ieee smart grid vision for communications: 2030 and beyond

19
IEEE SMART GRID RESEARCH IEEE 3 Park Avenue New York, NY 10016-5997 USA IEEE VISION FOR SMART GRID COMMUNICATIONS: 2030 AND BEYOND

Upload: others

Post on 24-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEEE Smart Grid Vision for Communications: 2030 and Beyond

IEEE SMART GRID

RESEARCH

IEEE 3 Park Avenue New York, NY 10016-5997 USA

IEEE VISION FOR SMART GRID COMMUNICATIONS: 2030 AND BEYOND

Page 2: IEEE Smart Grid Vision for Communications: 2030 and Beyond

i

IEEE Vision for Smart Grid Communications: 2030 and Beyond

Editors: Dr. Sanjay Goel

Dr. Stephen F. Bush Dr. David Bakken

Page 3: IEEE Smart Grid Vision for Communications: 2030 and Beyond

ii

Trademarks and Disclaimers IEEE believes the information in this publication is accurate as of its publication date; such information is subject to change without notice. IEEE is not responsible for any inadvertent errors. The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published May 2013. Printed in the United States of America.

IEEE is a registered trademark in the U. S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

PDF: ISBN 978-0-7381-8460-9 STDV98261 Print: ISBN 978-0-7381-8461-6 STDPDV98261

IEEE prohibits discrimination, harassment, and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html. No part of this publication may be reproduced in any form, in an electronic retrieval system, or otherwise, without the prior written permission of the publisher.

To order IEEE Press Publications, call 1-800-678-IEEE.

Find IEEE standards and standards-related product listings at: http://standards.ieee.org/

Page 4: IEEE Smart Grid Vision for Communications: 2030 and Beyond

iii

IEEE Smart Grid Research has been obtained from sources believed to be reliable, and reviewed by credible members of IEEE Technical Societies, Standards Committees, and/or Working Groups, and/or relevant technical organizations. Neither IEEE nor its authors guarantee the accuracy or completeness of any information published herein, and neither IEEE nor its authors shall be responsible for any errors, omissions, or damages arising out of the use of this information. Likewise, while the author and publisher believe that the information and guidance given in this work serve as an enhancement to users, all parties must rely upon their own skill and judgment when making use of it. Neither the author nor the publisher assumes any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed. This work is published with the understanding that IEEE and its authors are supplying information through this publication, not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. IEEE is not responsible for the statements and opinions advanced in the publication.

Review Policy The information contained in IEEE Smart Grid Research publications is reviewed and evaluated by peer reviewers of relevant IEEE Technical Societies, Standards Committees and/or Working Groups, and/or relevant technical organizations. IEEE acknowledges with appreciation their dedication and contribution of time and effort on behalf of IEEE.

Page 5: IEEE Smart Grid Vision for Communications: 2030 and Beyond

v

Table of Contents

Foreword ................................................................................................................. xi

Acronyms and Abbreviations .............................................................................. xiii

PART I Introduction and Background ........................................................................1 Chapter 1

Smart Grid of the Future: Vision for Year 2030 ........................................................... 3

1.1 Abstract......................................................................................................................... 3 1.2 Introduction ................................................................................................................... 3 1.3 Overview of how the power grid works today ............................................................... 4 1.4 Drivers for enhancing communication in the electric grid ............................................. 8 1.5 Smart Grid communications: Impediments and realities .............................................. 8 1.6 Current and future visions of the Smart Grid ................................................................ 9 1.7 The objectives of the Smart Grid ................................................................................ 11 1.8 Role of communication in the Smart Grid ................................................................... 14 1.9 Communications vision ............................................................................................... 15 1.10 Layout of this document ............................................................................................. 16 1.11 Summary .................................................................................................................... 21 1.12 Citations ...................................................................................................................... 22

Chapter 2 How Power Grids Operate .......................................................................................... 24

