identifying and comparing ecosystem stressors in the ... · title: identifying and comparing...

1
Iden%fying and Comparing Ecosystem Stressors in the Eastern Bering Sea and Gulf of Alaska Stephani Zador and Kirs%n Holsman Alaska Fisheries Science Center, NMFS, NOAA, 7600 Sand Point Way NE, SeaJle, WA, 98115, USA; [email protected] Conclusions Goals Develop metrics to represent the condi1on of marine ecosystems in Alaska that can be used to: 1. establish reference points useful for Alaska’s Integrated Ecosystem Assessment (IEA) 2. enable comparisons across ecosystems in Alaska Approach provides a framework for deriving ecosystem reference points for management and can be used for ecosystem risk assessment and management priori1za1on. Climate change (future), mari1me ac1vi1es, coastal engineering, and fishing are the greatest ecosystem stressors in the eastern Bering Sea (EBS) and Gulf of Alaska (GOA). Survey approach needs to be op1mized to increase par1cipa1on; expert opinion should target specific habitats or pressures. Methods 1. Query EBS and GOA ecosystem experts on habitat (n=20) X pressure (n=22) interac%ons. 2. For each pressure x habitat interac%on, calculate the score (14) and certainty (14) of: 3 vulnerability indices: 1. Spa&al extent 2. Frequency 3. Trophic impact 2 Resiliency indices: 1. Impact resistance 2. Recovery &me Figure 1. Sec1on of matrix used to query ecosystem experts on habitat x pressure interac1ons in Alaskan marine ecosystems. 3. Calculate Risk and Ecosystem Condi%on: 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 1 2 3 4 5 9 10 11 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Habitat Risk : EBS Resiliency Vulnerability Results Most habitats scored low and moderate for risk Oceanic and hard boRom habitats had lowest risk scores. Ecosystem condi%on scores were low Climate change, coastal engineering, and mari1me ac1vity were the largest pressures of concern. Scores may be too sensi1ve to pressures (lower than expected). Uncertainty was high Lack of published papers on systemspecific vulnerability and response to pressures lead to high uncertainty penal1es. Survey response rate was low Matrix entry too 1me consuming. Subject areas oWen did not match exper1se of respondents. Figure 2. (Top) Habitat specific risk (cumula1ve for all pressures) for EBS and GOA ecosystems based on results of surveys from reviewers 1 and 2 (circles and triangles, respec1vely). Adapted from Samhouri and Levin (2012). Error bars represent uncertainty indices for each habitat (scored from 1 to 4; low to high). (BoRom) Pressure specific index scores for EBS and GOA ecosystems based on results of surveys from reviewers 1 and 2 (light blue and green lines, respec1vely). Values are based on areaweighted mean scores across habitats for each pressure and penalized for uncertainty. The dark blue line represents the mean value for both reviewers. Nonpenalized mean values are shown in the doRed gray line. Values at the center of the plot are the overall ecosystem score (out of 100), based on mean penalized scores for each pressure. Modified from Halpern et al. 2012. 15 0% 25% 50% 75% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1) Freshwater input 2) Sediment input 3) Nutrient input 4) Pollution (land) 5) Coastal engineering 6) Coastal development 7) Direct human impacts 8) Aquaculture 9) Fishing (Dem) 10) Fishing (Pel) 11) Fishing (IUU) 12) Climate change (SSL) 13) Climate change (SST) 14) Invasive sp. 15) HABs 16) Hypoxia 17) Pollution (ocean) 18) Maritime activity 19) Offshore development 20) Ecotourism Pressure scores : GOA ( 28 ïï> 15 ) 16 0% 25% 50% 75% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pressure scores : EBS ( 24 ïï> 16 ) 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 9 10 11 12 14 15 16 17 19 20 21 22 Habitat Risk : GOA Resiliency Vulnerability low med high 1) IT, Rocky 2) IT, mud 3) IT, Beach 4) IT, Salt marsh 5) Coastal, Seagrass 6) Coastal, Kelp forest 7) Coastal, Rocky 8) Coastal, Suspension reef 9) Coastal, soft benthic 10) Shelf, pelagic 11) Shelf, soft benthic 12) Shelf, hard benthic 13) Shelf, Ice 14) Oceanic, Soft benthic 15) Oceanic,Hard benthic 16) Oceanic, Deep soft benthic 17) Oceanic, Deep seamount 18) Oceanic, Vent 19) Oceanic, Soft canyon 20) Oceanic, Hard canyon 21) Oceanic, Upper pelagic 22) Oceanic, Deep pelagic Future Direc%ons Data collec1on: Streamline expert surveys by fi_ng the survey to the experts’ knowledge, thereby reducing the overall size and breadth of the survey. Convene a workshop to gather group consensus on es1mates and error. Data analysis: Conduct sensi1vity analysis on index and risk value results. Conduct cluster analysis to iden1fy habitats that respond similarly to pressures. Add human dimensions to matrix. Applica1on: Conduct risk assessment and management strategy evalua1ons (i.e., alter input values). Acknowledgements We thank MaR Baker, Mar1n Dorn, Sarah Gaichas, and George Hunt for contribu1ng their expert opinions on habitatstressor interac1ons. This poster is a contribu1on of PICES working group 28 “Development of Ecosystem Indicators to Characterise Ecosystem Responses to Mul1ple Stressors” The recommenda1ons and general content presented in this poster do not necessarily represent the views or official posi1on of the Department of Commerce, the Na1onal Oceanic and Atmospheric Administra1on, or the Na1onal Marine Fisheries Service.

