· ia-1243 itrttl atomic energy commission cakes, k. and yiftah, s. •uclear data evaluation for...

115
&&JS|gjg Bpr *9 * r >:** v NNCLIAI B&TA fVAtHATION FOB PLIfTONI«M-24t JtMif' »',"• <,' IA-124J

Upload: others

Post on 18-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • &&JS|gjg Bpr *9 * r

    >:** v

    N N C L I A I B&TA f V A t H A T I O N

    FOB PLI fTONI«M-24t —

    JtMif' »',"•

  • IA-1243 Itrttl Atomic Energy Commission CAKES, K. and YIFTAH, S. •uclear Data Evaluation for Plutonltn-240 Mar 1972 108 p. 11 tables 20 figs.

    An evaluation was dona from 10 eV to 15 x 10 6 eV of the following 2*°Pu neutron cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n),(n,3n), and differential elastic. Also the number of pronpt neutrons per neutron-induced

    h / # W « M r H M W / j / f w w m r / .

    fission and the average elastic scattering cosine in the lab system were evaluated.

    Th* data are presented in graphical and tabular form.

    The experimental data were supplemented by optical model and statistical theory code calculations and by systematica.

  • IA-1243

    NUCLEAR DATA EVALUATION FOR PLUTONIIM-240

    M. Canar and S. Yiftah

    Israel Atomic Energy Commission May 1972

  • This research is partly supported by the Gfk, Kernforschungszentrum, Karlsruhe

  • I

    CONTESTS Page

    1. INTRODUCTION 1

    2. THERMAL ENERGY RANGE 2

    3. RESOLVED RESONANCES ENERGY RANGE 4

    4. AVERAGE RESONANCE PARAMETERS 7

    5. FAST NEUTRON ENERGY RANGE i 12

    5.1 Introduction. 12

    5.2 Optical model and statistical theory calculations ... 13

    5.3 Experimental data and recommended cross sections .... 21

    5.4 Other nuclear data 26

    REF3RENCES 28

    TABLES 33

    FIGURES 76

    APPENDICES 96

    A. Discussion of the optical model 96

    B. Nuclear data tables 101

  • II

    LIST OF TABLES

    Table I

    Table II

    Table III

    Table IV

    Table V

    Table VI

    Table VII

    Table VIII

    Table XX

    Table X

    Direct measurements of the 0.0253 eV cross sections.

    First resonance parameter evaluation.

    Recommended 0.0253 eV cross sections.

    Resonance cross section measurements after 19&3.

    Fu resonance parameters: experimental and recommended valr.es. 240. Pu resonance parameters: reconmended values. 240

    Fu average resonance parameters. Dumber of fission channels. 238

    U spherical optical model parameters in the keV range. 238

    U spherical optical model parameters in the HeV range. 240, Fu energy level scheme.

    http://valr.es

  • Ill

    LIST OF FIGUBES

    Fig.l -

    Ftg.2 -

    Fig.3 - Pu elastic scattering cross section from 0.1 to 2 MsV. 240 Fig.4 - Pu elastic scattering cross section from 1 keV to 15 MeV.

    Fig.5 - Pu radiative capture cross section from 1 keV to 15 MeV.

    Fig.6 -240 235 Fig. 7 - Pu to a fission ratios from 0.1 to 15 MeV.

    Fig.8 -

    Fig.9 -240 Fig.10 - Pu inelastic scattering cross section from 30 keV to 15 MeV.

    Fig.11 -

    Fig.12 - Pu inelastic excitation curve for the 142 keV level. 240 Fig.13 - Pu inelastic excitation curve for the 294 keV level.

    Fig.14 -

    Fig.15 -

    938 keV + 959 keV levels.

    Fig.16 - 2 MPu(n,2n) and (n,3n) cross sections from 5 to 15 MeV.

    Fig.17 - Pu differential elastic scattering cross section for 0.4 MeV

    Fig.18 - Pu differential elastic scattering cross section for 1-205 MeV neutrons.

    Fig.19 - *°Pu average elastic scattering cosine in the lab system from 10 keV to 15 MeV.

    Fig.20 - Pu number of prompt neutrons per fission from 0 to 15 MeV.

  • NUCLEAR DATA EVALUATION FOR PLUTONIUM-240

    M. Caner and S. Ylftah

    ABSTRACT

    An evaluation-was done from 10 eV to 15 x 10 eV of Che following Pu neutron cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n^n), and differential elastic. Also the number of prompt neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system were evaluated.

    The' data are presented in graphical and tabular form.

    The experimental data were supplemented by optical model and statistical theory code calculations and by systematics.

    1. INTRODUCTION

    The present work constitutes an updating of a 1967 (21)

    evaluation of plutonium-240 nuclear data . This reevaluation was made necessary by the accumulation of new experimental data, especially in the resonance region.

    Since these data are to be used in calculations for fast reactors, a wide energy range must be spanned. The range we cover extends from 1 meV to 15 MeV.

    These evaluated data were transmitted to the Kernforschungszentrum Karlsruhe for incorporation into the KEDAK file.

  • - 2 -

    2. THERMAL ENERGY XANSE

    This rang* is taken to extend from 1 meV up to the first resonance at 1 «V. The cross sections were calculated from the Breit-Wigner paramctera of toe 1 eV resonance; consequently the discussion of this resonance is included in the present section.

    The pertinent data were divided into two groups, one covering the direct determinations of the 0.0253 eV cross sections (Table I) and the other the parameters of the Breit-Wigner fits to the 1 eV resonance (Table V ) . The measurement of Pattendtn 59 for o"T (G.01-10 eV) corresponds to both groups but was' included in' the resonance parameters data.

    (22) Lounsbury 70 provides the nost recent measurement of o with the smallest assigned error (see Table I). This o value lies at the upper limit of the error range of the older average (pre-1959 measurements are excluded). The new average practically coincides with the Lounsbury 70 value.

    The Lounsbury 70 experiment at Chalk River consisted of 233 determining fission ratios .and capture-to-f lesion ratios for U,

    235 2*19 '" ' '" ' "'' U and Pu in a thermal flux. Appropriate mixtures of isotopes

    were irradiated and, the changes in the liotopic composition measured in a mass spectrometer. This experiment improved on earlier Chalk Elver a measurements (reported at the 1966 Paris Conference) by using a more 'HaxwellJLsn neutron spectrum and mixed V'- Fu samples so as to obtain mora precise information on fission ratios. As stated by the

    2 4 0 ' ' ' ''' ' ' '' -" - • ~ " - ^ •' •

    authors, the a ( . Fu) cross section was obtained as a by-product of this work; ^moreover;'the uncertainty in the Wastcott g-£actor was not included In the error quoted. Thuf the error may well be larger than that stated.

    . Let us turn now to the parameters of the first resonance. There are two sets of Ta data clustering around 2.1 and 2.4 meV respectively, the quoted errors being smaller than this difference

  • between the seta* To calculate the weighted average we reject the value of Abov 55; we increase the errors of Egelstaff 58, Simpson 59, Cote 59 and Ramakrishna 70 by a factor of 2, and of Zimmerman 56 by a facton of 1.3 (In Table V the authors' errors are shown and not ours). Concerning the total width r, the errors of Leonard 59 and Raraakrlshna 70 are increased by a factor of 2; and the high values of Abov 55, Zimmerman 56 and Egelstaff 58 are excluded. This procedure yields a value o£ r=32.6 ± 1.6 meV. The latter value implies r = 30.3 ± 1.6 rneV, which in turn means that the thermal capture cross section would be about 30 barns lower than the average from the direct measurements. As a compromise, the average thensal o is decreased and r Is increased. r_ was calculated from a. = 30 b (Leonard 61), o = (1.73 ± 0.15) x fc fo o 10 b (Cote 59) and our r.

    The numerical data are sunmarized in Tables II and III. The errors are calculated according to the formula

    This expression is obtained by making a Taylox expansion of Che Breit-f23) Wigner formula and calculating the variance .

    The reconmended 0.0253 eV cross sections are presented in Table III. The following Breit-Wigtter formulae were used:

    r r -*2 ny ,

    y (E-EJ 2 + (r/2) 2

    a « ir?t' r z

    2 a CE-E ) 2 + (r/2) 2 ° (E-E f + (r/2) 2 ^ /r/^2

    *X 2E - 656 408 b - eV

  • - A -

    r - r°- /E/i «v

    n n

    pot

    3. RESOLVED RESOHABCES .ENERGY BADGE

    There have been two main developments in this range. One is the large amount of resonance data that have poured forth from the Geel and Harwell centers, and the other is the discovery at Geel of resonance grouping in subthreshold fission and its subsequent explanation by Strutinsky's double well model.

    There are now 265 values of E and r , reaching up to 5.7 keV. To cope with the large amount of information a certain degree of mechanisation was found necessary. Consequently, the experimental parameter data were put on punched cards ,one resonance measurement per card; the resonance data (Table V) were printed by the computer. The print-out was checked against the original papers to minimize errors. This method, will also, simplify any further updating of the table. The recommended resonance parameters table (Table VI) was also produced in this fashion.

    In the absence of evidence to the contrary, all resonances listed were assumed to be s-vave. Table IV sums up the post-1963 data. For the 1955-63 data the reader is referred to BNL-325. ( 2 4 ) In what follows, the post-1967 experiments are reviewed.

    .. - - "•. -• • • ' Y l A Y -. _ •' Asghar mt-ml. ' did timerof-flight spectrometry, using

    .' •* - ' - - *• ' - ' : ' • ' i . ; • - • ' ' . : ; - • - O A Q

    the Harwell 45 MeV electron llnac. The targets were 98X Pu (the same samples as used at Geel). The transmission (T), radiative capture (C) and neutron scattering' yields (S) were measured;'' Area Analysis wss performed on the data. The transmission data cover the range

  • from 20 to 1460 eV, the r were found for an assumed r (In general n Y

    r 1» not sensitive to r ). 73 resonances vere observed. The capture data are below 750 eV; a r vs. r curve was produced for each resonance. The scattering data are in the range 10 to 300 eV; again r vs. r was obtained for each resonance. It was found that the n y three sets of data showed inconsistencies which were greater than the calculated statistical errors. The authors attributed this to non-uniformity of the sample thickness, they made least squares fits to the combined sets (T+S+€), (T+S), (S+C) and (T+C). In order to construct a unique set of data, the recommendations of the authors for the various energy ranges were followed:

    20- 500 eV : T+SK) values 500- 750 eV : K C values 750-1450 eV s T values

    The errors were increased by a factor of 3 throughout. In addition.

    appears in all the tables except the (T+S+C) table in Ref. 14; six resonances from the T table were added, at E r - 305.2, 318.4, 321.0, 419.3, 633.1 and 638.1 eV. For the resonance at 751 eV the authors' estimated fission width was included in Table V.

    Kolar and Bockhoff measured o. from 20 to 5700 eV. T

    Area analysis was performed for 264 resonances and r extracted. For 32 resonances between 38 and 820 eV, r and r were determined using the capture data of Weigmann and Sctanid. Both Harwell and Geel used

    240 the same sample batch of 74 g of 98* enriched Fu from the USAEC. The 60 MeV electron linac of CBfM was used.

    Weigmann and Schmid ' (Seel) used a capture T-ray detector in the 38r820 eV range. Area analysis was perfomed. With the aid of the Kolar 68 data, 36 values of T were obtained, and using •

  • - 6 -

    combining the capfire and the Kolar 68 transmission data. The resonance energy values appear to be taken froa Bockoff 66.

    Higneco and Theobald^ ' (Geel) studied subthreshold fission in the range 200 eV to 8 keV. The phenomenon of group bunching of resonances was observed; this was explained by Strutinsky's double hump model of the deformation potential energy. Area analysis waB performed, with r and r » < r > - 23.2 meV taken from Weigmann 68.

    ,Cao et al. (Geel) measured the scattering cross section in the range 18 eV to 2.5 keV using a B-loaded liquid scintillation detector, r was obtained for 41 resonances between 20 and 287 eV. n From an inspection of the data it is seen that the resonance energies are taken from Kolar 68; therefore we do not include them in the averaging process.

    '19) Ranakrishna et al. v (India) studied the 1 eV resonance using a crystal spectrometer. The target waB a Pu-Al alloy containing

    240 14Z Pu (isotopic purity - 902 Fu). The transmission data were analyzed by area and shape analysis. In Table IV we quote the weighted average of the data.

    The recommended parameters (Tables V and VI) are weighted averages of the experimental values. When no error was given, an estimated error was assigned. In some cases a choice had to be made between conflicting data'. He increased the experimental errors when there was a (not too large) discrepancy between different values, or when the quoted errors seemed to be too small compared with the errors in later similar experiments. As already stated in Section 2, the errors quoted in Table V are the ones given by experimenters and not the ones assigned here for weighting purposes.

