ib chemistry on ionization energy and electron configuration

19
Periodic Table of elements divided into s, p, d, f blocks p block p orbital partially fill d block d orbitals partially filled transition elements f block f orbital partially fill s block s orbitals partially fill

Upload: lawrence-kok

Post on 11-May-2015

1.025 views

Category:

Education


7 download

DESCRIPTION

IB Chemistry on Ionization energy and electron configuration

TRANSCRIPT

Page 1: IB Chemistry on Ionization energy and electron configuration

Periodic Table of elements – divided into s, p, d, f blocks

p block • p orbital partially fill

d block • d orbitals partially filled • transition elements

f block • f orbital partially fill

s block • s orbitals partially fill

Page 2: IB Chemistry on Ionization energy and electron configuration

Periodic Table – s, p d, f blocks elements s block elements • s orbitals partially fill

p block elements • p orbital partially fill

d block elements • d orbitals partially fill • transition elements

1 H 1s1

2 He 1s2

11 Na [Ne] 3s1

12 Mg [Ne] 3s2

5 B [He] 2s2 2p1

6 C [He] 2s2 2p2

7 N [He] 2s2 2p3

8 O [He] 2s2 2p4

9 F [He] 2s2 2p5

10 Ne [He] 2s2 2p6

13 Al [Ne] 3s2 3p1

14 Si [Ne] 3s2 3p2

15 P [Ne] 3s2 3p3

16 S [Ne] 3s2 3p4

17 CI [Ne] 3s2 3p5

18 Ar [Ne] 3s2 3p6

19 K [Ar] 4s1

20 Ca [Ar] 4s2

21 Sc [Ar] 4s2 3d1

22 Ti [Ar] 4s2 3d2

23 V [Ar] 4s2 3d13

24 Cr [Ar] 4s1 3d5

25 Mn [Ar] 4s2 3d5

26 Fe [Ar] 4s2 3d6

27 Co [Ar] 4s2 3d7

28 Ni [Ar] 4s2 3d8

29 Cu [Ar] 4s1 3d10

30 Zn [Ar] 4s2 3d10

n = 2 period 2

3 Li [He] 2s1

4 Be [He] 2s2

Click here video s,p,d,f blocks, Click here video on s,p,d,f notation Click here electron structure

Video on electron configuration

f block elements • f orbitals partially fill

Page 3: IB Chemistry on Ionization energy and electron configuration

Periodic Table – s, p d, f blocks elements

Electron structure Chromium d block (Period 4)

1s2 2s2 2p6 3s2 3p6 4s1 3d5

[Ar] 4s1 3d5

Electron structure Germanium p block, Gp 4 (Period 4)

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2

[Ar] 4s2 3d10 4p2

Electron structure Lead p block, Gp 4 (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2

[Xe] 6s2 4f14 5d10 6p2

Electron structure Iodine p block, Gp 7 (Period 5)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5

[Kr] 5s2 4d10 5p5

Electron structure Cadmium d block (Period 5)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10

[Kr] 5s2 4d10

Electron structure Mercury d block (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d10

[Xe] 6s2 4f14 5d10

Gp 4 -4 valence electron Gp 7 - 7 valence electron

Gp 4 -4 valence electron d block – d partially filled d block – d partially filled