Upload: others

Post on 16-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Identifying and Comparing Ecosystem Stressors in the ... · Title: Identifying and Comparing Ecosystem Stressors in the Eastern Bering Sea and Gulf of Alaska, ZadorHolsman_AMSS2013.pptx

Iden%fying  and  Comparing  Ecosystem  Stressors  in  the    Eastern  Bering  Sea  and  Gulf  of  Alaska  

Stephani  Zador  and  Kirs%n  Holsman  Alaska  Fisheries  Science  Center,  NMFS,  NOAA,  7600  Sand  Point  Way  NE,  SeaJle,  WA,  

98115,  USA;  [email protected]  

Conclusions  Goals  

Develop  metrics  to  represent  the  condi1on  of  marine  ecosystems  in  Alaska  that  can  be  used  to:      

1.  establish  reference  points  useful  for  Alaska’s  Integrated  Ecosystem  Assessment  (IEA)  

2.  enable  comparisons  across  ecosystems  in  Alaska  

•  Approach  provides  a  framework  for  deriving  ecosystem  reference  points  for  management  and  can  be  used  for  ecosystem  risk  assessment  and  management  priori1za1on.  

•  Climate  change  (future),  mari1me  ac1vi1es,  coastal  engineering,  and  fishing  are  the  greatest  ecosystem  stressors  in  the  eastern  Bering  Sea  (EBS)  and  Gulf  of  Alaska  (GOA).  

•  Survey  approach  needs  to  be  op1mized  to  increase  par1cipa1on;  expert  opinion  should  target  specific  habitats  or  pressures.  

Methods  1.    Query  EBS  and  GOA  ecosystem  experts    

on  habitat  (n=20)  X  pressure  (n=22)  interac%ons.  

2.    For  each  pressure  x  habitat  interac%on,  calculate  the  score  (1-­‐4)  and  certainty    (1-­‐4)  of:  •  3  vulnerability  indices:  

1.  Spa&al  extent  2.  Frequency  3.  Trophic  impact  

•  2    Resiliency  indices:  1.  Impact  resistance  2.  Recovery  &me  

Figure  1.  Sec1on  of  matrix  used  to  query  ecosystem  experts  on  habitat  x  pressure  interac1ons  in  Alaskan  marine  ecosystems.  

3.    Calculate  Risk  and  Ecosystem  Condi%on:  

0 20 40 60 80

020

4060

80

0 20 40 60 80

020

4060

80

0 20 40 60 80

020

4060

80

12 345

9

10

11

13

1

2

3

4

5

6

78

9

10

11

12

13

14

1516

17

181920 2122

Habitat Risk : EBS

Res

ilien

cy

Vulnerability

low

med

high

1) IT, Rocky2) IT, mud3) IT, Beach4) IT, Salt marsh5) Coastal, Seagrass6) Coastal, Kelp forest7) Coastal, Rocky8) Coastal, Suspension reef9) Coastal, soft benthic10) Shelf, pelagic11) Shelf, soft benthic12) Shelf, hard benthic13) Shelf, Ice14) Oceanic, Soft benthic15) Oceanic,Hard benthic16) Oceanic, Deep soft benthic17) Oceanic, Deep seamount18) Oceanic, Vent19) Oceanic, Soft canyon20) Oceanic, Hard canyon21) Oceanic, Upper pelagic22) Oceanic, Deep pelagic

Results  

Most  habitats  scored  low  and  moderate  for  risk  •  Oceanic  and  hard  boRom  habitats  had  lowest  risk  scores.  

Ecosystem  condi%on  scores  were  low  •  Climate  change,  coastal  engineering,  and  mari1me  ac1vity  were  the  

largest  pressures  of  concern.  •  Scores  may  be  too  sensi1ve  to  pressures  (lower  than  expected).  

Uncertainty  was  high  •  Lack  of  published  papers  on  system-­‐specific  vulnerability  and  response  to  

pressures  lead  to  high  uncertainty  penal1es.  Survey  response  rate  was  low  •  Matrix  entry  too  1me  consuming.  •  Subject  areas  oWen  did  not  match  exper1se  of  respondents.  