2.1 Abstract....................................................................................................................... 24 2.2 Introduction ................................................................................................................. 24 2.3 System overview ........................................................................................................ 26 2.4 Synchronous generator .............................................................................................. 27 2.5 Interconnected grids ................................................................................................... 29 2.6 Transmission and distribution ..................................................................................... 31 2.7 The substation ............................................................................................................ 33 2.8 Operating principles of an interconnected grid ........................................................... 35 2.9 Managing the network ................................................................................................ 37 2.10 Protective relaying ...................................................................................................... 38 2.11 The control center ....................................................................................................... 39 2.12 Planning (operational and long-term) ......................................................................... 41 2.13 Learning from blackouts ............................................................................................. 41 2.14 Regulatory framework in the United States ................................................................ 43 2.15 New technologies ....................................................................................................... 44 2.16 Citations ...................................................................................................................... 45

Chapter 3 Control, Communications, and Signal Processing ................................................... 46

3.1 Abstract....................................................................................................................... 46 3.2 Introduction ................................................................................................................. 46

Page 6: IEEE Smart Grid Vision for Communications: 2030 and Beyond

vi

3.3 Control technology ...................................................................................................... 49 3.4 Vision .......................................................................................................................... 62 3.5 Challenges and issues ............................................................................................... 68 3.6 Chapter summary ....................................................................................................... 70 3.7 Citations ...................................................................................................................... 71

PART II Enabling Technologies for Smart Grid Communications ........................ 75 Chapter 4

Smart Grid Communication Technologies ................................................................ 77

4.1 Abstract....................................................................................................................... 77 4.2 Introduction ................................................................................................................. 77 4.3 Technologies for Smart Grid communications systems ............................................. 78 4.4 Power line communication.......................................................................................... 85 4.5 Power line–borne optical fiber .................................................................................... 92 4.6 Wireless media ......................................................................................................... 101 4.7 Other media .............................................................................................................. 119 4.8 Summary .................................................................................................................. 123 4.9 Recommendations and the future ............................................................................ 123 4.10 Citations .................................................................................................................... 125

Chapter 5 Information Theory and Network Science for Power Systems ............................... 128

5.1 Abstract..................................................................................................................... 128 5.2 Introduction ............................................................................................................... 129 5.3 Relevance of the theory to the Smart Grid ............................................................... 134 5.4 Information theory and network science ................................................................... 141 5.5 Vision ........................................................................................................................ 151 5.6 Challenges and issues ............................................................................................. 157 5.7 Summary .................................................................................................................. 159 5.8 Acknowledgments .................................................................................................... 161 5.9 Citations .................................................................................................................... 161

PART III Networking Support of Smart Grid ........................................................... 167 Chapter 6

Networking Technologies for Smart Grid ................................................................ 169

6.1 Abstract..................................................................................................................... 169 6.2 Introduction ............................................................................................................... 170 6.3 Smart microgrid communication scenario ................................................................ 172 6.4 Communication paradigms and architectures .......................................................... 174 6.5 Communication technologies ................................................................................... 180 6.6 Smart Grid communication technology evolution ..................................................... 186 6.7 The role of future Smart Grid communication .......................................................... 189 6.8 Conclusions .............................................................................................................. 191 6.9 Citations .................................................................................................................... 192

Chapter 7 Quality of Service Mechanisms and Traffic Characteristics................................... 195

7.1 Abstract..................................................................................................................... 195 7.2 Introduction ............................................................................................................... 195

Page 7: IEEE Smart Grid Vision for Communications: 2030 and Beyond

vii

7.3 Smart Grid model ..................................................................................................... 196 7.4 Data traffic sources in the Smart Grid ...................................................................... 197 7.5 Quality of service metrics ......................................................................................... 199 7.6 Quality of service mechanisms ................................................................................. 201 7.7 Trends and vision ..................................................................................................... 212 7.8 Summary .................................................................................................................. 217 7.9 Citations .................................................................................................................... 217

PART IV Data-Level Communication Technologies for the Smart Grid ............... 221 Chapter 8

Overlay Networks for Smart Grids ........................................................................... 223

8.1 Abstract..................................................................................................................... 223 8.2 Introduction ............................................................................................................... 224 8.3 Technology ............................................................................................................... 226 8.4 Vision ........................................................................................................................ 232 8.5 Challenges and issues ............................................................................................. 238 8.6 Summary .................................................................................................................. 240 8.7 Recommendations .................................................................................................... 241 8.8 Acknowledgments .................................................................................................... 244 8.9 Citations .................................................................................................................... 244

Chapter 9 Espousing Peer-to-Peer Communication for the Smart Grid ................................. 250

