stabilization

• Control of thermo-acoustic instabilities

• Acceleration of ignition at high pressure

• Fundamental mechanisms in NRP discharges:

• Chemical and thermal effects

• Hydrodynamic effects

• Numerical simulations

4

Page 5: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

5

Nanosecond Repetitively Pulsed (NRP)

discharges

Page 6: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

1 10 1000

0.2

0.4

0.6

0.8

1.0

O2,N

2 ion.

O2 elect.

N2 elect.

N2 vib.

elastic

O2,N

2 rot.

Fra

ctio

n o

f to

tal p

ow

er

E/N (Td=10-17

Vcm2)

O2 vib.

Motivation

Typical pulses:

10 ns, 5-30 kV

Applied at high frequency, 10-100 kHz

Nanosecond Repetitively Pulsed

(NRP) discharges

0 5 10 15 20 25 30 350

1000

2000

3000

4000

5000

6000

7000

Vo

lta

ge

[V

]

t [ns]

High E/N,

Typically > 100 Td

Aleksandrov et al, High Temp. 19, 1981 and Nighan, Phys. Rev. A 2, 1970

Page 7: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

7

Stabilization of Lean Premixed Flames

using Nanosecond Repetitively Pulsed

(NRP) discharges

Page 8: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

8

Mini-PAC burner:

25-kW Lean Premixed Propane-Air Burner

Air/Propane

Mixture

Cathode

Cylindrical wire anode

Pulse

discharge

generator

Bluff-body

0 5 10 15 20 25 30 350

1000

2000

3000

4000

5000

6000

7000

Vo

lta

ge

[V

]t [ns]

Page 9: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

9

Mini-PAC burner

Page 10: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

10

5 10 15 20

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

limit without plasma

Intermittent flame /

extinction

Fu

el

eq

uiv

ale

nc

e r

ati

o

Air flowrate, m3/h

Stable flame

limit with plasma

• Lean extinction limit decreased by about 10%

Electrical power < 1% of the flame power

Pilla, et al 2006

NRP: 2.3 mJ/pulse, PRF=30 kHz, Plasma power: 70 W

Stability regimes of mini-PAC burner

Page 11: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

11

Stabilization of

Larger Scale Combustors

Page 12: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

52-kW two-stage swirled gas turbine

injector

C3H8

Air

C3H8

10

0m

m

500 mm

Ignition Spark

Combustion chamber

Air: 105 m3/h

Propane: 2.1 m3/hMax power: 52 kWExit velocity: 40 m/s

Propane/air at 1 bar

Barbosa, Pilla, Lacoste, Scouflaire, Ducruix, Laux,

Veynante, Phil. Trans. Royal Society A, 373, 20140335,

2015

Page 13: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

13

Two-stage swirled gas turbine injectorPremixed propane/air, 52 kW, 1 atm

Combustion chamber

Propane

Swirled air

Swirledair

HV

Swirled air

Swirled air Propane

Propane

Mixingzone

Page 14: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Lower extinction limit of two-stage burner

Constant air flow rate: 105 m3/hWithout plasma With plasma, 30 kHz

2.1 m3/h Φ=0.47

Lean extinction limit reduced by

a factor 4

2.1 m3/h Φ=0.47

1.95 m3/h Φ=0.44

1.95 m3/h Φ=0.44

Extinction Ф= 0.4

1.8 m3/h Φ=0.4

1.8 m3/h Φ=0.4

1.65 m3/h Φ=0.37

1.35 m3/h Φ=0.3

1.2 m3/h Φ=0.27

Extinction with plasma

Ф=0.11

1.05 m3/h Φ=0.23

Page 15: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

15

Kerosene/air at 3 bar

• Reduction of the Lean Extinction Limit by a factor 2

• Power consumed by NRP discharge: < 1% of flame power

G. Heid et al, ISABE 2009

Without plasma With plasma, 100 kHz

Extinction: Φ = 0.21Extinction: Φ = 0.44

200 kW Turbulent Aerodynamic Injector

(ONERA/MERCATO)