    It can be seen that the neutron widths given in Cao 68' are systematically lower than those of the rest of the experimenters. Also, the errors or in Bockhqff 66 are consistently lower than those in the similar experiment in Kolar 68." " " " ' ' '

  • 7 -

    The r, values of Brooks 64 are upper limits, with the exception of the value for the 38 eV resonance. Except for the latter, the values are taken to be zero. Some resonances whose existence is dubious, for lack of corroborating evidence, are rejected; they are at 116 eV (Simpson 59), 1882.8 eV and 4497 (Backoff 66).

    Although Higneco 68 purports to cover the range 0.2 to 8 keV, the fission widths reported stop at 3.4 keV. Using the fact that the mean spacing between fission resonance groups is D__ = 650 £

    (17 25") 200 eV v * , we consider I* to be known up to 3.4 keV + D = 4.0 keV; beyond that value our resonance set is not complete. Consequently our complete resonance parameters set contains 204 resonances.

    4. AVERAGE RES0KAHCE PARAMETERS

    This section treats the s- and p-wave average resonance parameters and the corresponding statistical properties (Table VII).

    The average capture width Is calculated as the weighted average of 36 resonances; the result is • 23.5 ± 0.3 meV. We can compare this with the Weigmaiui 68 value of 23.2 ± 2,0 meV based on 32 resonances. Apparently the latter value was calculated by simple averaging and taking the standard deviation, which accounts for the difference in assigned errors. The capture width is assumed to be Independent of J and Jt. Recent absorption and transmission measurements by Hockenbury et al, give the value « 30 meV, in contrast to the now accepted lower value; these results were not included here.

    The average level spacing Is calculated as follows:

    < D > ' ( E m + i - E i ) / n

    tr() - 0.523 //m

  • - 8 -

    The second expression represents Che standard deviation of the mean, (27) and was derived by Slavlnskas and Kennett assuming a tfigner

    distribution for D,. In the integral plot of level spacings in Kolar 68 it is seen that the slope is constant up to the vicinity of 1400 eV (about 100 resonances). The number of resonances included in the calculation of the average spacing was varied around 100, and the number that gave the minimum average spacing was selected; thus the last resonance included was E__ at 1429.0 eV. The recommended average

    l-o is Jmif2 * w - 7 * °- 8 e V » which agrees with the Kolar 68 value. From the data of Asghar et al. we obtain a value of 19.9 eV from 72 resonances. It appears that in the latter work resonances of small neutron width were not detected; this would make the average larger, as is indeed seen to be the case from the fact that their reconoended s-wave strength function agrees with the Kolar value.

    The compound nucleus level spacing Is assumed to have (28) spin and energy dependences according to the Fermi gas model :

    *(E) - *(0).(1 +|) 2.exp[-2^" (SwR - vf)}

    ltn\ - C _ J(J+1) ^ " 2J+T e x? 2a*

    The neutron separation energy for the compound nucleus Is 8 . the level density parameter is a - 29.76 MeV"3; ( 3 0 \ The spin cutoff

    (28) parameter is o • 4 . From fitting the recommended a-wave.value, C - 28.72 eV is obtained.

    IL follows that, neglecting the energy dependence;

  • - 9 -

    The average reduced neutron width is calculated as follows:

    n i4i n l

    «() - i.4i /Ji n II

    The standard deviation of the mean is taken from Ref. 2? where a Porter-Thomas distribution is assumed. (The calculation of the same quantity directly from the sample yields a very similar value). The recommended average is < r n > T I - | / 2 = 1-5** ± °-21 meV (98 resonances).

    Using the p-wave strength functions derived from the optical model calculation (see below), we get:

    The recommended o-wave strength function is

    C / 2 - ^ZSn'4**™* m (1-02 * ° - i 5 > * 1

  • - 10 -

    where T , 1» the penetration factor. From our calculation for E - 1 keV, we deduce

    S 1' 2 - 0.70 x 1 0 - 4 o

    which is loser than the resonance data value.

    Similarly, we calculated the p-wav© strength functions and got:

    ,1/2 . 0.86 x 10~ 4 .

    .3/2 Sl 1.22 x 1 0

    - 4

    Sl " 1.10 x 1 0- 4

    where wc used the relation * s * - 1 / 2 + (t+i> s f 1 / 2

    In our previous work ' we recommended the value S, - 2.5 x 10 .

    The average fission width is « 3.5 + 1.3 meV, calculated from 173 resonances (17 with non-zero T.) in the range 450 «V to 4000 eV. (Use of other acceptable ranges did not affect the results significantly). The quoted error is the standard deviation of the aean.

    Trim channel theory calculations (see Section 5.2), the following energy dependence is recosaended:

    < r » $ W - fy . *(E) . «(j.« . (i + exp 0- 8 1 0 o:i"" 6 , E]

  • Table VIII shows n(J,II). The parity is n = (-1)*. The fission width and channel energy E are in eV.

    In the cases where a simple average of a given parameter was taken, ant estimate of the average experimental error (as opposed to the error due to the statistical distribution) was calculated. If it is assumed that each resonance parameter can be described by a

    taking variances

    7 1/2 *exp " f i> >»

    The total error was then computed as the square root of the sum of squares. This additional error was found to h^ negligible, amounting at most to a 10% increase in the error in the case of .

    It is assumed that the level spacings are distributed according to the Wigner distribution, the capture widths according to a 6-distribution, and the reduced widths according to the Porter-Thomas

    2 distribution (x with v=l). For the fission widths a problem arises since the bunching phenomenon results in most of the fission widths being zero. The resulting distribution: is apart from-not being

    2 ' (31) random in energy, much wider than a x -distribution . (We calculated 2 v ., - 2 /var r, « 0.1). However we limit ourselves to adopting err f r

    a x^-distribution, and so we recommend v_ = 1 (see discussion of fits In Section 5.2).

    The potential scattering cross section is taken to be

  • 5. FAST NEUTRON ENERGY RANGE

    5.1 Introduction

    We can divide this range into two parts: the resolved inelastic scattering range (1 keV -1,5 MeV) s and the unresolved inelastic scattering range (1.5 - 15 MeV).

    Nuclear reaction theory has reached a point \rhere it has become an aid not only in the qualitative understanding of nuclear phenomena but also as a quantitative tool for the evaluator. It is still true, nevertheless, that the calculations are of a semi-empirical nature, in the sense that a number of free parameters remain which must be obtained by fitting the experimental data.

    For our computations we used the optical model code

    ,(33) (32) ABACUS-2 but replaced its Hauser-Feshbach subroutine by the code

    The most significant new data in the fast neutron range are the total and scattering cross sections measurements of Smith et al. . It is also important the fact that the Pu level scheme is known up to 1.5MeV* 4 l\

    In the resolved inelastic scattering range we fit the 240

    Pu cross sections utilizing the spherical optical model and the statistical model of Hauser-Feshbach* ' and Moldauer* K In the unresolved inelastic scattering range we use the optical model

    238 with parameters that fit the U total and scattering cross sections. In Figures 1 to 20 we compare the cross sections and

    (21) other nuclear data recommended In this work with the data in IA-1152* ' and in the recent evaluation of Prince . For a (and a ) we plotted the data In the file KEDAK 69 (which Includes the Geel data* ' ' and not the data in Ref. 21.

    The tabulated cross section data are listed in Appendix B. Fur reasons of space only a few representstive angular distributions

    file:///rhere

  • - 13 -

    are listed. A print out of the numerical data of Ref. 51 was made

    available to us through the curtesy of the National Neutron Cross Section Center, BNL, USA.

    5.2 The optical model and statistical theory calculations The optical model code ABACOS-2 is described in Refs. 32

    (37) and 3 a deformed nucleus, it is felt that the spherical potential can give a sufficiently good fit to the total and scattering data which at present have an experimental accuracy of about 5-10%.

    238 ?̂7*1 C\SK") For U bith spherical and deformed potentials have been used. (39) Smith et al., report calculations for the deformed nuclei hafnium, gadolinium and samarium, UBing both approaches. They conclude that the deformed potential gives slightly better agreement. The spherical potential calculation however, has the advantage of requiring much less machine time, which allows a least squares fit to be performed.

    The statistical theory code NEARREX is described in Ref. 33. We did the calculations with the statistical factor Q«0,

  • - 14 -

    so that we used the Bauser-Feshhacb equations Modified to take Into Seconal: capture and fission competition with Inelastic scattering, and the width fluctuation correction.

    An addition was made so that the code would calculate the differential compound elastic cross section tr (6). This was done

    ce by assisting the shape of the partial cross section o_ (l,j,*'>j',Js8) to be the u s e as In the staple Bauser-Feshbacb theory.

    For the calculation of the fission cross section the linear dependence of the fission width on energy was replaced by the expressions of the channel theory of fission1 .

    Energy levels

    We adopt the level achate of Schmorak1 , plus additional levels as reported by Usher et al.* , up to 1.44 MeV; although ref. 41 lists levels up to 2 MeV, no spin information is available on them. The level scheme is presented In Table XI,

    Calculation of the fission cross section

    A Hill-Wheeler penetration factor was assumed:

    Tf(J,n,K,M) - T £ - [1 + eiep

  • 15

    (If we add to both E f and E the binding energy of the additional neutron, we obtain the more usual expression for T, in terns of the fission barrier and the excitation energy). Since it is assumed

    241 that most of the excitation energy of the compound nucleus Pu goes into deformation to the transition state, the fission channels are assumed to have characteristics similar to those of low-lying

    (42) rotational states of deformed nuclei

    The parameters E_ and *£,. are dependent on the quantun numbers J, II, K. In the present analysis we neglect this dependence and we take

    N f(J,n) = K I M Tf(J,II,K,M)

    = n(J,ir).Tf

    where

    N. (J,II) * effective number of fission channels of given J,Ft

    n(J,I[) - total number of fission channels of given J,H (43) From previous analyses \ the K-bands observed la the

    fit of the angular distribution of fission fragments are KJI * -r - , -r-1 _ 3 (4?) which are mainly p-wave fission. The work of Higneco et al. as well (45) as the Byers data indicate s-wave fission and consequently a

    WI - j + band.

    In the calculation of the number of channels we include all the levels up to Jt"4 which are compatible with angular momentum conservation.

    The values of the K-rotational bands are found by analysis (43 44) of the fission fragment angular distributionsv * . W e calculated

    the number of fission channels n(J,IT) under the assumption that all the possible K-banda (KXJ)'are' present; and-taking Into" account that

  • - 16

    for J tbcr* la • two fold degeneracy due Co H • + •*. The value* n(J,I) a n displayed in Table VIII.

    A physical argument for the validity of including all the possible K-bands ia the folloving ( 4 6 ,* 7 , 3 1 ). 2 4 0 r u fission is described by a double veil potential; if the aecond barrier is lower than the firat and the compound nucleus stays a sufficiently long time in the second well (so aa to "forget" the old K-value), then the fission channels are the such sore numerous transition states of the second barrier with their own K-values. Experimentally, this picture results in an absence of channel effects in the angular distribution of the fiasion fragments, i.e. the anisotropy varies slowly with neutron energy)/ 4 7 5

    Tbe curvature #0). was obtained by fitting the average s-vave parameters (see Section 4);

    " S > J " 1 / 2 - N

  • The calculated a_ agrees fairly well vith the experimental valueB (Figs. 8,9) except above the threshold where the simple one -well potential does not reproduce the af plateau. We recoaend the experimental a. in the whole range and renonoallze the calculated

    E1 partial reaction cross sections a .a , ,

  • - 18

    Fits to 2 3 8 D and 2*°?u

    recommended optical aodel parameters ' (51)

    Oar set of recommended optical model parameters had to be Modified so as Co cake Into account the data of Smith et al.

    240 on total and scattering croaa sections of Pu (which are the only 240 available data on these cross sections for Fa) • The present fit

    is described in what follow.

    In the range 100 - 1500 keV Smith's data was fitted using the ABACUS - HEaKRHC code. The data fitted were:

    oT(Smith)

    o„(calculated) - 2 a , (Smith) + o.(evaluated) X j-1 " f

    + ff (KE0AK 69)

    o ^ (Smith); .1-1,2

    a W (Smith, renormalized) n

    The total (o ) and partial inelastic (o >) cross sections were obtained by drawing smooth "eyeguide" curves through Smith's experimental points and assigning to them error bars which reflect the experimental error and the presence of spurious structure in the data. o„ (calculated) it consistently larger than o^CSmich) but within the error bars of the latter. Also,the error of o„(calculated) is about 10Z, versus

    would not ensure a reasonable fit to o_t hence; we fitted a- and o„. The starting point of the fit was provided by the parameters of Smith et al. . Our best fit was obtained using Lambropoulos' energy independent parameters for "HP* ', but without fluctuation factors (SoB«l)s the S o 6 have the' effect of increasing »„(„ " » o e + o c e ) »«

  • - 19 -

    the expense of a , .