9.1 Abstract..................................................................................................................... 250 9.2 Introduction ............................................................................................................... 250 9.3 Communication requirements for the Smart Grid: the Internet of Energy (IoE) ....... 252 9.4 P2P technologies ...................................................................................................... 256 9.5 A proposed architecture for a P2P-enabled Smart Grid ........................................... 257 9.6 Related approaches ................................................................................................. 263 9.7 Summary .................................................................................................................. 264 9.8 The future P2P-enabled Smart Grid: challenges, opinions, and suggestions for its rollout 264 9.9 Citations .................................................................................................................... 266

PART V Security, Standards, and Regulation ....................................................... 269 Chapter 10

Smart Grid Security ................................................................................................... 271

10.1 Abstract..................................................................................................................... 271 10.2 Introduction ............................................................................................................... 271 10.3 Understanding the risks ............................................................................................ 282 10.4 Vision ........................................................................................................................ 287 10.5 Citations .................................................................................................................... 296

Chapter 11 Standards for the Smart Grid.................................................................................... 299

11.1 Abstract..................................................................................................................... 299 11.2 Introduction ............................................................................................................... 299 11.3 Current state of standardization ............................................................................... 301 11.4 Recommendations .................................................................................................... 306

Page 8: IEEE Smart Grid Vision for Communications: 2030 and Beyond

viii

11.5 Citations .................................................................................................................... 307

PART VI Emerging Technologies and Applications (Disruptive Technologies) . 309 Chapter 12

The Emerging Solid State Transformer and its Impact on the Electric Power Grid311

12.1 Introduction ............................................................................................................... 311 12.2 Solid state transformer ............................................................................................. 312 12.3 Communications aspects ......................................................................................... 318 12.4 DC Distribution networks and stability ...................................................................... 322 12.5 Citations .................................................................................................................... 323

Chapter 13 Wireless Beamed Power ........................................................................................... 327

13.1 Abstract..................................................................................................................... 327 13.2 Introduction to wireless beamed power .................................................................... 327 13.3 Preview of implications for Smart Grid communications .......................................... 328 13.4 The technology of wireless power beaming ............................................................. 329 13.5 Expected evolution of millimeter wave power beaming ........................................... 331 13.6 Summary: Smart Grid implications ........................................................................... 334 13.7 Recommendations .................................................................................................... 337 13.8 Citations .................................................................................................................... 339

Chapter 14 Quantum Key Distribution for the Smart Grid ......................................................... 345

14.1 The need for quantum key distribution ..................................................................... 345 14.2 Quantum key distribution basics .............................................................................. 346 14.3 Quantum key distribution schemes .......................................................................... 348 14.4 Limitations................................................................................................................. 350 14.5 The future of quantum key distribution on the Smart Grid ....................................... 350 14.6 Citations .................................................................................................................... 351

PART VII Author Biographies .................................................................................... 353

Page 9: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xi

Foreword

This document provides a vision of the communications-related aspects of the Smart Grid in the year 2030 and lays out the technology roadmap that will lead us to the vision.

The basic premise behind the Smart Grid is to improve the stability, efficiency, and robustness of the nation’s power grid through an integrated information network. Conceptually, the Smart Grid’s communication network would overlay the electricity distribution and delivery network, with a tightly controlled core and a more relaxed periphery. The Smart Grid is slated to provide new functions, such as demand response, two-way power delivery, and more precise phase synchronization, all of which will develop after the network is in place.

The document starts with some basic knowledge of the power grid and follows up with fundamental building blocks for the communication infrastructure that will accompany the Smart Grid. Subsequently, network architectures, including overlays, are discussed at length. We also discuss important issues such as standards, regulations, security, and disruptive technologies. The last part of the document discusses emerging technologies such as the solid state transformer, wireless beamed power, and quantum key distribution. Throughout the document, a careful distinction is made between communications capabilities and the specific technologies that are required to support those capabilities.