d block – d partially filled

Cr Ge

I Cd

Hg Pb

Page 4: IB Chemistry on Ionization energy and electron configuration

Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up

Electron filled according to 3 Principles

Click here to view simulation

1

1s

2s

2p

4Be - 1s2 2s2 5B - 1s2 2s2 2p1

1s

2s

2p

lower energy

High energy

Hund’s Principle • electron occupy orbitals singly first before pairing up

2

7N - 1s2 2s2 2p3

1s

2s

2p

High energy 8O - 1s2 2s2 2p4

Click here to view simulation

lower energy

Pauli Exclusion Principle • each orbital occupy by 2 electron opposite spin

3

4Be - 1s2 2s2 10Ne - 1s2 2s2 2p6

lower energy

High energy

Click here to view simulation

Page 5: IB Chemistry on Ionization energy and electron configuration

Electron Notation

s, p, d, f notation Complete configuration

Noble gas notation Condensed configuration

10 Ne 1s2 2s2 2p6

11 Na 1s2 2s2 2p6 3s1

12 Mg 1s2 2s2 2p6 3s2

13 Al 1s2 2s2 2p6 3s2 3p1

14 Si 1s2 2s2 2p6 3s2 3p2

15 P 1s2 2s2 2p6 3s2 3p3

16 S 1s2 2s2 2p6 3s2 3p4

17 CI 1s2 2s2 2p6 3s2 3p5

18 Ar 1s2 2s2 2p6 3s2 3p6

19 K 1s2 2s2 2p6 3s2 3p6 4s1

20 Ca 1s2 2s2 2p6 3s2 3p6 4s2

21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1

22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2

23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3

24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5

25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5

26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6

27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7

28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8

29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10

30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10

10 Ne [Ne]

11 Na [Ne] 3s1

12 Mg [Ne] 3s2

13 Al [Ne] 3s2 3p1

14 Si [Ne] 3s2 3p2

15 P [Ne] 3s2 3p3

16 S [Ne] 3s2 3p4

17 CI [Ne] 3s2 3p5

18 Ar [Ar]

19 K [Ar] 4s1

20 Ca [Ar] 4s2

21 Sc [Ar] 4s2 3d1

22 Ti [Ar] 4s2 3d2

23 V [Ar] 4s2 3d3

24 Cr [Ar] 4s1 3d5

25 Mn [Ar] 4s2 3d5

26 Fe [Ar] 4s2 3d6

27 Co [Ar] 4s2 3d7

28 Ni [Ar] 4s2 3d8

29 Cu [Ar] 4s1 3d10

30 Zn [Ar] 4s2 3d10

[Ne]

[Ar]