Figure  2.  (Top)  Habitat  specific  risk  (cumula1ve  for  all  pressures)  for  EBS  and  GOA  ecosystems  based  on  results  of  surveys  from  reviewers  1  and  2  (circles  and  triangles,  respec1vely).  Adapted  from  Samhouri  and  Levin  (2012).  Error  bars  represent  uncertainty  indices  for  each  habitat  (scored  from  1  to  4;  low  to  high).  (BoRom)  Pressure  specific  index  scores  for  EBS  and  GOA  ecosystems  based  on  results  of  surveys  from  reviewers  1  and  2  (light  blue  and  green  lines,  respec1vely).  Values  are  based  on  area-­‐weighted  mean  scores  across  habitats  for  each  pressure  and  penalized  for  uncertainty.  The  dark  blue  line  represents  the  mean  value  for  both  reviewers.  Non-­‐penalized  mean  values  are  shown  in  the  doRed  gray  line.  Values  at  the  center  of  the  plot  are  the  over-­‐all  ecosystem  score  (out  of  100),  based  on  mean  penalized  scores  for  each  pressure.  Modified  from  Halpern  et  al.  2012.  

15 0% 25% 50% 75%1

2

3

4

56

7

8

9

10

11

12

13

14

1516

17

18

19

20

1) Freshwater input2) Sediment input3) Nutrient input4) Pollution (land)5) Coastal engineering 6) Coastal development7) Direct human impacts 8) Aquaculture9) Fishing (Dem)10) Fishing (Pel)11) Fishing (IUU)12) Climate change (SSL)13) Climate change (SST)14) Invasive sp.15) HABs16) Hypoxia17) Pollution (ocean)18) Maritime activity19) Offshore development20) Ecotourism

Pressure scores : GOA ( 28 > 15 )

16 0% 25% 50% 75%1

2

3

4

56

7

8

9

10

11

12

13

14

1516

17

18

19

20

1) Freshwater input2) Sediment input3) Nutrient input4) Pollution (land)5) Coastal engineering 6) Coastal development7) Direct human impacts 8) Aquaculture9) Fishing (Dem)10) Fishing (Pel)11) Fishing (IUU)12) Climate change (SSL)13) Climate change (SST)14) Invasive sp.15) HABs16) Hypoxia17) Pollution (ocean)18) Maritime activity19) Offshore development20) Ecotourism

Pressure scores : EBS ( 24 > 16 )

0 20 40 60 80

020

4060

80

0 20 40 60 80

020

4060

80

0 20 40 60 80

020

4060

80

12

3

45

6

78

9

10

11

12

13

14

1516

17

18

19

20

21

22

123

4 567

9

10

1112

1415

16

17 192021

22

Habitat Risk : GOA

Resi

lienc

y

Vulnerability

low

med

high

1) IT, Rocky2) IT, mud3) IT, Beach4) IT, Salt marsh5) Coastal, Seagrass6) Coastal, Kelp forest7) Coastal, Rocky8) Coastal, Suspension reef9) Coastal, soft benthic10) Shelf, pelagic11) Shelf, soft benthic12) Shelf, hard benthic13) Shelf, Ice14) Oceanic, Soft benthic15) Oceanic,Hard benthic16) Oceanic, Deep soft benthic17) Oceanic, Deep seamount18) Oceanic, Vent19) Oceanic, Soft canyon20) Oceanic, Hard canyon21) Oceanic, Upper pelagic22) Oceanic, Deep pelagic

Future  Direc%ons  

Data  collec1on:    •  Streamline  expert  surveys  by  fi_ng  the  survey  to  the  

experts’  knowledge,  thereby  reducing  the  overall  size  and  breadth  of  the  survey.  

•  Convene  a  workshop  to  gather  group  consensus  on  es1mates  and  error.  

Data  analysis:  •  Conduct  sensi1vity  analysis  on  index  and  risk    

value  results.  •  Conduct  cluster  analysis  to  iden1fy  habitats  that  

respond  similarly  to  pressures.  •  Add  human  dimensions  to  matrix.  

Applica1on:    •  Conduct  risk  assessment  and  management  strategy  

evalua1ons  (i.e.,  alter  input  values).      

Acknowledgements  

We  thank  MaR  Baker,  Mar1n  Dorn,  Sarah  Gaichas,  and  George  Hunt  for  contribu1ng  their  expert  opinions  on  habitat-­‐stressor  interac1ons.  This  poster  is  a  contribu1on  of  PICES  working  group  28  -­‐  “Development  of  Ecosystem  Indicators  to  Characterise  Ecosystem  Responses  to  Mul1ple  Stressors”  The  recommenda1ons  and  general  content  presented  in  this  poster  do  not  necessarily  represent  the  views  or  official  posi1on  of  the  Department  of  Commerce,  the  Na1onal  Oceanic  and  Atmospheric  Administra1on,  or  the  Na1onal  Marine  Fisheries  Service.