Page 10: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xiii

Acronyms and Abbreviations

AAR American Association of Railroads

AC alternating current ACE area control error

ADSS all-dielectric self-supporting

ADR automated demand response

AES advanced encryption standard AGC automatic generation control

AI artificial intelligence

AIS application interworking specification

AM amplitude modulation

AMI advanced metering infrastructure

AMR automatic meter reading

AP access point

API application programming interface ARIB Association of Radio Industries and Businesses

ASIC application-specific integrated circuits ATM asynchronous transfer mode

BACnet building automation and control network

BAN building area network

BB broadband

BD big data

BGP border gateway protocol

BSCCO bismuth strontium calcium copper oxide (bisco)

C2C consumer-to-consumer

CB circuit breaker

CDN content distribution network

CECED European Committee of Domestic Equipment Manufacturers CHP combined heat and power

CIM common information model

Page 11: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xiv

CMOS complementary metal–oxide–semiconductor

CoAP constrained application protocol

CoRE constrained and restful environment

CPP critical peak pricing

CSMA/CA carrier sense multiple access with collision avoidance CT current transformer CV continuous variables

CVR conservation voltage reduction CWDM coarse wavelength division multiplexing

DA distribution automation

DAG directed acyclic graphs

DC direct current

DER distributed energy resource

DESD distributed energy storage device

DG distributed generation

DGI distributed grid intelligence DHT distributed hash table

DLC distribution line carrier

DME disturbance monitoring equipment

DOE Department of Energy (U.S.)

DP dynamic pricing

DPWS devices profile for web services

DQ data quality

DR demand response

DRER distributed renewable energy resource

DSF dispersion shifted fiber DSO distribution system operator

DSSS direct sequence spread spectrum

DTC distributed TCP caching

DWDM dense wavelength division multiplexing

EDFA erbium-doped fiber amplifiers

Page 12: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xv

EMS energy management system

ESP energy service provider

ESS energy storage systems

EV electric vehicle

FACTS flexible alternating current transmission system FAN field area network FAP femto access point

FCC Federal Communication Commission (U.S.)

FDIR fault detection, isolation, and recovery

FERC Federal Energy Regulatory Commission

FID fault isolation device

FIFO first-in/first-out

FM frequency modulation

FRA fiber Raman amplifier FSO free space optics

GMPLS generalized multiprotocol label switching GPRS general packet radio service

HAN home area network

HEMS home energy management system

HetNet heterogeneous network

HR high reliability

HSDPA high speed downlink packet access

HSPA high speed packet access

HSUPA high speed uplink packet access

HUB home utility box HV high voltage IAN industrial area network

ICT information and communication technologies

IEC International Electrotechnical Commission

IED intelligent electronic device

IETF Internet Engineering Task Force

Page 13: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xvi

IFSF European petrol station control

IGBT insulated gate bipolar transistor

IGCT integrated gate commutated thyristor

IoE Internet of energy

IoT Internet of things

IP Internet protocol ISDN integrated services digital network

ISM industrial, scientific, and medical radio bands

ISO independent system operator

ISP Internet service provider

IVVC integrated volt-VAR control

KF Kalman filter

LAN local area network

LDPC low-density parity-check

LEM local energy market

LMC last mile communication LMR land mobile radio

LOS line of sight

LV low voltage

M2M machine-to-machine

MAC media/medium access control

MAN metropolitan area network

MBC model-based control

MDL minimum description length

MGM microgrid management

MIMO multi-input multi-output ML machine learning

MLF marginal loss factors

MMIC monolithic microwave integrated circuit

MOSFET metal-oxide-semiconductor field-effect transistor

MPC model-predictive control

Page 14: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xvii

MV medium voltage

MVS linear multivariable systems MW megawatts

NAN neighborhood area network

NB narrow band

NERC North American Electric Reliability Council NFC near field communication

NIST National Institute of Standards and Technology

NLOS non-line-of-sight NZ-DSF nonzero dispersion shifted fiber

OADM optical add/drop multiplexers

OFDM orthogonal frequency division multiplexing

OLT optical line terminal

OLTC on-load tap changer

OPF optimal power flow

OPPC optical phase power cable OPGW optical ground wire OSI open system interconnection