    From the resolved resonance parameters we calculated average crass sections , » and over the ranges 1 - 2 keV (57 resonances) and 2-4 keV

  • - 20 -

    l.S MeV < E < 3.5 MeV VR1 - (44.375 - 1.25 E)MeV VIM - (6.407 - 0.178 E)MeV

    3.5 MeV * E < 10 MeV VRE - (38.115 + 0.5385 E)MeV

    vm - (5.517 + 0.0763 E) MeV

    10 MeV * E < 15 MeV

    V M =• (34.5 + 0.90 E)MeV VIM - (-4.36 + 1.064 E) MeV

    0.001 MeV s E < 15 MeV VSR - 7.5 MeV

    a - 0.47 F R - 1.32 F o b - 1.00 F

    Our optical model parameters are compared to those of other authors In Table* IX and X.

  • 5.3. Experimental Data and Recommended Cross Sections

    Total cross section (Figs, 1, 2)

    Smith et al. made transmission measurements in the 240 range 0.1 to 1.5 MeV. The target vas a 54g sample of =100% Pu

    combined with 1.3 wt % Al. The results were corrected for the Al content and averaged over 25 keV intervals. The final results are shown in Fig. 1 together with our recommended curve. The structure near 530 keV is ascribed by the authors to uncertain correction of a large Al resonance in this region. The error in the data was estimated to be 5%.

    The total cross section was calculated with the ABACUS-

    NEARREX code from 1 keV to 15 MeV (Section 5.2).

    Total and differential elastic scattering cross sections (Figs. 3, 4 and 17,18

    Smith et al. made time-of-flight measurements in the range 0.3 to 1.5 MeV (see discussion of o_). The differential cross section was determined in steps of -50 keV and at 8 angles between 25 and 155 , The distributions were least-square fitted with

    °n " Z7 5

    1 + I v i p j < c o s 6 > i-1 x 1

    o and the w, were determined from the fitting procedure. The estimated error in o(6) (as opposed to the error Aw. in the fit) was stated by the authors to be 5 - L0Z at forward angles and 30 - 50Z at backward anglen; we assumed the error to be given by Ac (8) • (0.24 - 0.16 cos 6) x a (6). The estimated error in o is 8 to 10X. The A3 keV inelastic n n scattering contribution was resolved below the incident neutron energy of 1.3 MeV.

    The elastic scattering cross, section was calculated with the ABA.CUS-NEARREX code from 1 keV to 15 MeV (Section 5.2).

  • Radiative capture crow section (Fift. 5)

    In the range froa 1 keV to 1.3 MeV a was calculated T

    with the ABACBS-HEaKKEX code (Section 5.2). In the range froa 2.5 to 15 MeV it was taken as

    equal to a of 2 3 8 U as given by Schmidt ( 2 8* (2 - 10 MeV) and Abagian ( 5 2 )

    (10 - 15 HeV). Two sets of experimental data are available: the data (53) of Fattenden, as reported by Ishlguro et al. , which agree with our

    (54) curve, and the preliminary data of Huckenbury et al. , which lie above our curve and are consistent with the pre-Geel value of = 30 meV . Below 4 keV our averages over the resolved resonances are plotted also.

    From 1.3 to 2.5 HeV

  • normalization of the subthreshold o f. According to Lemley et al. 235

    is lower below 100 keV than Davey's values by about 10%.

    We now enumerate the experimental data available.

    Henkel et al. (1957) measured fission ratios relative 235

    to U, using a back-to-back fission chamber, in the range from 0.27 to 8.1 MeV. The quoted errors vary from 10% - 20% in the keV range

    235 to 7% in the MeV range. The U cross section is "essentially" that

    (59 > of Allen and Henkel . The cross sections and not the ratios are tabulated.

    Dorofeev and Dobrynin (1957) made absolute measurements using a fission chamber with the target coated on the walls and calibrated sources at the center. Cross sections are reported at 0.9 and 5 MeV, with quoted errors of 20% and 12% respectively.

    Nesterov and Smirenkin (1959) made measurements 239 relative to Pu, using a back-to-back fission chamber, in the range

    from 0.04 to 4 MeV. The cross sections and not the ratios are tabulated. The quoted errors vary from 15% below 0.3 MeV to 8% between

    239 0.3 and 1 MeV and U% above 1 MeV. The Pu cross section was taken as the average of the values of Hughes and Schwartz and of Hemmendinger et al. A t(p,n> He neutron source was used.

    Kazarinova et al. ' (1961) made an absolute measurement at 14.6 MeV, the flux being determined by counting alphas from the t(d,n) He reaction, and a measurement at 2.5 MeV relative to U. The quoted errors are 12% and 20% respectively.

    Ruddick and White ' (1964) made measurements relative 235 to U, using a back-to-back fission chamber, in the range from

    60 t-- 500 keV. The quoted errors in the cross sections are 20 - 35% below 150 keV and 20% above 150 keV. The energy resolution was between

    235 6 and 30 kaV. The a A U) normalization is given.

  • - 24 •

    Perkin (1965) made absolute measurements of the 240 235 fission cross section of Fu and U at 24 keV. A Sb-Be photoneutron

    source was used. The flux was measured by three independent methods: Ha bath, oil bath and B pile. The quoted error in the cross section is 17% and the energy resolution 10%.

    (45) Byers et al. ' (1966) made measurements from 20 eV to 1 *fev. The neutron source was a nuclear detonation. Below 10 keV the standard was the Li(n,a)t reaction; above 10 keV the standard

    235 was U(n,f); both sets of normalizations are listed. The errors in the point data are 10 - 50Z and in the average data 10 - 30%.

    (67) 235 Gilboy and Knoll (1966) made measurements relative to 0

    from 14 to 170 keV, with neutrons from the Li(p,n) 3e reaction. Samples were put in two identical Xe gas scintillation counters. The cross sections are averages over 30% lethargy Intervals. The quoted errors are 12% and 6%.

    (68} White and Warner *• ' (1967) made measurements relative 235 to U in a back-to-back fission counter. Values are given for four energies in the 1 to 14 MeV range, with quoted errors of 2%.

    Savin et al. l ' (1970) made measurements relative to 235

    D in the range 0.52 to 3.7 MeV, using a liquid scintillation detector and the tine-of-flight method. The quoted errors are 8 - 10% below 1 MeV and 4-5% above 1 MeV.

    The following data were preferred in constructing the 240 , OVt

    a f r , u P u ) / o f ( J J U ) curve: Gilbpy et al. (14 - 170 keV); Perkin, et al. (24 keV); Ruddick et al. (60 - 500 keV)j Savin et al. (520 keV - 3.7 MeV); White et al. (1 - 14 MeV); Henkel et al. (4 - 8 MeV only, 10% error

    • - ' 2 3 5 '"'•' -'"- ' r '••'•''•'•'' : '' '•- < '>'•

    assigned, U cross section from Ref. 59). The data of Dbrofeev et al. and Kazarinova et al. were found to be consistent with the preferred data.

  • - 25 -

    The recommended fission cross section between 1 and 4 keV is given as a smooth curve drawn through our calculated ; between 4 and 14 keV we interpolated a f; between 14 keV and 15 MeV, a- was calculated from the fission ratios.

    Averages were calculated by summing up the integrated Breit-Wigner line-shapes of the resolved resonances:

    2 2 2ir x r r\.

    ^ o r nr fr *"£* = ~EE L-E r

    r r r yielding (1-2 keV) - O.131±0.011b, and (2-4 keV) = 0.087±O.GO?b. These values are lower by a factor of 2 - 3 than the averages of Byers et al.. A high s-wave fission cross section is also obtained in the calculation of Gai et al. (as shown in the paper of Androsecko et al. ). On the other hand, L'Heriteau and Ribon recommend a low value (o~- * 0.007b). From integral experiments, Barre and

    (71) Buchard conclude that a. decreases to 0.01b at about 18 keV (Cadarache set 2). Total and partial inelaBtic cross sections (Figs. 10-15)

    Smith et al. made time-of-flight measurements of the differential Inelastic scattering cross sections from 0.3 to 1.5 MeV (see discussion.. of a_ and a ). Excitation cross sections were observed for levels at 42 ± 5, 140 t 10, 300 ±20, 600 ± 20, and 900 ± 50 keV, The error in the excitation curves is 10 - 50%, it is higher at incident energies above 700 k*V due to contamination by elastic scattering from the Al in the sample.

    We calculated o J and o , from threshold to 1.5 MeV. n - n r In Figs. 11 - 15 we compare Smith's data with S U M over our calculated excitation curves, as well as with Prince's evaluation and our

    (21) previous evaluation . Prince employs a deformed optical model code which takes' into account direct reaction contributions, to the two lowest excited states. As can be seen, our simpler approach is sufficient to fit the data satisfactorily.

  • - 26 -

    (a.2n) and (a.3n) cross sections (tit. 16)

    o. and o. w n calculated using th« statistical BOOSI, *• Oil following the procedure of Fearlsteia* '. lb* cross section for •sitting Dcutron* only is ô j " oni + O j a + o ^ - o x - a - o f. Ihe ratio COg-ZO «•* calculated using the formalise given In Ref. 72. Above the o. tasesaold, c. was calculated In the sane way and subtracted fro* a__; this nodal assuses that Knltiple neutron emission *n of the highest order takes place whenever possible.

    Toe threshold energies are 6.48 HeV for " Eu(n,2n)"'Pu and 12.1 MeV for Fa(u,3n) ̂ u . For toe level density parameter we used a - 29.76 Me*" 1.

    5.* Other Unclear Data

    average elastic scattering cosine In lab ayatea (Fig. 19)

    Hasher of proset neutrons par fission (Fig. 20)

    The data are taken frost the evaluation of Konshin and C73) Ksnero* . They rsnomslize4 Che published values to the spontaneous

    fission vslus «„r Cf) - 3.756, and the tberaal fission valuss * ( W) - 2.407, and u ( J,Ptt) • 2.874. Ihey also tabulate the data

    f (yii P of Savin at at.* ' which appear only In graph form In the original paper.

    Savin et «1.' ' (1970) Matured v_ in the range 0.6 to 5 HeV. Fission neutrons were detected with a liquid scintillator, and incident neutrons were selected by "a tiae-of-£ light asthod. The

    - ' 2 5 2 — " • '-'•" ' data were noraalliad to cf (v » 3.772). The quoted errors are 3 - iZ.

    " - Y751 '' ' ~ "J"' " ' De Vroey at al." ; (1966) nade measurements at 0.1 MeV,

    1 HeV (preliminary) and 1.6 KeV. .Fission neutrons were ..detected, with a. plastic scintillator. Incident neutrons were obtained using a pulsed

  • 235 — •ouxce. The data were normalized to U (v = 2.414). The quoted • H O T S are 7 and 4Z for the two reconmended values.

    Kuzminov (1962) made measurements at 3,69 and 15 MeV. Incident neutrons were obtained from the d(d,n) He and

    4 239 — t(d,n) He reactions. The data were normalized to Pu (v » 2.90). The quoted errors are 5Z.

    Other data included in the graphs are the fission spectrum measurements of Barton et al. } Sanders1 - and Engle^ . They agree aitn the microscopic data.

    The Kuzminov values are lower than the rest of the data, but provide the only information at 14 HeV. In some evaluations this point is included^ ' } and in some rejected^ * . In the present evaluation we opt for not including it. We make a linear fit to the data of Savin and De Vroey (except for the 1 MeV point) and extrapolate to higher energies. The recomnended value is v = 2.88 + 0.166*E (E in MeV).

  • - 28 -

    a) lef erencee which

    REJEREHCES

    appear In Tablet IV and V

    1. Abor 55 ABOV, Y.G., Conf. Acad. Sci. USSR on Peaceful Uses At. En. (Moscow 1955), p.294 (p.209 of English transl.)

    2 . Mlkitin 55 NmrtN, S. l a . et a l . , Ibid . , (p.•» of English transl. DSAEC, 1956).

    3. T l f n i n 56 zntlEEHAH, E . , PALEVSKI, B . , private coonunica-tion to DHL a956) . .

    *. Egelstaff 58 EGELSIAFF, P.A., CATCHER, D.B. , NICHOLSON, K.P., J. Nticl. En. i , 303 (1958).

    5 . Sistwm 59 SIMPSON, O.D., FUJBARTY, R.G., PIR-203 (1957). 6. Fattenden 59 PATTEKDEN, H.J., RAINEY, V.S., J. Nucl. En. 11,

    14 (1959). 7. Cota 59 COTE, R.E. et al., Phye. Rev. 114_, 505 (1959). 8. Leonard >9 LEONARD Jr., B.R., SEPP1, E.J., FRIESEN, W.J.

    Duel. Sci. Eng. 5., 32 (1959). 9. Leonard 61 LEONARD Jr., B.R., ODEGAARDEN, R.H., private

    coaHinication to BBL (1961); and HW-67219 (1960). 10 . Moxon 6 3 MOWN, M.C. , RAE, E . R . , NYCOCK, C M . , AERE-PR/NP4

    p.16 (1963). 11. Broolca 64 BROOKS, P.D., JOLLY, J.E., INDSHG-63, p.13 (1964). 12. Brers 66 BYERS, D.E., DIVED, B.C. and SILBERT, H.6.,

    COOT-660303 (Washington) Book II, p.903 (1966). 13. Bockhoff 66 BOCKHOFF, K.H. at al., "Nuclear Data for

    Reactors" IAEA, Vienna (1967), Vol.11, p.135 14. Asghar 68 ASGHAR, H., M0X0N, M.C. and PATTENDEN, N.J.