Positive/Negative Ion Atom

10 Ne 1s2 2s2 2p6 /[Ne]

11 Na+ 1s2 2s2 2p6 / [Ne]

12 Mg2+ 1s2 2s2 2p6 / [Ne]

13 Al3+ 1s2 2s2 2p6 / [Ne]

14 Si4+ 1s2 2s2 2p6 / [Ne]

15 P3- 1s2 2s2 2p6 3s2 3p6 /[Ar]

16 S2- 1s2 2s2 2p6 3s2 3p6 /[Ar]

17 CI- 1s2 2s2 2p6 3s2 3p6/ [Ar]

18 Ar [Ar]

19 K+ 1s2 2s2 2p6 3s2 3p6 /[Ar]

20 Ca2+ 1s2 2s2 2p6 3s2 3p6 / [Ar]

Noble gas notation Complete configuration

Page 6: IB Chemistry on Ionization energy and electron configuration

3p

3p

3p

3d

2s

1s

3d

2s

Energy level and sublevels

5 B 1s2 2s2 2p1

6 C 1s2 2s2 2p2

7 N 1s2 2s2 2p3

8 O 1s2 2s2 2p4

9 F 1s2 2s2 2p5

10 Ne 1s2 2s2 2p6

11 Na 1s2 2s2 2p6 3s1

12 Mg 1s2 2s2 2p6 3s2

13 Al 1s2 2s2 2p6 3s2 3p1

14 Si 1s2 2s2 2p6 3s2 3p2

15 P 1s2 2s2 2p6 3s2 3p3

16 S 1s2 2s2 2p6 3s2 3p4

17 CI 1s2 2s2 2p6 3s2 3p5

18 Ar 1s2 2s2 2p6 3s2 3p6

19 K 1s2 2s2 2p6 3s2 3p6 4s1

20 Ca 1s2 2s2 2p6 3s2 3p6 4s2

21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1

22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2

23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3

24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5

25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5

26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6

27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7

28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8

29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10

30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10

4s energy level lower than 3d

4s then 3d is fill

18Ar – 1s2 2s2 2p6 3s2 3p6

19K – 1s2 2s2 2p6 3s2 3p6 4s1

21Sc – 1s2 2s2 2p6 3s2 3p6 4s2 3d1

4s 3d

1s

2s

2p

3s

1s

2p

3s

4s

3s

2p

4s

Electron configuration

Electrons fill 4s first

Electron occupy 4s first then 3d

Page 7: IB Chemistry on Ionization energy and electron configuration

4s

3p

3p

3p

3d

2s

1s

3d

2s

Exception to d block elements

21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1

22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2

23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3

24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5

25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5

26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6

27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7

28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8

29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10

30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10

4s energy level lower than 3d 21Sc – 1s2 2s2 2p6 3s2 3p6 4s2 3d1

4s 3d

1s

2s

2p

3s

1s

2p

3s

4s

3s

2p

Electron configuration d block

24Cr – 1s2 2s2 2p6 3s2 3p6 4s13d5

24Cr – 1s2 2s2 2p6 3s2 3p6 4s2 3d4

29Cu –1s2 2s2 2p6 3s2 3p6 4s1 3d10

29Cu –1s2 2s2 2p6 3s2 3p6 4s2 3d9

✗ Half fill energetically more stable

Half fill energetically more stable

d block

4s energy level lower than 3d

Page 8: IB Chemistry on Ionization energy and electron configuration

3d 4s

4s energy level lower than 3d

d block Exception to d block elements

21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1

22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2

23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3

24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5

25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5

26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6

27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7

28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8

29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10

30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10

Electron configuration d block

21 Sc3+ [Ar]

22 Ti4+ [Ar]

23 V3+ [Ar] 3d2

24 Cr3+ [Ar] 3d3

25 Mn2+ [Ar] 3d5

26 Fe2+ [Ar] 3d6

27 Co2+ [Ar] 3d7

28 Ni2+ [Ar] 3d8

29 Cu2+ [Ar] 3d9

30 Zn2+ [Ar] 3d10

Noble gas notation Condensed configuration Positive Ions

Electrons lost from 4s then 3d

3d – filled 3d – higher energy

20Ca – [Ar] 4s2 3d0 21Sc – [Ar] 4s2 3d1 21Sc – [Ar] 3d2 4s2

3d

4s

3d

3d

4s

4s fill first – 4s2

4s – greater penetration/closer to nucleus 4s – lower in energy

3d once filled 3d e attracted by increasing nuclear charge 3d orbitals lower in energy - shield 4s e

21Sc2+ – [Ar] 3d2 4s0

4s – higher in energy 4s – e lost first

21 Sc [Ar] 3d1 4s2

22 Ti [Ar] 3d2 4s2

23 V [Ar] 3d3 4s2

24 Cr [Ar] 3d5 4s1

25 Mn [Ar] 3d5 4s2

26 Fe [Ar] 3d6 4s2

27 Co [Ar] 3d7 4s2

28 Ni [Ar] 3d8 4s2

29 Cu [Ar] 3d10 4s1

30 Zn [Ar] 3d10 4s2

Why electron fill 4s first? Why electrons lost from 4s first 4S – FIRST IN – FIRST OUT