OXC optical cross-connect switch

P2P peer-to-peer

P&C protection and control

PBS pico base station

PHEV plug-in hybrid electric vehicles

PHY physical layer of the OSI model

PID proportional-integral-derivative

PKI public key infrastructure PLC power line communication/carrier

PMD polarization-mode dispersion PMU phasor measurement unit

POI point of interconnect

PPDR public protection and disaster relief

Page 15: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xviii

PQ power quality

PSTN public switched telephone network

PT potential transformer

PV photovoltaic

PWM pulse width modulation

QBER quantum bit error rate QC quantum communications

QIS quantum information science

QKD quantum key distribution

QoE quality of experience

QoP quality of power

QoS quality of service

REMPLI real-time energy management over power lines and Internet

RF radio frequency

RFID radio frequency identification

RM&D remote monitoring and diagnostics RMS root-mean-square

RMT random matrix theory

ROLL routing over low-power and lossy networks

RPL routing protocol for low-power and lossy networks

RS reserve service

RSVP resource reservation protocol

RTO regional transmission organizations

RTP real-time pricing

RTPB real-time power balance

RTU remote terminal unit SBS stimulated Brillouin scattering SCADA supervisory control and data acquisition

SDO standards developing organization

SDR software defined radio

SEMI semiconductor equipment manufacturing

Page 16: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xix

SiC MOSFET silicon carbide power metal-oxide-semiconductor field-effect transistor

SIP session initiation protocol

SIPS system integrity protection scheme

SLA service level agreement

SLL side lobe level

SM smart meter or smart metering SMF single-mode fiber

SMS short message services

SNMP simple network management protocol SOAP simple object access protocol

SP separation principle

SPM self-phase modulation

SRS stimulated Raman scattering

SSP space solar power

SST solid state transformer

STATCOM static synchronous compensator SUN smart utility networks

SVC static VAR compensator

T&D transmission and distribution

TCP transmission (transport) control protocol

TDMA time division multiple access

TOU time of use

TSS TCP support for sensor networks

TWACS two-way automatic communications system

UBB ultra high broadband

UDP user datagram protocol UHV ultra high voltage

UPFC unified power flow controller

UPnP universal plug and play

USN ubiquitous sensor networks

UWB ultra wideband

Page 17: IEEE Smart Grid Vision for Communications: 2030 and Beyond

xx

VAR volt-ampere reactive

VLCC Visible Light Communication Consortium

VoIP voice over IP

VPN virtual private network

VSI voltage source converter

VVO voltage/VAR optimization W3C World Wide Web Consortium

WAMS wide-area measurement system

WAMS-DD wide-area measurement system for data delivery

WAN wide-area network

WDM wavelength-division multiplexing

WFQ weighted fair queuing

WPT wireless power transmission

WRN wavelength routed networking

WSAN wireless sensor and actuator network

XML extensible markup language

Page 18: IEEE Smart Grid Vision for Communications: 2030 and Beyond

1

Part I

Introduction and Background

Page 19: IEEE Smart Grid Vision for Communications: 2030 and Beyond

3

Chapter 1 Smart Grid of the Future: Vision for Year 2030

Dr. Sanjay Goel, University at Albany, SUNY Dr. David Bakken, Washington State University

1.1 Abstract This chapter lays out the vision of the Smart Grid for the year 2030 from a communication perspective. It discusses the imperatives of the different stakeholders in this endeavor and the impediments to realizing this vision. First, we discuss how the current power grid works, including the role of generation, transmission, and distribution. Subsequently, we discuss the issues with the current grid and impediments to realizing the Smart Grid communications vision. This discussion is followed by the goals of the Smart Grid for different stakeholders and how communication should evolve to enable the functions slated to be supported in the Smart Grid.

1.2 Introduction Electricity is the lifeline of civilization. In most parts of the world, almost all facets of life depend heavily on electric power so that it is hard to imagine modern life without it. Electricity is also the most fundamental of infrastructures, because all other critical infrastructures such as water and transportation rely heavily on it. Large-scale blackouts in the recent past have demonstrated the critical role that electricity has played in maintaining our quality of life and productivity. More importantly, these blackouts have confirmed the increasing strain on the grid and its consequent brittleness when faced with such perturbations.

Fundamental electricity grid operations have not changed much since the 1930s, and their supporting data communications largely resemble the methods and means introduced in the 1970s. Although the general infrastructure remains the same, some technologies have changed since then, and the pace of change has greatly increased in recent decades.

An important and nontrivial engineering issue is the integration of renewable energy, such as wind, water, and the sun, into the grid. These sources of power are typically subject to the vagaries of environmental conditions, which introduce significant variability in supply. Further, they have