    EAM)C(DK) 103 AL (1968).

    15. Kolar 68 KOLAR, W. and BOCKHOFF, K.H., J. Nucl. En. 22 (1968) 299.

  • - 29 -

    16. Weigmann 68 MEIGMAUN, H. and SCHMID. I!., J. Nucl. En. tt (1968) 317.

    17. Migoeco 68 MIGNECO, E. and THEOBALD, J.P. Kiel. Phya. A112 (1968) 603.

    18. Cao 68 CAO, H.G. ec al., 1968 Washington Cent, paper D-6. 19. Ramakrishna 70 RAMAKRISBNA, D.V.S. and NAVALKAR, H.P., "Kuclear

    Data for Reactors", IAEA, Vienna (1970), Vol. I, p.553.

    b) General references

    20. CASER, M. and YIFIAH, S., "Huclear Data for Reactors", IAEA, Vienna (1970), Vol.11, p.735.

    21. YIFTAH, S., SCBMIDT, J.J., CAHER, M. and SEGEV, M., "Fast Reactor Physics'", IAEA, Vienna (1968), Vol. I, p.123; also:IA-1152 (1967).

    22. LOUNSBURY, M., DURHAM, R.W. and HANBA, G.C., "Nuclear Data for Reactors", IAEA, Vienna (1970), Vol. I, p.287.

    23. MAHDEL, J., "The Statistical Analysis of Experimental Data". John Wiley & Sons, N.Y. (1964).

    24. STEHN, J.R., GOLDBERG, M.D., WIENKR-CHASMAN, R., MOGHABGHAB, S.F., MAGDRHO, B.A., MAY, V.H., USAEC Kep. BNL 325, 2nd Ed. Suppl. No. 2 (1965).

    25. WE1GMAHN, B., Zeit, far Phys. 214. (1968) 7. 26. H0CKENBUB.Y, R.B. et al., 3rd Neutron Cross Section and Techn.

    Conf., KnoxsiiUe (1971). 27. SLAVIHSKAS, D.D. and KENHETT, I.J., Duel. Phys. 85 (1966) 641. 28. SCHMIDT, J.J., KFK 120/1 (1966). 29. HYDE, E,K., PERLMAN, I., SEABORG, G.T., "The Nuclear Properties

    of the Heavy Elements I", Prentice-Hall Inc., Englawood Cliffs, S.J. (1964).

    30. FACCMOT, 0. and SAETTA-BEK1CH5LLA, E., Energla Hucleare 15 (1968) 54.

    31. GAI, E.V. et al., Sov. J. Mucl. Phys. 10 (1970) 311. 32. ABERBACH, E.H., U.S. Rep. BNl 6562 (preprint) (1964).

  • - 30 -

    33. HOLDAUH, t.K. and EBGEXBRECHT, C.A., OSAEC Rip. ANL-6978 (1964). 3*. HAUSER, H. «ad FESHBACH, H., Phya. Rev. 87 (1952) 366. 35. MDLMOTE, P.A., Rev. Mod. Phya. 36 (1964) 1079. 36. ADERBACB, E.a. et al., USAEC R«p. KAPL-3020 (1964). 37. AOZCBACB, E.H. and MOORS, S.O. , Phy a. Bev. B135 (1964) 895. 38. DOaTOKD, C.L., "Hucl. Data for Reactors", IAEA, Vienna (1967),

    Vol.1, p.429. 39. SMITH, A.B. and SHERWOOD, G., USAEC Rep. ANL-7410 (1969) p.11. 40. HHEELEE, J.A., "Fast Neutron Physics", Vol. II, MARIOS, J.B.

    and BOHLER, J.I., ed., John Wiley s Sons (1963). 41. SCfiWRaK, H.R., Hud. Data B 4. (1970) 661. 42. DAVIDSON, J.F., "Collective Models of the nucleus", Academic

    Prece, N.Y. (1968). 43. LAMPHERE, R.W., "Phys. & Chen, of Pission", IAEA, Vienna (1965)

    Vol. 1, p.63. 44. HBIZEHBA, JT.R, et al., "end Synp. Phya. & Chen, of Fission",

    IAEA, Vienna (1969) p,403. 45. BIERS, D.H. et al., V.S. Eep. LA-3586 (1966) 46. BJ0BKH0LH, S. and SIKIITINSKY, V.M., Hud. Pbys. A136 (1969) 1. 47. AWROSEXKO, Kh. D. and SMRENKIN, G.N., Sov. J. of Nucl. Phys.

    12. (1971) 142. 48. UNSREK, I., SCHMIDT, J.J. and W01L, D., KFK 750 (1968). 49. VASTH., H. Report, Electrlcite de France, Direction des Etudes

    at Recberchea (Fab. 1968): Evaluation des donneea neutroniques de l'uraniui 238, ate.

    50. HIWORE, D. and B0D8S0K, P.E., Duel. Phya. 55 (1964) 673. 51. SHITB, A.B., LAHBROIOULOS, P., and WHALEN, J.F., Rucl. Sci.

    Eng. 47 (1972) 19. 52. ABACIAK «t al., HOC (CCP) - 11/U. 53. ISBIGURO, Y. at al., tad. Scl. Eng. 40 (1970) 25. 54. H0CKEHBDRY, •*#.••>«* al.i'Trana'i^'**iHud. Soc. 13 (1970', 299. 55. DAVEY, W.C.'j Kuici.'Set.' Eng. 32 (1968) 35.

  • - 31 -

    56. DAVEY, W.G., "Nuclear Daca for Reactors", 1AE*. Vienna (1970) Vol. II, p.119.

    57. LEMLEY, J.R., KEYWORTH, H.A. and DIVEN, B.C., Nucl. Sci. Ettg. 43 (1971) 281.

    58. HENKEL, R.L., NOBLES, R.A. , SMITH, R.K., USAEC Rep. AECD-4256 (1957).

    59. ALLEN, D.H. and HENKEL, R.L., "Progress In Nuclear Energy", Ser. I, Vol. II, p.l, Pergamon Press, N.Y. (1958).

    60. D0R0FEEV, G.A., DOBRYHIN, Y.P., J. Nucl. En. 5_, 217 (1957) (transl. from Russian).

    61. NESTEROV, V.G., SMIRENKIN, G.N., Soviet Pbys. JETP jS, 367 (1959). 62. HDGHES, D.J., SCHWARTZ, R.B., USAEC Sep. BNL 325, 2nd Ed. (1958). 63. HEMMENDINGER, A., et al., Proc. Int. Cotif. Peace. Uses At. En.,

    Geneva, 15 (1958) 344. 64. KAZARINOVA, M.I., ZAMYATIN, Yu. S., GORBACHEV, V.M., Soviet J.

    At. En. jS, 125 (1961). 65. RUDDICK, P. and WHITE, P.H., J. Nucl. En. 18 (1964) t.51. 66. PERKIN, J.L. et al., J. Nucl. En. A/B lj>, 423 (1965). 67. GILBOY, W.B. and KNOLL, G., KFK 450 (1966). 68. WHITE, P.H., WARNER, G.P., J. Nucl. En. 21, 671 (1967). 69. SAVIN, M.V. et al., Atomnaya Energiya 29 (1970) 218; INDC(CC)-

    8/TJ (1970) p. 16. 70. L'HERTTEAU, J.P. and RIB0N, P., EANDC(E) 126 L (1970). 71. BARRE, J.Y. and BOUCHARD, J., "Nuclear Data for Reactors", IAEA,

    Vienna (1970) Vol. II, p.465. 72. PEARLSTEIN, S., tJSAEC Rep. BNL 897 (1964). 73. KONSKIN, V.A. and MANERO, P., INDC(NDS)-19/N (1670). 74. SAVIN, H.V. et al., "Nuclear Data £or Reactors", IAEA, Vienna

    (1970) Vol. II, p.157. 75. DE VROEY, M. , FERGUSON, A.T.G. , STARFELT, N., J. Nucl. En. A/B

    20, 191 (1966). 76. KDZHINOV, B.D., USAEC transl. Rep. AEC-tr-4710 (1962). 77. BARTON, D.H., BARNARD, W., HANSEN, G.E., U.S. Rep. LAHS-2489 (1960).

  • - 32 -

    78. SANDERS, J.E., AERE X/H 167 Addendum (1958). 79. EMBLE, L.B., HANSEN, G.E. and POXTON, H.C., Nucl. Sci. Eng. B

    (1960) 543. 80. m i H OKE, F.L., J. Nucl. En. 22 (1968) 79. 81. CORNISH et al., AECL-510 (1956). 82. KBOPCBQESCZ, J. Kiel. En. 6. (1957) 155. 83. SOSE et al., 2nd Geneva Conf., A16 (1958) 34. 84. HALPERIH ct al., J. Icorg. Nucl. Chen. 9. (1959) 1. 85. HALKER et al., Can. J. Pbya. 38 (1960) 57. 86. BLOCK et al., Nucl. Sci. Eng. 8. (1960) 112. 87. TAITERSALL, AEEH-E 115 (1962). 88. CABELL, et al., J. Inorg. Nucl. Che*. 2S_ (1966) 2467. 89. SMITH, A.B. et al., "Nuclear Structure Study with Neutrons",

    North Holland (1966) p.508. 90. WIIAM0RE, D., "Nuclear Data for Reactors", IAEA, Vienna (1967),

    Vol. I, p.443. 91. CILBOT, W.B, et al., Nucl. Phye. 42 (1963) 86. 92. MADDISON, R.N., Nucl. Fhys. 54. (1964) 417. 93. HODGSON, P.E., "The Optical Model of Elastic Scattering", Oxford

    University Press, London (1963). 94. HODGSON, P.E., Annu. Rev. Nucl. Sci., 17 (1967) 1. 95. BOBS, A. and MOTTELSON, B.R., "Nuclear Structure", Vol. I,

    W.A. Benjamin, N.Y. (1969). 96. MAHER, J.V., et al., Phys. Rav. Lett. 25 (1970) 302. 97. LAMBR0POULOS, P., Nucl. Sci. Eng. 46 (1971) 356. 98. ABAGIAN, L.P., et al., "Group Constant* for Nuclear Reactor

    Calculations", Consultants' Bureau, New York (1964). 99. PITTERLE, T;A., "Nucl. Data for Reactors", IAEA, Vienna (1970),

    100. PRINCE, A., Paper CN-26/91, Conf. Nucl. Data for Reactors, Helsinki! (1970).

    101. HOLDADER, P.A., Conf. Neutron Cross Sect. Technol., Washington,D.C. (1966), p.613.

    1 0 2 . PATRICK, B . B . , SOHERBY, H.G. and SCHOHBERG, M . S . , J . Nucl . En. 24.

    (1970) 269 .

  • - 33

    TABLE I Direct measurements of the 0.0253 e? cross section

    Index Reference o (b) T o TCk) Coarsen ts

    1 CORNISH S 6 ( 8 1 ) 250 i 35 MASS spectrometer; quoted in APDA-218

    2 KROTCHISSKY 5 7 ( 8 2 5 460 * 45 Pile oscillator

    3 ROSE 58^ 8 3^ 370 i 40 Pile oscillator

    4 HALPERIN 5 9 ( 3 4 ) 285 ± 15 ORHL pile oscillator

    5 WALKER 6 0 ( 8 5 ) 270 ± 17 Chalk River; cd ratio

    6 BLOCK 6 0 * 8 6 ) 290 * 8 OBHL fast chopper; aT(0.02-0.15 eV) T0F n spectrometer

    7 TATTERSALL 6 2 £ 8 7 } 290 d 9 Pile oscillator

    8 CABELL 6 6 ( 8 8 ) 273 i 14 Mass spectrometer

    9 LOUNSBTOY 7 0 < Z 2 ) 289.5 ± 1.4 Chalk River; mass spectrometer

    Average of 4,5,7,8

    Average of 4,5,7,8,9

    283.0 ± 6.3

    289.2 ± 1.4

    Recommended 286 ± 3 288 ± 3

  • - 34 -

    TABLE II Pirat resequence parameter evaluation

    E^eV)

    r £freV)

    rgGaeV)

    TGaeV)

    Init ial calculation Reconmeod'ed

    E^eV)

    r £freV)

    rgGaeV)

    TGaeV)

    1.038 ± 0.001

    2.28 ± 0.06

    30.3 i 1.6

    0.006

    2.22 * 0.J6

    32.6 ± 1.6

    sane

    same

    33.3 ± 1.0*

    same

    saiae

    35.6 ± 1.0

    a (0.0253 eV)

    (barn)

    257 ± 15* (res. param.)

    289.2 ± 1.4 (average)

    286 ± 3

    * Error calculated as described in Section 2.