lose 2 electron

1 2 3 4

Page 9: IB Chemistry on Ionization energy and electron configuration

3d

4s

4s

3d

4s

4s

3d

3d 3d

d block elements and ions

21 Sc [Ar] 3d1 4s2

22 Ti [Ar] 3d2 4s2

23 V [Ar] 3d3 4s2

24 Cr [Ar] 3d5 4s1

25 Mn [Ar] 3d5 4s2

26 Fe [Ar] 3d6 4s2

27 Co [Ar] 3d7 4s2

28 Ni [Ar] 3d8 4s2

29 Cu [Ar] 3d10 4s1

30 Zn [Ar] 3d10 4s2

4s

3d

4s

Electron configuration d block

d block

lose 3 e

Electron lost from 4s then 3d

lose 3 e

lose 2 e

21 Sc3+ [Ar]

22 Ti4+ [Ar]

23 V3+ [Ar] 3d2

24 Cr3+ [Ar] 3d3

25 Mn2+ [Ar] 3d5

26 Fe2+ [Ar] 3d6

27 Co2+ [Ar] 3d7

28 Ni2+ [Ar] 3d8

29 Cu2+ [Ar] 3d9

30 Zn2+ [Ar] 3d10

Positive Ions

4s energy level lower than 3d

Click here to view IE Click here to view IE Click here to view IE

Video on Ionization energy

Page 10: IB Chemistry on Ionization energy and electron configuration

Factors affecting ionization energy

Distance from nucleus Nuclear charge

Ionization energy (IE)

2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g) M2+ (g) + e

1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g) M+ (g) + e

Ionization energy

Distance near to nucleus – IE High Distance far away nucleus – IE Low

Nuclear charge high (more proton) – IE High Nuclear charge low (less proton) – IE Low

electron

Effective Nuclear Charge (ENC)/(Zeff) • Screening effect/shielding • Effective nuclear charge (ENC)/(Zeff) (Zeff) = Nuclear charge (Z) – shielding effect • Net positive charge felt by valence electrons.

Why IE increases across the period? Why IE decreases down a group ?

1 2 3

Higher electron/electron repulsion

Easier valence e to leave

IE – Low

Inner electron – shield valence e from positive charge

Strong electrostatic forces attraction bet nucleus and e

IE – High

Distance near Nuclear charge

Strong electrostatic forces attraction bet nucleus and e

IE – High

+3 +4 +5 +6

Nuclear charge increase

+6

Page 11: IB Chemistry on Ionization energy and electron configuration

Why IE increases across the period 2? IE drop from Be to B and N to O

IE increases across period 2

Nuclear charge increase

Strong electrostatic forces attraction bet nucleus and e

IE – High

1s

2p

2s

1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6

Li Be B C N O F Ne

period 2

IE drop from Be to B IE drop from N to O

Electron in p sublevel of B – further away from nucleus

Weak electrostatic force attraction between nucleus and electron

IE - Low

2 electrons in same p orbital - Greater e/e repulsion

Easier to remove e

IE - Low

Ionization Energy- Period 2

Page 12: IB Chemistry on Ionization energy and electron configuration

Why IE increases across the period 3? IE drop from Mg to AI and P to S

IE increases across period 3

Nuclear charge increase

Strong electrostatic forces attraction bet nucleus and e

IE – High

3s

3p

[Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p1

Na Mg AI Si P S CI Ar

Period 3

IE drop from Mg to AI IE drop from P to S

Electron in p sublevel of AI – further away from nucleus

Weak electrostatic force attraction between nucleus and electron

IE - Low

2 electrons in same p orbital - Greater e/e repulsion

Easier to remove e

IE - Low

Ionization Energy- Period 3

[Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 [Ne] 3s2 3p5 [Ne] 3s2 3p6

Page 13: IB Chemistry on Ionization energy and electron configuration

Period 3 – 3 shells/energy level

Valence e further from nucleus

Weaker electrostatic forces attraction bet nucleus and e

IE – Lower

1s

2p

2s

1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6

Li Be B C N O F Ne

Ionization Energy- Period 2 and 3 Why IE period 3 lower than 2? IE for Period 2 and 3

period 2

Na

1s

2s

2p

3s

3p

[Ne] 3s1

Mg AI Si P S CI Ar

Period 3

[Ne] 3s2 3p1 [Ne] 3s2 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 [Ne] 3s2 3p5 [Ne] 3s2 3p6

High shielding effect – more inner e

period 2

Period 3

Page 14: IB Chemistry on Ionization energy and electron configuration

Full electron configuration, 2.8/2.8.8

Most energetically stable structure

Difficult to lose electron

IE – High

1s

2p

2s

1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6

Li Be B C N O F Ne

Ionization Energy- Period 2 and 3 Why Ne and Ar have HIGH IE ? IE for Ne and Ar

period 2

Na

1s

2s

2p

3s

3p

[Ne] 3s1

Mg AI Si P S CI Ar

Period 3

[Ne] 3s2 3p1 [Ne] 3s2 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 [Ne] 3s2 3p5 [Ne] 3s2 3p6

neon

argon

Page 15: IB Chemistry on Ionization energy and electron configuration

2p

Successive Ionization Energy (IE) for magnesium

Successive (IE) Mg (2.8.2) show • IE increase when e removed

High jump in IE – presence of new inner shell

• Ion become increasingly more positive as more e are removed • Electron-electron repulsion decrease as more e removed