HT

Page 16: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

16

Dynamic control of

thermo-acoustic instabilities

Page 17: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Closed loop control of a turbulent

swirled flame

17Lacoste, Moeck, Durox, Laux, Schuller, J. Eng. Gas Turb. Power, 135, Oct. 2013

Page 18: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Closed loop control of a turbulent

swirled flame

18

Page 19: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

19

Ignition of lean combustible

mixtures at 10 bar

Page 20: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

NRP vs Conventional

Ignition

20

C3H8/air (=0.7) mixture - 10 barConventional

NRP 5 ms

32 mm

10 ms 15 ms

5 ms 10 ms 15 ms

55 mJ

22 W

2.7 ms

30 kHz

82 pulses

57 mJ

16 W

3.5 ms

• 20% faster with NRP at high pressure due to more wrinkling

Page 21: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

21

FUNDAMENTAL MECHANISMS

Page 22: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

22

Chemical and thermal effects

of

NRP discharges

Page 23: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

23

Experimental approach

4.5 mm

NRP sparl

discharge

(10 kHz)grounded

electrode

Preheated

air at 1000 K

Study NRP discharge in air at 1000 K, 1 atm:

• 10-ns pulse

• 5.7 kV

• Gap: 4.5 mm

• 10 kHz

• 0.670.02 mJ/pulse

Page 24: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

24

Two-step ultrafast mechanism

for oxygen dissociation and heating

N2 + e → N2* + e (N2* = N2 A, B, C)Thresholds: 6.2, 7.4, 11.0 eV

N2* + O2 → N2 + O + O + DTDT = 1.0, 2.2, 5.9 eV

Measured quantities:

• Electrodynamics: U, I, Energy

• O atoms: TALIF

• N2 A: CRDS

• N2 B and N2 C: OES

• Electrons: Stark broadening

• Temperature: OES (Trot N2 C and Trot N2B)

Page 25: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Optical diagnostics: TALIF

• O atoms by TALIF • Temperature, N2B,

N2C by OES

25

Pulse generator / delay

ElectrodesPlasma

HV pulser

Digital oscilloscopePD UV

ultrafast

225 nm

Nd:YAG Dye Doubling /

mixing1064 nm /532 nm 570 nm

Power meter lens

BS

LIF collection

optics

Spectrometer ICCD

Page 26: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

26

HV pulse HV pulse

-20 0 20 40 60 80 100

0.0

2.0x1017

4.0x1017

6.0x1017

8.0x1017

1.0x1018

1.2x1018

1.4x1018

1.6x1018

1.8x1018

O d

ensi

ty [c

m-3

]

Time [s]

1/e lifetime = 25 s

TALIF measurements of O density

during one pulsing cycle (100 s)

• O lifetime in air: 25 s

• About half of the O2 is dissociated by the discharge

Obackground

Stancu, Kaddouri,

Lacoste, Laux,

J. Phys. D., 2010.

Page 27: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

-10 0 10 20 30 40 5010

12

1013

1014

1015

1016

1017

0

1

2

3

4

5

6

0

50

100

150

200

250

300

Time (ns)

N2(A)

N2(C)

Ab

so

lute

de

nsitie

s [

cm

-3]

N2(B)

02.0x10

17

4.0x1017

6.0x1017

8.0x1017

1.0x1018

1.2x1018

O (3P) density

1500

2000

2500

from N2(C-B)

from N2(B-A)

Te

mp

era

ture

[K

]

Temperature

0

10

20

30

40

Cu

rre

nt [A

]

Vo

lta

ge

(V

)

V Iconduction

E/N

[T

d]

27

Synchronized measurements of

V, I, temperature, densities

hheating =21±5%

Rusterholtz et al., J. Phys D., 2013

Electric energy:

670±20 J/pulse

hdiss. = 35±5%

Ultrafast heating:

900 K in 20 ns

50% dissociation

of O2

N2* + O2 → N2 + O + O + DT

Page 28: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Measured and predicted temporal profiles

of O and Temperature

28

Measurements: present work Simulations: N. Popov, AIAA 2013-1052, Jan. 2013

• Confirmation of the two-step mechanism of ultrafast

heating and oxygen dissociation

• Full reference test case for numerical simulations

Page 29: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

2 m

m

-1.5 μs 50 ns 200 ns 500 ns 900 ns

1.5 μs 3 μs 5 μs 10 μs 16 μs

29

Hydrodynamics

(fast Schlieren imaging)