    TABLE III Reco—endad 0.0253 eV cross sections-

    o n - 2.2S b

    a - 286 ± 3 b

    o f - 0.052 b

    Oj -288 ± 3 b

  • - 35 -

    TABLE IV Resonance cross section measurements after 1963

    Reference Remarks

    BROOKS 64 Harwell, a. from 20 to 120 eV. 98.5% 240 240 235 Fu. Liquid scintillator; "Pu: U. Upper limits found for r .

    BYERS 66 Los Alamos, a from 20 eV to 2 MeV: 240 o from 20 eV to 1 keV. 38% Pu. Nuclear

    Y detonation, time-of-flight. At/£ = 6 to 17 nsec/m; A2./& = 0.06%. E .

    BOCXHOPF 66 Geel. o from 20 to 800 eV, Transmission 240 curve from 800 eV to 5 keV. 98% Pu

    (74 g available). Linac, time-of-flight. At/A = 6 to 0.9 nsec/m. Shape analysis: r

    ASGHAR 68 Harwell. Transmission, capture, scattering. 240 98% Pu (same batch as Geel). Linac, T0F.

    Area analysis: r , r . n Y

    KOLAR 68 Geel. a T(20 - 5700 eV). Same Pu batch as above. Linac, T0F. Area analysis, r° , T .

    n y WEIGMANN 68 Geel. o (38 - 820 eV). Area analysis r , r .

    MIGNECO 68 Geel. a (200 - 8000 eV). Linac, TOF. Area analysis; r. .

    CAO 68 Geei. a (18 - 2500 eV). 1 0 B detector. T . n n

    RAMAKRISHNA 70 Bhabha A.R.C. Transmission; 1st resonance. * Crystal-spectrometer. 90X Pu. Area and shape analysis; r° , I".

  • TABIE V PIJ- y*.n -resoKJiite PAfwsrffrs FSG* V- 1 • "" ' CG - . F ;NO S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    L P T S t - T . " " ' ; 3 . X + - 0 . 4

    • "" ' CG - . F ;NO S 4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    A WW SS 1~ ~Tz«r

    ;NO S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    M I K I T ' t s 85 ~ 1- " l . t ' i ' + - ' ' . ' U »

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    — I l N S e H W f l T - f i S -1 - i . J l t - O . l l !

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    T K C ' ^ H H - >M

    1 l 1 . T 5 3 CT 2 . 4 + - O . 0 5 - ' • ' '

    J . 4 1 + - P . Z

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    5r. —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    M M C M - S T •

    I 1 . ' i i

    X . 0 « 9 + - . 1 0 1 2 . 2 8 + - 0 . 0 6 3 3 . 3 + - 1 5 0 •J. >06 2 . 2 1 7 + - . 0 5 8

    — - ! > T 3 ? + - 0 . 1 2

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    P. f COWHBNDM

    - 2 y ] . fc+- lV T 3 ? + - 0 . 1 2

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    E C l 5T4FF 58

    ' - ^ ) . 4 . ' . ' • I t - O . ^ S • i ' • ">.54+- —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2

    _ S C S r S T 4 f F - i 3 —

    X 5 V 7 + - 0 . 9 • 3 2 « . - 3 '

    3 + - " . " ' ' T

    X 5 V 7 + - 0 . 9 • 3 2 « . - 3 '

    3l «

    JYF°$ i t J " U . 1 4 t - > ."!> 1 8 . 3 + - ? . 7 > . 9 " S + - n . l 2

    S

    4 2 + - S

    " 3 « + - 6 ~ - • — - 4 0 + - 3 -

    3 2 . 1 + - 4 . 0 3 4 . 5 + - 3 . 0 3 Z . 3 + - H

    3 P . 9 + - 1 . 1 4 3 5 . * + - l.n

    3 4 , 3 + - 3 ; 7 > —

    (2!!+^2.!'ZZI

    2 7 . 3 + - l .n.o

    4 8 + - 3

    4 3 + - 2 9CCKHCFF 66

    a^r»"— —

    • > » . • * ?

    - i s v t ; r + - i r v

    I f e . l + - . I . 4

    3 . 1 ? t - n . i s

    » J . ' 1 ? * ! - . ^ 6 5 3 9 . 7 * - I . r t

    KCI.tR 65

    3

    a^r»"— —

    • > » . • * ?

    - i s v t ; r + - i r v

    I f e . l + - . I . 4

    " . I t - 3 . 9 2.-. .1+ 2 . 0

    21 . 5 + ' - T.-fc- " " " . I . 1 - . + - 0 . ••

    3 . 1 ? t - n . i s

    » J . ' 1 ? * ! - . ^ 6 5 3 9 . 7 * - I . r t

    , l f[G'14N'! 6 3

    i>. SC0'1MEN0C5

    ? . 2 9 + - « . 0 7 " ' S 1 i 4 « 0 N 59

    http://KCI.tR

  • T43LE •J . ; • - < ; . , ;

    4Z .2

  • T U U II ICCHT.) «*» '--"-'

    l . i l l f .042 a

    1.7 itieiMHtNats

    *»»^ u»%»-o7r" -1—WTTt • W I1 wuw.-— t — » ' . - » - * . '

    2 . * + - o . i 7 * . t l « - ( 1 . 0 * - 3.0+-0.2 '»«•«• ' "—*vs*-»t>-.s-• * . » " 2 . H - P . 2 ~

    £«H9-***U.I S

    - B V 4 f T;»"

    0.104-0 .1 0 .31 • - 0 . 0 2

    - W H S ' - - * - - -•CCKHCFF 4li KCLM t t W C H W W

    • " : « . - - . " . » -

    9 9

    4 2 f 2 5 • 30* 6 . 1 * - 2 . S

    i •«•• 1 )»»"!+?-• •""

    "••sr i c i - i ; •••: .''•.• ••• 1C- .0- .

    *"-.i.4-W4

    ; • ' < ' . « . « . • - * • *

    * . 3 1 + - C . l f ' '

    . . - • » .

    " 9 i c i - i ; •••: .''•.• ••• 1C- .0- .

    *"-.i.4-W4

    ; • ' < ' . « . « . • - * • * 2 3 . 3«- » . V - -2 6 . n * - 2 . S

    1 ' .» ,»» * - 0 . 2 *

    i d , * + - * . ?

    2 3 . 3«- » . V - -2 6 . n * - 2 . S

    . 1 ' ' * . "2 "-»,-«• v i . i . * - i . < . ™.'1!1«0*» i . U u . " » . < : i 5 t ' . 1 3 7

    .204*. .IrtW H73»- 7.2 mCDWINB?;

    HCXDN 43

    ?4»-6" "saxwtf-tT-KCUR «g AJ6HMI 68 HFICMUKN 61

    "CM) 4«

    7TO>-=2-.-p-

    13 H 9 • :. *7»-2« • 3 0 ' • - . 3 * - 2 4 IT

    H 9 • :. *7»-2« 1 -! 1J • i i > 1.6* . .15" 1 > ! . 6 T » - " . - * l 3 . * * - f t . V r . , * , 6+"- .03

    13 '.?•>.» " l l .S(>4~0.6 U - * > . 4 7 1 3 - l - r -* - . lTT5t=l%5"

    li J ' . . 4 - 4 - » . l n , U « 2 * - . ) . 4 -

    2 0 . 3 4 - 3.

  • R

    12 i3!t.S,«^hi'.l!) .' 16.5 » - l . l

    66 G?

    l , 5 9 4 - o . i n

    5 REFERENCE

    KCtAR 68 "~tr~ l-">.6 15.414-1.1 19.74- 2.7 " "

    l , 5 9 4 - o . i n

    5

    45GHSR 68 1Z '135.? 24 ,54-2 .5 Uf I0H»MS 6 1 12

    12":

    I": i i , ;

    l»5.sn • •" 1 3 . a * - ! . t " 2 2 . 3 4 - 1 7 8 0."" 1 . 4 1 " 4 - .OSfi 3 8 . 7 4 - 2 . 1 RfCnH^EWfiO

    •tCWIN 63 a m . u * - " 1 . *

    0."" 1 . 4 1 " 4 - .OSfi 3 8 . 7 4 -

    W S 66 13 1 * 1 . / * ». 1 l i .6«~M. l •" "' " ! . l i u - c o i " " 4 6 4 - 1 6

    3 1 . 1 4 -

    5 J 4 - ? 4

    2 7 . 3 4 -

    5 1 4 - 2 J

    1 9 . ) 4 -

    " s r i k H C M '*»" 13 I B IS 13 13

    TS>' .e4*;! .» ' : K . 2 4 - l . y "1S?V!- — -12^31>-l .?

    ". I " ! . * " l l .< ,4-1.4 ' i - > . ' i 8 » 4 - V " "13.D"«-r.5

    I T . y t - Z.7 - • • 21.5+ 2.0

    C '

    ! . 1 4 4 - 0 . O R

    " l . ' i 5 ? 4 - . 0 4 1

    4 6 4 - 1 6

    3 1 . 1 4 -

    5 J 4 - ? 4

    2 7 . 3 4 -

    5 1 4 - 2 J

    1 9 . ) 4 -

    KCL»« 63 \

    l . l ' l ' I t - .[ ' 1

    4 6 4 - 1 6

    3 1 . 1 4 -

    5 J 4 - ? 4

    2 7 . 3 4 -

    5 1 4 - 2 J

    1 9 . ) 4 -

    V«GH*ft t i

    1.7 " r t n n i r s v »>

    i s 1 " * .

    1 . C 1 4 . n.;>2 i".p"?" •;-(•."'>

    l . l ' l ' I t - .[ ' 1

    4 6 4 - 1 6

    3 1 . 1 4 -

    5 J 4 - ? 4

    2 7 . 3 4 -

    5 1 4 - 2 J

    1 9 . ) 4 -

    " 15" 16 IS 15

    1 « 7 ) * = I 7 T ' * • — "

    : >«' .P4--,!4 L6»3 4 -1 . i I 04.O !> .214 -1 . • 1 1 . B " i . - '

    2 2 . - 4 - 2 . ,

    r . i « ' 4 - . : '•••

    S 7 » - * *

    1 >>. ! » -

    J > t r t 61 i r r » M 4 e r . s •• .u--- ! »> •.•r,Mia -.?

    16 ' S f . 1 " t i »«>*—*.*> r . i « ' 4 - . : '•••

    S 7 » - * *

    1 >>. ! » -IS" ^ l .U>- 1.6 C I r . i « ' 4 - . : '•••

    S 7 » - * *

    1 >>. ! » - i , 7 n e i " » ' f \ ' i ' t

  • rmu tf—ICWT. :m« v̂ T "ST! ~;as si 1CCKHC=F «"> XT.SO 56

  • "TAiLE Y ! t * i T . i CAGE V- &

    . 3 9 5 * - . 0 1 7

    G

    3 0 . 4 * - _•_*. -K-T;-

    22.1 6 . 9 + - 0 . 3 G6

    2 3 . 5 4 - 0 . 3

    GF

    0 . . 3 9 5 * - . 0 1 7

    G

    3 0 . 4 * - _•_*. REFF-BENCE

    ReC0*M6NDS1

    i 3 i l « . 4 , 4 - 1 . 1 6.it- .C22 2 9 . 6 4 - ..•i

    Ket*« 44 a •,

    ' 23 ' 23

    313 .5 . - . . ; . . ••'.T 3 1 8 . 4 3 1 - 9 ^ 0 7

    1 5 . 2 4 ^ 0 . 4

    S . 0 t - G . 5 5 . 1 1 - 0 . 4 2 3 . 5 » - 0 . 3 0 . _.28»>t- .C22 2 9 . 6 4 - ..•i

    4SGHSR 68

    '»' * V * . MCxo«i 4* — 2 4 2 * . 24

    " J ? 1 * . * ! - ~ T 2 , > . 9 1 - n . !

    32< ' .74 - - >- ! !e 3 2 1 . 0 . .

    " 1 B V » ^ 0 J 4 19 .3 * ~ 1 . 3

    _ 2 0 . J J : ; + -

  • . TULE'v (CfMT. 1 Mil v:"-"~0N0" 0 '""

    " 3 * . 5 » - ' - K i i " 28 - ar

    • — M 1

    372.3

    ON is 21.54-S.O

    GF "~0N0" 0 '""

    " 3 * . 5 » - ' - K i i " HEICMNN A* 28 - ar - 3 T 2 T » » - , , . ' , » " in.»«- a.g . 7 0 5 * - .{>3l -

    0 '""

    " 3 * . 5 » - ' - K i i " KECOKMENnST—

    29

    173«-19 ilWSTJ—

    29 104.5 «~5.3

    ;; » . 3 5 < - 6 . S J* * 3 * : ?•* l' —57T9*=(ri08 5.39 * - 0 . 2 * 173«-19 SCCKHCF* 66 KCIM 69

    \ ! 6 H M ue 2 9 - ' t; t"*"f *

    173«-19

    U«TG'UVN 68 *lBC0"Ht^'lt J

    V>.IC 33

    — 3 0 -

    *lo. , >W'>-. l

    — £ * u . 3

    8.1C 6 .1 »-0.7

    • 8.6 V - ^ .2

    0.396C t . 3 1 ) • - 0 . 0 3

    V>.IC 8 Y K S 6 6 3CCKHCFS 64 K0.*.* S9 33

    — 3 0 -

    *lo. , >W'>-. l

    — £ * u . 3

    8.1C 6 .1 »-0.7

    • 8.6 V - ^ .2

    0.396C t . 3 1 ) • - 0 . 0 3

    V>.IC

    ASGHW 68 "TOCTJVJ M "

    ' 3 i 0 .1 t - d . 4

    2 5 . 5 * - U.3 0 .