1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g) M+(g) + e

2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g) M2+(g) + e

Successive Ionization Energy (IE) for Mg ( 2.8.2)

Mg

1s2 2s2 2p6 3s2

1s

2s

3s

1st + 2nd electron

3rd to 8th electron

9th to 10th electron

11th to 12th electron 1st energy

level

2nd energy

level

3rd energy

level

Successive (IE) Mg (2.8.2) show • High jump in 2nd to 3rd IE • High jump in 10th to 11th IE

IE – High 1

2 IE – High Electron nearer to nucleus –

High electrostatic forces attraction

High electrostatic forces attraction

3 Successive (IE) Mg (2.8.2) show • Presence of 3 energy level

1st + 2nd e – outmost shell (3rd level)

3rd to 10th e – 2nd shell (2nd level)

11th to 12th e – innermost shell (1st level)

Page 16: IB Chemistry on Ionization energy and electron configuration

2p

Successive Ionization Energy (IE) for magnesium

Successive (IE) Mg (2.8.2) show • Presence of sublevel, 2s + 2p

Species form increase in proton/e ratio by losing e

• Slow gradual increase in IE from 3rd to 10th e

1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g) M+(g) + e

2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g) M2+(g) + e

Mg

1s2 2s2 2p6 3s2

1s

2s

3s

1st + 2nd electron

3rd to 8th electron

9th to 10th electron

11th to 12th electron 1st energy

level

2nd energy

level

3rd energy

level

Successive (IE) Mg (2.8.2) show • Succesive IE increasing

9th to 10th e inner 2s orbital 4

5 IE – High Species becomes more positively charged

3rd to 8th e in 2p orbital

6 M(g) M+(g) + e M+ M2++ e M2+

M3++ e Successive (IE) Mg (2.8.2) show • More difficult to lose e

More energy need to lose e IE – High

Successive Ionization Energy (IE) for Mg ( 2.8.2)

Page 17: IB Chemistry on Ionization energy and electron configuration

IB Questions on IE s block elements • s orbitals partially fill

p block elements • p orbital partially fill

1 H 1s1

2 He 1s2

11 Na [Ne] 3s1

12 Mg [Ne] 3s2

5 B [He] 2s2 2p1

6 C [He] 2s2 2p2

7 N [He] 2s2 2p3

8 O [He] 2s2 2p4

9 F [He] 2s2 2p5

10 Ne [He] 2s2 2p6

13 Al [Ne] 3s2 3p1

14 Si [Ne] 3s2 3p2

15 P [Ne] 3s2 3p3

16 S [Ne] 3s2 3p4

17 CI [Ne] 3s2 3p5

18 Ar [Ne] 3s2 3p6

19 K [Ar] 4s1

20 Ca [Ar] 4s2

Identify position elements P, Q, R, S and T Electron configuration : P – 3s2 3p6

Q – 4s2 4p5

R – 3s2 3p6 4s2

S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2

T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

n = 2 period 2

3 Li [He] 2s1

4 Be [He] 2s2

Element Group Period Classification

P 8/18 3 Noble gas

Q 7/17 4 p block

R 2 4 s block

S 5 4 d block

T 8/18 4 Noble gas

Element Group Period

X 2 3

Y 15 2

Z 18 3

X – 1s2 2s2 2p6 3s2

Y – 1s2 2s2 2p3

Z – 1s2 2s2 2p6 3s2 3p6

Answer Answer

1 2 Write electron configuration for X, Y and Z

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2

[Xe] 6s2 4f14 5d10 6p2

Write electron structure for ions:

• O - 1s2 2s2 2p4 • O2- -

• V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 • V3+ -

• Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9

• Cu2+ -

3

Answer

Write electron structure for ions:

• O - 1s2 2s2 2p4 • O2- -1s2 2s2 2p6

• V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 • V 3+ - 1s2 2s2 2p6 3s2 3p6 4s0 3d2

• Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9

• Cu 2+ - 1s2 2s2 2p6 3s23p6 4s0 3d9

Page 18: IB Chemistry on Ionization energy and electron configuration

s block elements • s orbitals partially fill

p block elements • p orbital partially fill

1 H 1s1

2 He 1s2

11 Na [Ne] 3s1

12 Mg [Ne] 3s2

5 B [He] 2s2 2p1

6 C [He] 2s2 2p2

7 N [He] 2s2 2p3

8 O [He] 2s2 2p4

9 F [He] 2s2 2p5

10 Ne [He] 2s2 2p6

13 Al [Ne] 3s2 3p1

14 Si [Ne] 3s2 3p2

15 P [Ne] 3s2 3p3

16 S [Ne] 3s2 3p4

17 CI [Ne] 3s2 3p5

18 Ar [Ne] 3s2 3p6

19 K [Ar] 4s1

20 Ca [Ar] 4s2

n = 2 period 2

3 Li [He] 2s1

4 Be [He] 2s2

4

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2

[Xe] 6s2 4f14 5d10 6p2

5 Successive IE of X is shown below Predict the group and arrange in order of increasing proton number

Element 1st IE 2nd IE 3rd IE 4th IE

P 746 1423 7689 10456

Q 920 1768 14578 21343

R 587 1134 4890 6453

S 542 1045 4121 5412

Answer All in Gp 2 – 2 valence electron Order increasing proton number Q, P, R, S Reason- Gp 2, cause 1st and 2nd IE low Q – Highest IE (less shell/energy level) S – Lowest IE (more shell/energy level)

Successive IE of X is shown below Determine electron structure of X

Successive IE (kJ/mol)

1314 3302 5436 7436 10647 13768 71564 84736

Answer: X = 6 outermost electron, Gp 6, 2.6 Reason - 1st IE to 6th IE are low.

IB Questions on IE

Page 19: IB Chemistry on Ionization energy and electron configuration

IB Questions on IE

Successive IE of sodium is shown below: State full electron structure and explain how the successive IE are related to Its electron configuration.

6

Answer: 1s2 2s2 2p6 3s1

Reason: • 1st electron easiest to remove, or 1st e in outmost shell/n= 3 energy level • Large increase in IE bet 1st and 2nd as 2nd electron located in inner level, n=2 • Next 8 electrons more difficult to remove as the ion now is positively charged • Large increase in IE between 9th and 10th , two innermost electron 10th/11th in n=1 (close to nucleus)

Successive IE of magnesium is shown below: Explain the large increase in 10th and 11th IE and the general trend of Increasing successive IE for Mg.

7

Answer: Reason: • 10th electron comes from 2nd energy level, (n=2) and 11th electron from n=1 • Electron in 1st energy level (n=1) closer to nucleus/ not shielded by inner electrons • Successive IE high as it is more difficult to remove e from a positively charged ion.

Successive IE for 4 element shown below a) Which element form charge +1 b) Predict C in periodic table c) Which element requires least amt energy to charge a gaseous ion which carry charge +3 d) Which element belong to same group?

8

Element 1st IE 2nd IE 3rd IE 4th IE

A 423 3021 4657 5867

B 754 1431 7741 10432

C 557 1814 2735 11843

D 597 1104 4942 6342

Answer: A – Gp 1, B - Gp 2, C – Gp 3, D – Gp 2 a) A- Gp 1 – lose 1 electron foming +1 b) C – Gp 3 c) Total IE = 1st IE + 2nd IE + 3rd IE A = 8101 B= 9926 C = 5106 D = 6643 C requires least – Gp 3 – lose 3 e easily d) B and D