• Hot channel

• Shock wave

300 K 1m/s

D.A. Xu et al., Appl. Phys. Lett. 99, 121502, 2011

1 kHz

1 mJ/pulse

Page 30: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Processes involved in flame

stabilization by NRP discharges

e-

N2(A)N2(B)N2(C)

O2N2(X)

N2(X) + 2 O + DE

DT

Thermal and hydrodynamiceffects

O22 O

Chemical effects: RH + O R + OH

Oxidation

Page 31: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

NUMERICAL SIMULATIONS

Castela, Fiorina, Coussement, Gicquel,

Darabiha, Laux Combustion & Flame, 166,

133-147, 2016

Page 32: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

32

Castela, Stepanyan, Fiorina, Coussement, Gicquel,

Darabiha, Laux., Combustion Symposium, Seoul, 2016.

3D DNS model of plasma-assisted

combustion

• Structured DNS solver – YWC with:

• Compressible reactive flow simulations

• Multicomponent mixture averaged transport properties

• Detailed chemistry

• Detailed combustion kinetics

• Simplified plasma kinetics:

• 20% of electrical energy into fast gas heating (<50 ns)

• 35% of electrical energy into fast O2 dissociation (<50 ns)

• 45% of electrical energy into N2 vibrational excitation

.

Coussement, Gicquel, Caudal, Fiorina, Degrez, J. Comp. Phys. 231, 5571 – 561, J. Comp Phys 2012

Page 33: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

33

Castela et al., Proceedings of the Combustion Symposium, Seoul, 2016.

3D DNS simulations and experiments

Page 34: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Ignition of lean propane-air mixture

by a train of 22 pulses, = 0.7, P = 2 bar

34

Interlectrode distance = 0.6 mm, 0.9 mJ/pulse

• Strong hydrodynamic effects at short gaps

Page 35: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Conclusions

• NRP discharges can efficiently stabilize lean flames and

control instabilities with < 1% of flame power:

• NRP discharges can accelerate lean flame propagation

thanks to wrinkling of flame surface

• Fundamental processes induced by NRP discharges• Production of O and heat: quenching of N2* by O2

• Hydrodynamic effects and shock waves

• Production of NO: quenching of N2* by O ?

• Many challenges remaining:• Real environments with turbulence and high pressures?

• How to reduce NOx?

• Demonstration in larger scale burners

Page 36: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

6th EUCASS Aerospace Thematic Workshop

Fundamentals of Aerodynamic Flow

and Combustion Control by PlasmasApril 9-14, 2017, Kochubei hotel, Pushkin, Saint Petersburg

36

onlinereg.ru/ATW-2017

Page 37: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

37

Page 38: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

38

Page 39: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

NRP vs Conventional

Ignition

39

C3H8/air (=0.7) mixture - 2 bar

Conventional

NRP 5 ms

32 mm

10 ms 15 ms

5 ms 10 ms 15 ms

55 mJ

22 W

2.7 ms

30 kHz

82 pulses

57 mJ

16 W

3.5 ms

Page 40: Ignition and Stabilization of Lean Flames by Nonequilibrium …musaf2016.onera.fr/sites/musaf2016.onera.fr/files/... · 2016. 10. 13. · Intermittent flame / extinction o Air flowrate,

Flame radius development

0 2 4 6 8 10 12 14 16 180

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 180

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 180

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 180

2

4

6

8

10

12

14

16

18

Ra

diu

s (

mm

)

Time (ms)

5 bar

Ra

diu

s (

mm

)

Time (ms)

3 bar

Audi

NRP-82 pulses

Ra

diu

s (

mm

)

Time (ms)

2 bar

Ra

diu

s (

mm

)

Time (ms)

10 bar

• 20% faster with NRP at high pressure due to more wrinkling

Xu et al, Plasma Chem Plasma Process, 36(1), 309-327, 2016