    • 29&»- .tt2l>" O.O75*-0.C14

    . 0 7 6 * - .314

    "29.6»- : V

    2 5 . 1 * - .4

    ~^rcff*f«£SD»i>— 31 31

    4 4 5 . f l * - " . 3 " 445.8 . ! • < > . "

    ••'. 1.6 4 -6 .3 1.6 t—t».3 2 5 . 5 * - U.3 0 .

    • 29&»- .tt2l>" O.O75*-0.C14

    . 0 7 6 * - .314

    "29.6»- : V

    2 5 . 1 * - .4 KCLlft tB

    2 5 . 5 * - U.3 0 .

    • 29&»- .tt2l>" O.O75*-0.C14

    . 0 7 6 * - .314

    "119*-56

    4 Z . S * - 5 . '

    f f iTTEi • K -3T-32

    . 32

    44o.fl+-n:ao— 451.1

    . 450.» ; '

    16.4 *~Xit 16.234-3.9

    , ' . 7 9 t - 0 . ( H ~ -" ^ 7 8 * -0 .P6

    "119*-56

    4 Z . S * - 5 . '

    ""SCCKTWF «f? • K -3T-32

    . 32

    44o.fl+-n:ao— 451.1

    . 450.» ; '

    16.4 *~Xit 16.234-3.9 2 2 . 6 * - l 0 .

    2 6 . 5*-- 3 .0 2 6 . 2 * - 2.9

    , ' . 7 9 t - 0 . ( H ~ -" ^ 7 8 * -0 .P6

    "119*-56

    4 Z . S * - 5 . '

    KCUt i t

    WEIC-MIS-: «.3 2 2 . 6 * - l 0 .

    2 6 . 5*-- 3 .0 2 6 . 2 * - 2.9 .783+- .C47

    "119*-56

    4 Z . S * - 5 . ' •ISCOMW.VO?!

    TvPSTTe" ' 3CKHCFF 66 33 466 .5* - !U2?

    33 < * * . 4 3.1 *-0.S

    2.9*-0.4 3 . V + - 0 . ; i?.5«-- a;r

    ?.14 t - C O l

    i l l"! . - .014 KCt« 5S

    I T - 3 4 -

    t M . t - i

    3!. 4 ? J . **-'•.:>? 34 4 7 3 . 2

    ~3 4 ""4T7V 7 - * - V T -

    4 . : i - 3 . « 4 . 0 t - 0 . 5 4 .1 t - ^ . 4 • 1 B I H - . 0 1 R

    "STHTTEl""

  • - T S B L t V i t t ' l l . t F»GF V - S

    l . 2 3 < ~ n . 0 2 " ' . Z f f - t - o . n s

    /; R 35 4 < > 4 . 2 * - 0 . 2

    EN

    5 . 1 * - 0 . 4 ~Si"6 '"* - I . t

    5G GF

    l . 2 3 < ~ n . 0 2 " ' . Z f f - t - o . n s

    /; BEBgRENCe 3 C C K H C " 4 5

    _ a 4 < > 4 . 2 * - 0 . 2

    EN

    5 . 1 * - 0 . 4 ~Si"6 '"* - I . t

    GF

    l . 2 3 < ~ n . 0 2 " ' . Z f f - t - o . n s

    /;

    KCW> «E 35 ^ • 4 . * 7.Z*--3.8

    ~~37V.

    3 9 ,

    4 4 .

    ' 2 4 ,

    24 ,

    T F T "

    , 4 * - "

    , ? * -

    • • > • -

    . 7

    2 . 5

    3 . 1

    N=IG"»»S\ 6 3 3t> 6.5 * - i ' . 6 2 3 . 5 * - 5 . 3 . 2 9 5 * - . 0 7 7

    n . 8 3 * - f l . 0 3 " ' ' . S i * - ( l . " 6

    ~~37V.

    3 9 ,

    4 4 .

    ' 2 4 ,

    24 ,

    T F T "

    , 4 * - "

    , ? * -

    • • > • -

    . 7

    2 . 5

    3 . 1

    H f W H S N O O

    34 36

    • s e n . * - ! 4 9 9 . 6 * - 1 - 2 1 6 . » * - J . 7

    . 2 9 5 * - . 0 7 7

    n . 8 3 * - f l . 0 3 " ' ' . S i * - ( l . " 6

    ~~37V.

    3 9 ,

    4 4 .

    ' 2 4 ,

    24 ,

    T F T "

    , 4 * - "

    , ? * -

    • • > • -

    . 7

    2 . 5

    3 . 1

    3»6»S 64 3CCKHCFF »5

    3 b

    . 2 9 5 * - . 0 7 7

    n . 8 3 * - f l . 0 3 " ' ' . S i * - ( l . " 6

    ~~37V.

    3 9 ,

    4 4 .

    ' 2 4 ,

    24 ,

    T F T "

    , 4 * - "

    , ? * -

    • • > • -

    . 7

    2 . 5

    3 . 1

    K t t i P 66 35 4 * a . f t 22 .18* -6 .3 I S . * * - 5 . 7

    ~~37V.

    3 9 ,

    4 4 .

    ' 2 4 ,

    24 ,

    T F T "

    , 4 * - "

    , ? * -

    • • > • -

    . 7

    2 . 5

    3 . 1

    1S5H4K i

  • r «u •i (C>y*.r *Mt# V- " V

    ~3M-**tir- 3 t : s - t - l . r 1 8 . t * ^ ft.3"

    ~t.J2-4-0.0T

    21.5*- ?.. •3t»i9-«-1.3- " ilwj-*--

    -j

    23.s**-tnr •TTT

    i r W t r - - , o s » 5 2 . 1 » -

    2 4 . 6 1 -

    2 . 3

    . 7

    ACCKHCfF t t K C L I * ( •

    "".5OTWM

    K C U * 4S

    -* -—s «>.»-; 4 4 S 9 * . » » - n . i n 57.5 +-Z.S ? . " * t - O . l ' ' * 4 3« - .2

    - « T ' . -•: 47.5 »-T.» 22.1.+- 7.2

    25 . : . * - ;> : 's—— «*" 3«- .2 - « T ' . -

    •: 47.5 »-T.» 22.1.+- 7.2 25 . : . * - ;> : 's——

    *¥•-'S9T . lw .4 -n . i - ' - iV . i *-!.«) 2 «*" : :6*t'.*-Z '

    SWPT"~S

    KCL«» * S ASGHMI i t

    3 « F S « 3CCKHCFF 6 * KCL»» 68

    " l f I G < W i K " " 6 T "

    **- .!.'4SZi.*iK'V.? 12. i*- l . t ' fl.fc9»-~0.0* * i " ilS'.4t-^(.< ,» 13.3 4 - l . J ~ !)'.SS" •-

  • TABLE V - tCCMT. | PAG? V- 10

    e »EF?«ENCE A5GHM 66

    R ' . ' . ' .• ' . . :• ' -?* ••

    • 6 W . S . : : . -4 6 5 . 5 - l ' -

    GN

    i a s . 8 t - z i .

    GG

    2 6 . 0 * - 4 . B

    GF ,GN0 e »EF?«ENCE A5GHM 66

    .....: .«

    ' . ' . • ' . . :• ' -?* ••

    • 6 W . S . : : . -4 6 5 . 5 - l ' -

    GN

    i a s . 8 t - z i . 2 6 . 5 + - 2 . 5

    e »EF?«ENCE A5GHM 66

    * 3 6 » i . J . + - U . . W 91. + - 4 . 2 4 . + + - 2 . 2 0 . 3 . 5 ? « + - . 2 3 1 " 1 1 7 7 4 + - 6 . 4 « ?£6t"l>EKfiE0 • ; '

    0 . 9 2 1 - 0 . 0 4 1 . 3 1 < ~ 0 . 0 T

    8YERS 66 3CCKHCFF 56 K £ t « 66 5SGH«R 63

    , * , • •

    • • • - • * # - -

    . ' • « ' • .

    , 4 7 8 * - r J . . . : - 0 » . 4 + - O . 3 • 6 T 6 i 6 ^ - n - . ? < !

    S W . i

    2 4 . 0 + - 1 - . 3 2 6 . 0 + - I . 3

    0 . 9 2 1 - 0 . 0 4 1 . 3 1 < ~ 0 . 0 T

    8YERS 66 3CCKHCFF 56 K £ t « 66 5SGH«R 63 * J

    , 4 7 8 * - r J . . . : - 0 » . 4 + - O . 3 • 6 T 6 i 6 ^ - n - . ? < !

    S W . i

    2 4 . 0 + - 1 - . 3 2 6 . 0 + - I . 3

    0 . 9 2 1 - 0 . 0 4 1 . 3 1 < ~ 0 . 0 T

    8YERS 66 3CCKHCFF 56 K £ t « 66 5SGH«R 63

    4 J » . ' » + - (1 .7—

    7 1 2 . r • - « . • ?

    - z ; > : 5 — s = i : ; — - -

    1 . 3 + - 0 . 6 1 .3 + - 0 . 6

    d!>.' + - 3 . 5 2 4 . 9 + - 3 . ^

    2 3 . 5 + - _ 3 . 3

    0 .

    0 .

    . 9 7 9 t ~ .f"5B

    0 . n 5 ' » - . O 2 3 . 0 4 9 c . . 0 2 2

    - " 5 0 ; ' . + = -

    2 4 . 8 + ~

    ' 3 . 5

    . 7

    'ISIU'IAKN 6-1 — W -

    53 5J

    4 J » . ' » + - (1 .7—

    7 1 2 . r • - « . • ?

    - z ; > : 5 — s = i : ; — - -

    1 . 3 + - 0 . 6 1 .3 + - 0 . 6

    d!>.' + - 3 . 5 2 4 . 9 + - 3 . ^

    2 3 . 5 + - _ 3 . 3

    0 .

    0 .

    . 9 7 9 t ~ .f"5B

    0 . n 5 ' » - . O 2 3 . 0 4 9 c . . 0 2 2

    - " 5 0 ; ' . + = -

    2 4 . 8 + ~

    ' 3 . 5

    . 7

    ReC1 H Kr \ l 3F0

    KCLA' 46

    ~RiuV 0~n >(?CT4e=«>0' :T

    3CERS 46 1CMHCFF 65 K C L « 6S ,iSGHA> '69

    i t ? 4 3 . ? » - l , . » * l . G + - 0 . 7 i . 3 3 7 + - . 0 2 6 2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    ReC1 H Kr \ l 3F0

    KCLA' 46

    ~RiuV 0~n >(?CT4e=«>0' :T

    3CERS 46 1CMHCFF 65 K C L « 6S ,iSGHA> '69

    SI 52 52

    7 4 ? . ? t - A . S

    7«(?CT4e=«>0' :T

    3CERS 46 1CMHCFF 65 K C L « 6S ,iSGHA> '69

    i

    t

    »

    . 1 3 7 > - . C 2 4

    " " 2 ; * i " + - ' i . " i 2

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    • fl

    ReC1 H Kr \ l 3F0

    KCLA' 46

    ~RiuV 0~n >(?CT4e=«>0' :T

    3CERS 46 1CMHCFF 65 K C L « 6S ,iSGHA> '69 52 /««.» 7 3 . 7 + - 1 5 . • 2 1 . + - ' 3 . ' ~ 1 S . 1 + - 4 .

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    • fl

    ReC1 H Kr \ l 3F0

    KCLA' 46

    ~RiuV 0~n >(?CT4e=«>0' :T

    3CERS 46 1CMHCFF 65 K C L « 6S ,iSGHA> '69

    42 " 7 W . A - " 1 B • - < • f i . i i • 2 3 . 2 + - 2 . 0 ' —

    2 3 . 5 + - 0 . 3

    7 . 8 + - 1.-i

    8 . 2 + - 0 . 1 P . 5 H 1 + - . 1 2 "

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    3 . 1

    . 9

    • i r6N«cc * • J M G I A W M qfCO"l>END=0

    ItCKHOCF 65

    52 7 5 C . 2 + - " . 2 6 8 . 5 + - 3 . 3

    • - < • f i . i i • 2 3 . 2 + - 2 . 0 ' —

    2 3 . 5 + - 0 . 3

    7 . 8 + - 1.-i

    8 . 2 + - 0 . 1 P . 5 H 1 + - . 1 2 "

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    3 . 1

    . 9

    • i r6N«cc * • J M G I A W M qfCO"l>END=0

    ItCKHOCF 65 . H_.

    • - < • f i . i i • 2 3 . 2 + - 2 . 0 ' —

    2 3 . 5 + - 0 . 3

    7 . 8 + - 1.-i

    8 . 2 + - 0 . 1 P . 5 H 1 + - . 1 2 "

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    3 . 1

    . 9

    • i r6N«cc * • J M G I A W M qfCO"l>END=0

    ItCKHOCF 65

    » y « . • » • - » . 7 5 " 4 . 6 » -6 . '> i ; u, ? - + - , r . < i 3

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    3 . 1

    . 9

    KCL'1 t c • • i« IG*A.V . 63

    A fH>"M, \DFO

    KCLC;>

    M b)

    54 54

    / i ' J . 4 rw.d *-».•"M, \DFO

    KCLC;>

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > -

    3 . 1

    . 9

    KCL'1 t c • • i« IG*A.V . 63

    A fH>"M, \DFO

    KCLC;>

    55 - 5 5 -

    53

    - 54"

    7 U y . Z + ( i . ' -ci r . - r . - t -

    ""' " 7 ^ 1 + - i " "

    Z .U + - 1 . 0 6

    i . - i • - • . ' 7? . 7 ' '

    2 .1. I t - J.J I I P t r . i "

    1 W . t - U I . . ! ? " > • - . 0 1 6

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > - 1 S . 1

    l t : C S 66 IfCKHCFF t »

    ""KT l tH t'4" 46 761 . 4 + - * . 5

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > - 1 S . 1

    l t : C S 66 IfCKHCFF t »

    ""KT l tH t'4" . 4 4 7 3 1 . « » - " . ? * 43 * + - 1 . 4 ? , 0 1 * - n . o i

    2 4 . ? + -

    1 1 0 . 3 + -

    2 9 . 5 1 -

    2 4 . 7 . -

    15(1. 1 > - 1 S . 1

    l t : C S 66 IfCKHCFF t »

    ""KT l tH t'4"

    http://�-%3c�fi.iihttp://�-%3c�fi.iihttp://�-%3c�fi.ii

  • — T I B T E -v ICCVT. i -

    G - -FAG! V - 11

    " ~ ~ 6 N 0 G - -FAG! V - 11

    : 54'- •'•'T^riT'.v'iyV-- 2*.o «-m.

    GG S F " ~ ~ 6 N 0 G - - " HEMKENCE ASGHAA 6 t

    • 5 5 - m i . i i . B '2'i.i' I £ . i » * - ' 1 . 7

    G - -

    ~ ' U G N « r 6 * 56 • ™ 791 . * ' • . ' . 4 . 2 + - Z . 0 ' t+*-J •(tmHANN 41 5» < £ * < • • • — 1 « * . 2 J . S V - U . i 1 4 . U + - 1 . 4 . B 5 ' J * - . U 5 n 6 0 . V * - Hi1... urcuireiiwi—

    '• • 57- ' -.•.ST'-- • ' . ' • ~ j - i i . i « ) » j * i » ; -

    2 J . S V - U . i 1 4 . U + - 1 . 4

    — n 5 T * = n . 3 i s

    6 0 . V * - Hi1... 3 V E * S 6 6 BCCKHCFF M

    37" — n 5 T * = n . 3 i s

    6 0 . V * - Hi1...

    - K C U H 6 8 . 51" • 4 U . 2 iOb.S * - l ¥ . " " V f B H W M

    - a » 5 = 3 — - — • » . * • - ! . 1 T . * l l * - . 3 1 6 2 * 3 . 0 * - 9 . 1

    U N N FCC-f ig

    . .,. ; J J . »3f*i ' : Ti *-**>. 2:••'•'• tfui^*-"!. 2 3 . 5 * - 0 . 3 -- a » 5 = 3 — - —

    • » . * • - ! . 1 T . * l l * - . 3 1 6 2 * 3 . 0 * - 9 . 1 K E K W H M T M -« E C O « « N D M 2 * 3 . 0 * - 9 . 1

    -3YE»r-er ... W KCKHCFF A4

    1 . 8 * » - n . i ' i

    ~ 3 T W * * = - 1 I M 1 3 * . 6 * - S- .T-

    KCLIR « J " "

    58 " . - * *?»• * - ' ' . ' "X •. • • ' B • 2 5 . 2 '

    • 2 3 . 2 * - 2 . * « . 1 . 0 * - n . l

    3 » - l . 5

    1 . 8 * » - n . i ' i

    ~ 3 T W * * = - 1 I M 1 3 * . 6 * - S- .T-

    ASGfiAR 68 MT.GNFCO 6 8 W5IGHANN 6 8 " . - * *?»• * - ' ' . ' "X •.

    1 . 8 * » - n . i ' i

    ~ 3 T W * * = - 1 I M 1 3 * . 6 * - S- .T- -R-eOWWEKOTO - - • - - -

    1 3 * . 6 * - S- .T-

    SB " t t 4 5 - 4 - t - 0 . i > 7 - 6 * 7 . 6 ;^— io.3 *- i .s 8 . 2 *^- 9 1 6

    * . 3 5 + - 0 . 0 3

    . 3 5 * * - . 0 3 * 3 3 . 3 * - 1 . 1

    kCLAft i s

    . - - • * * ; J

    " t t 4 5 - 4 - t - 0 . i > 7 - 6 * 7 . 6 ;^— io.3 *- i .s 8 . 2 *^- 9 1 6 2 3 . 5 * - 0 . 3 • o .

    * . 3 5 + - 0 . 0 3

    . 3 5 * * - . 0 3 * 3 3 . 3 * - 1 . 1 ASGHAR' 6 8 "

    . .si! -

    * . 3 5 + - 0 . 0 3

    . 3 5 * * - . 0 3 * 3 3 . 3 * - 1 . 1

    "syeBS'esr— — ' . 6 0 . JCCKHCFP 6 4 -

    & j * B . O • - * o 1 . 4 4 t - n . O G

    1 . 6 * 1 * - .DB5 7 1 . 1 ) * - 2 . S

    "ktU« 44 "'.'/.'r*^ - 8 5 5 . ? " « - » ; ? - • * 8 ^ 0 * - 2 - 5 2 3 . 5 * - 0 . 3 0 .

    1 . 4 4 t - n . O G

    1 . 6 * 1 * - .DB5 7 1 . 1 ) * - 2 . S 3SSHAR-6S" —

    6 1 .

    * 8 ^ 0 * - 2 - 5 2 3 . 5 * - 0 . 3 0 .

    1 . 4 4 t - n . O G

    1 . 6 * 1 * - .DB5 7 1 . 1 ) * - 2 . S

    3»ERS 66

    7 1 . 1 ) * -

    'JCliKHCFF 6 4 "

    . V 7 } i — , D ^ L 3 7 . 5 * - ! . • »

    KCC1R 68

    * i : 8 7 6 . R '« - ' •" .? • * . ; • + - ! . 3 2 3 . 5 * - 3 . 3 0 . . V 7 } i — , D ^ L 3 7 . 5 * - ! . • » •\FC'HiNC>-7 ...".- 6 2 .

    • * . ; • + - ! . 3 2 3 . 5 * - 3 . 3 0 . . V 7 } i — , D ^ L 3 7 . 5 * - ! . • »

    '1 Y=P 1 6 6 . .^AZ 8 V 1 . H * - ' V . ^

    ! . • »

    "3CWHCFF""VS 9 * . 5 * - * • > 3 . 1 4 * - P . t 5 " K r C 4 « " ' 6 6

  • -TABLE V (C f» 'T .> PAGE V - 12

    - G 1 1 S . 2 * -

    R' "PR

    62 3 9 Z . 6

    GN

    1 0 0 . 1 « - 2 3 . 9 4 . 7 * -4 .~4 "'

    GG

    23Y5+—IT73

    GF

    OT

    GNfl

    — 3 a 7 T F - . r * 7 "

    G

    1 1 S . 2 * -

    BEFE'ENCE

    ASGH&R 68

    6J o n * . I T - " ' . 4

    4 5 . 2 * -

    ittKHCfF 64 63 • M 4 . < M - J I < 4 B 63 9 1 4 . 3 63 9 5 ^ . n +• r . 2

    t 8 . 6 * - i 2 . 2 1 . 7 « - l . 5 2 3 . 5 * - 0 . 3 0 .

    4 . 7 3 " * - 0 . 0 5

    . 7 2 2 * - .-OSn 4 5 . 2 * -

    KtLAH 68 4JGHAR 68

    1 .5 Rfr,nH*ViaS1 2 3 . 5 * - 0 . 3 0 .

    4 . 7 3 " * - 0 . 0 5

    . 7 2 2 * - .-OSn 4 5 . 2 * -

    t>4 *?rt7+-b SVKS 66 - 64 . « f t « . ' * - f > . 4

    2 3 . 5 * - 0 . 3 j .

    ?."62 ~*-P"t.4 7 . 4 * - 1 3 . 7 .3 • - ! . ' .

    1 4 6 . 2 * -

    Q 5 . 2 * -

    j ' o m * $» 6?

  • T A S I C -J • I f C ^ T . > PAGE V- 1 j '

    —R" " ^ OH" CG GF GNO G "" «M«iflrr^

    73 l C > * * - 5 BVCTS 66 - 7T-— r r T T t e t - •< , i * 9CCKHCFr64~'

    - - iy ' l M'l . « + - " . « JB.

  • TABLE * (CCMT. ) PAGE V - 1 *

    79 1 1 4 2 . 7 + - 0 . 4 K M . •

    GN

    40.4 +-Z.8 4J.2" +-?3.

    . GG GF GNO

    1 . 2 9 + - 0 . 0 8

    5 B6FERENCE

    KCLAR 68 r?

    1 1 4 2 . 7 + - 0 . 4 K M . •

    GN

    40.4 +-Z.8 4J.2" +-?3.

    . GG GF GNO

    1 . 2 9 + - 0 . 0 8

    5

    ASGHAR 68 ?9 U i 3 " . 9 + - 1 . 5 4>.4

    84 84 84

    i22B.n*-e.4 l » 2 s r . •••"'•"':"••.

    , '122B'.o'+r.2+-'S.6 JUW.'7+-".4 lZt>b.

    15.9 +-22. 1T.4- +-ZV2

    " T6 .6 +- 4.6 ~ / 6 . r +-3?.

    23 .:>*=•- 0 1 3 — o r " " . 3 7 4 + - . C 6 3

    7 .1 7 f - n . n

    3 4 . 9 + -

    1^1.3+"-^"

    2 7 . 1 + -

    2 . 2 >

  • .--nBLt-v ICCNT. i f»GS V- li 1JN0 '

    6 . 7 9 4 - 0 . 3 5

    »j

    88 .' 13 r"> .3« - * -n i * 2 4 5 . t - 1 2 . 5

    1JN0 '

    6 . 7 9 4 - 0 . 3 5

    »j

    KCLAR ( 8 -:.:t*—l-i«T: -- • - •"

    1JN0 '

    6 . 7 9 4 - 0 . 3 5

    »j

    • ""TSSHHR-6B" 83 i 4 i " ' ' . 6 » - i . .4 S.B14- . 3 3 3 l a . ' V U k C U I P E N D F l J

    ,

    3 8 9 . 5 4 -

    83 1 3 2 » U 1 4 - 0 . 4 8 9 1 J 3 0 .

    3 6 9 . 4 - 1 8 . 5 3 2 1 . C 4 . - 7 3 .

    - 3 6 6 ' — * - I T . "

    1 0 . 1 3 t - 0 . 5 1

    — i r r . O i f - — . « 7 3 8 9 . 5 4 -

    KCL«R ( 8 ASGVUR 6 8

    o^- i -12 - f l . 4 * - • ' . "4

    3 6 9 . 4 - 1 8 . 5 3 2 1 . C 4 . - 7 3 .

    - 3 6 6 ' — * - I T . "

    1 0 . 1 3 t - 0 . 5 1

    — i r r . O i f - — . « 7 3 8 9 . 5 4 - 1T.T—RSCPHWNDcT) -

    -— W - . U < ^ . ' , H ~ " . * ' a . i , f j . i : > . 7 l 4-0 .01? . 7 1 2 4 - . 0 8 5 4 9 . 6 4 -

    KCL*ft i 8 " "' '9-j .u*i. xjC- 1 3 4 > i . ? 4 - . 1 . >! 2 6 . 1 4 - 3 . 1 2 3 . S t - 0 . 3 0 .

    : > . 7 l 4-0 .01?

    . 7 1 2 4 - . 0 8 5 4 9 . 6 4 -•"""' A S G H U T 6 8 " " "

    3 . 1 RECOIFENDE') 2 3 . S t - 0 . 3 0 .

    : > . 7 l 4-0 .01?

    . 7 1 2 4 - . 0 8 5 4 9 . 6 4 -

    8CCK1CFF-6S-P I l K ' i . ' J < - " , i " 1 . 3 3 4 - 0 . 17"

    " 3 1 . 8 4 -

    3 0 . 9 4 -

    KCL4K 68 . Z".5 RKOHMrVDrO/ — T J T l i ' - i . t n - 1 ' . ' " " U. . W 6 « ~ . 0 68

    1 . 2 0 4—0.03 . 2 0 0 4 - . 0 8 1

    " 3 1 . 8 4 -

    3 0 . 9 4 -

    KCL4K 68 . Z".5 RKOHMrVDrO/

    '52 1 3 f i 3 ^ 9 * - 0 . f t ' 92 1 3 6 2 . 9 4 - 0 . 6

    7 . 4 4 - 3 . " * ( . 4 4 - 3 . 1 . 2 3 . 5 4 - 0 , 3 0 .

    . W 6 « ~ . 0 68

    1 . 2 0 4—0.03 . 2 0 0 4 - . 0 8 1

    " 3 1 . 8 4 -

    3 0 . 9 4 -KCLAS 68

    3 . 0 "t K 0 1 H E N D E 9

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -

    H l t R H U ' F r t S -

    " 9 i i it 1 . 0 4 - i v . B " S 4 . 1 + - 4 . 5 1 .74. 4 - 0 . 1 2

    1 . 7 3 0 t - . 1 2 1

    - O.-^q 4 - n t C 7

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -

    KCL«P. 4 8

    93 - 1 3 T 7 . i 2 4 - p . 4 : ; . 6 4 . 2 4 - 4 . 5 2 3 . 5 * - 0 . 3 0 .

    1 .74. 4 - 0 . 1 2

    1 . 7 3 0 t - . 1 2 1

    - O.-^q 4 - n t C 7

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -

    4 . 5 RfCOKNENOSI

    9*4. I ! ^ , [ ) i - ^ , ^

    . 6 4 . 2 4 - 4 . 5

    1 .74. 4 - 0 . 1 2

    1 . 7 3 0 t - . 1 2 1

    - O.-^q 4 - n t C 7

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -

    - 9 4 1 4 H 9 . 1 + - . ' V 6 l 4 . i t - 2 . f i "" . 3 e i 4 - - . 0 7 S "

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -

    ~~z7z—t>yco " » w f i — — o;r4" '4—o.oa

    . 1 3 9 4 - . 0 8 3

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -• 95 ; ' l t n ^ i n - : ' • • • . -

    95 1 4 0 ' . 4 4 - 0 . 5

    ' 8 ' 5 . 2 4 - 3 . 1

    ' 2 3 i 2 > 2 3 . 5 * - 0 . 3

    4 0 . f i t - 1 6 . 2 5 D . 4 - l f> .

    — o;r4" '4—o.oa

    . 1 3 9 4 - . 0 8 3

    8 7 . 7 * -

    ' 3 7 . Y 4 - -

    9 8 . 7 4 -•MONFCG 6 «

    1 6 . 3 r l K O P M N O S j

    !P. - 3 1 . T2O0*—. . 0 6 7

    n . 9 7 4 - 0 . 1 1

    9 4 . 4 4 -HIUMFCC 63

    97 1 4 ? f . S ( — r - . f -. r.97—r« ?s ; ' *- " ; T 3 6 . 7 4 - 3 . 7

    2 T . 5 - * = - 0 7 3 — " 5 0 > - 3 1 . T2O0*—. . 0 6 7

    n . 9 7 4 - 0 . 1 1

    9 4 . 4 4 -

    3CCKMCFP 6S

    9 4 . 4 4 -

    l ' ! H " . J 4S 9? "• ! . 4 J t . n ' ' - ' 3 . 2 ' '+. i v - 1.4

    9 4 . 4 4 -

    • ' ISN C CC ".8

    http://t-2.fi

  • TABLE V (CONT, 1 na? v- 16

    " " " ~GGT " 0" "

    6 4 . 3 * -

    ft

    97

    l=B'

    , 1 4 ? 6 . 3 + - n . 3

    ON

    3 6 . 9 t - 3 . 7

    " " " ~GGT

    0 . 3

    GF

    4 . 0 + - -

    wo ' 1 .5 . 9 7 4 + - . 0 9 8

    " 0" "

    6 4 . 3 * - 3 . 7

    PSFERENCS

    RECOKPENDEO

    " " " ~GGT

    0 . 3

    GF

    4 . 0 + - -

    wo ' 1 .5 . 9 7 4 + - . 0 9 8

    " 0" "

    6 4 . 3 * - 3 . 7

    98 1 4 2 9 . I t - n . 5 l b ; 0 +-3.5 1 , 4 0 +—O.ng 3 . "

    KCL6R 68 ' 9S 1 4 2 « . < i * - " . •- 1 5 . 0 + - 3.1 Ti.b*- 0.3" P . _ . J 9 7 + - . 0 7 9

    ! . 6 7 + - 0 . 1 +

    3 8 . 5 * - 3 . " RECntFENDFO ;.. 1 4 " > i . * + - i . 7 1 4 5 T . 2 + - 0 . 5 - 6 4 . 6 + - 5 . 2 0

    Ti.b*- 0.3" P . _ . J 9 7 + - . 0 7 9

    ! . 6 7 + - 0 . 1 +

    3 8 . 5 * - 3 . "

    OfCKHCFF 65 KCL6R 6 8

    1 4 5 1 . ' 47 .0 + - 3 9 .

    Ti.b*- 0.3" P . _ . J 9 7 + - . 0 7 9

    ! . 6 7 + - 0 . 1 +

    3 8 . 5 * - 3 . "

    45SH5IT68" " •ii 1 4 M 1 . 3 + - H . 4 6-».3 + - 5 . ^ 2 3 . S + - 0 . 3 U . 1 . 6 8 8 + - . 1 3 r 8 7 . 8 ' * - 5 . 2

    3 . 3

    3 . 1

    " ftCeilMl

    5 . 2

    3 . 3

    3 . 1 RECnMfEND^Q

    1 0 1 . 0 + - 6 . 1 1 U 1 . 0 + - 6 . 1 2 3 . 5 + ^

    2 . 5 7 + - 0 . 1 S 2 . 5 7 3 + - . 1 5 5 1 2 4 . 5 + - 6 . 1

    102 " 102 132

    1541 . • • > * - « . ' 1 5 4 T . 7 f . f l . 5

    •154CI>9ti.,rj.4 1 0 1 . 0 + - 6 . 1 1 U 1 . 0 + - 6 . 1 2 3 . 5 + ^ 0 . 3 0 .

    2 . 5 7 + - 0 . 1 S 2 . 5 7 3 + - . 1 5 5 1 2 4 . 5 + - 6 . 1

    3CCKHCFF 66 KCLIVR 68 R ECDHMEN0E3

    1541 . • • > * - « . ' 1 5 4 T . 7 f . f l . 5

    •154CI>9ti.,rj.4 1 0 1 . 0 + - 6 . 1 1 U 1 . 0 + - 6 . 1 2 3 . 5 + ^ 0 . 3 0 . 1 2 4 . 5 + - 6 . 1

    103 l 5 5 " . 0 t - ' i . 7 3CCKHCFF 66 105 1 5 4 9 . 5 + - ' . 1 ' 1 5 6 . 7 + - 8 . 6

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    KCLSR »8

    1 0 4 . r i 5 5 4 - . 0 * - n . 7 ~ 1 X 4 . 7 + 8 . 0

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    3TCKHCFF 6S 104 i'lht.T*- " . 5 ~ 1 X 4 . 7 + 8 . 0

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    10+ l b « ? . S » - " . 4 1 1 4 . 7 + - S . I "

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    RfCnMyc.\nPJ

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    11)5. 105 105

    • .' L i ' f c . 2 + ~ P . 7 1 5 7 5 . 3 * ^ 0 . 5 . 1 5 7 5 . 6 + - 0 . 4

    1 2 6 . 2 + - 7 . 5 1 2 6 . 2 + - 7 . 6

    2 3 . 5 + - "

    -.an*!.

    2 1 . S+-

    "3 .3" ; -

    0 . 3

    0 . 3

    o .

    0 .

    c .

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    K C H ° 6£

    105 I t ' ! . *+ - '» .7

    3 . 9 1 + - 0 . 2 2 " 3 . 9 B 1 + - . 2 1 8

    ' 7 . 9 1 + - 0 . 2 " 2 . 9 V i + - . 2 n ?

    ? .1 "

    7.->

    3 . 1

    "~3 . r

    lot, r o r in?

    "" ror-

    1 4 ^ 0 . A * - ' . A ~ T 5 T T 7 ? > ^ i 7 4

    I f t ' l . S * - " . " " " l ? 2 1 . 4 ' t i " : 6 "'

    3 4 . 6 + - 3 . 9 3 4 . 3 + - 3 . 9

    2 8 . 6 + - 3 . 7

    Z 3 . S i 1 .3 ' f . * ' .P7 + - n , ] i

    1 .71 + - 0 . ^ ' l

    1 8 0 . 2 * -

    13 8. ." '+-;

    1 4 9 . 7 + -

    K 8 . 1 + -

    5 2 . 1 » -"

    8 . 6

    8 . •> "

    7.->

    3 . 1

    "~3 . r

    3 rrr»'Me-;o"0

    i^CKHCFF ' j i

    147 l i ) ? l . 3 + - 1 . ** 2.J.6 + - 3 . 7 ft. 5+- 1.3 c. . 7 1 " + - . r n

    1 8 0 . 2 * -

    13 8. ." '+-;

    1 4 9 . 7 + -

    K 8 . 1 + -

    5 2 . 1 » -"

    8 . 6

    8 . •> "

    7.->

    3 . 1

    "~3 . r "Crcj ' -ptMiF )

    http://154T.7f.flhttp://154T.7f.fl

  • TAB UTE—ICCHT. ~KEiT T T "fiNO

    lUa J,6JH'.t^"«-'5 157.1*—?.(J 2 H . i t - 11.3 -z^BS-^orrr-3CCKHCFF 6& ~ O . W 6 B -

    ' i . w z t - . IT3 rwr6»- T.II necflHciNQE? •10&': j - 166S.J ;

    63 .9 +-5.2 6 3 . 9 + - 5 . 2 2 3 . 5 + - 0 . 3

    1.S9 +-0.13 1.367+-. .128 87.4+-

    BCCKHCFF-65 KCUR 68

    5 .2 RECOHCENDF:)

    23rr5T*-0vr-

    ; I M ' I T ? » . I : * - " ' , ! ; » - ' -S315" f - 6 . 7 • • t i l - H r t , < K U

    o.fti *~o;Trr-

    - 2 I O T - ^ P : t s

    ~StCKBCFF-«5 5 6 . 2 + - -*.3 _RTC0MHEH0F0

    3CCKHCFF 66 -iccui ee TT6\ TP7YQ 1 .23 + - 0 . 1 1 "

    - r . 2 3 i + - ^ - . r i 4

    114 l 7 7_1.4+-.0.8 9 . 8 + -5 .0 — u j

    3 . 2 3 + - 0 . 1 2

    •" rrc^ , tu_J::..4+-n.,8 - "9 .8+-5 .0 2 J . 5 + - 0 3 " — u j " " ' •.333W-". : r i 9 .̂ 1 IS-• l77o../i*-'>..8

    KCUR 68 4 .8" RECOIIHENOE')

    33.3'+- • 5 . ^ " ^ECOHCENOfO

    11?!: 17 7 9 . 1 1 -•F9K(T * -25

    M l . + - 2 5 . 23.5+- 0.3 " I I . T + - 0 . 6

    11 .64+- . 5 9 51* .S+- 25.-1

    BE5KHCFF 66 XCUV 68 RECOWKEISOEr)

    -3CCKHCFF 66 MSr- l a a i .!t-n. T-— 1 2 ; ; a - + - g r i — •—zrm * - ; 7T2T • KUAC. 6U 116 IP4.?.« e • 2 3 . 2 ' • ) . ! + - 1.? •llGNFCt AR

    tu*+-^j-+=-^ri;—r25V8+- 9,3 9 . V RJCOKFENPFi)

    117 T T T "

    "SI .9+- - >.» T3T.r;-f+-"-.rr~

    117 -la ? > . + • - % A" 14.*- + -5 .5

    " 3 4 : * + - 5T5~

    3CCKHCFF 65 KCLIU 68

    5 7 . ' * » = STs p.sSDftnE?n5fo~

    http://2H.it-http://LI6i.tH-Bl.il

  • .- TABLE -V (CCNT. ) FAGF V - l a

    . t,G G~F" ™6'

    " i : 7 9 +=0."16 "

    • • H E » • GN . t,G G~F" ™6'

    " i : 7 9 +=0."16 "

    G S6FEBENCE

    8CCKHCFF 66 U 8 - . l i ( . V : . v 4 - n . » " 7 7 . 4 ' T - T . J

    . t,G ™6'

    " i : 7 9 +=0."16 " - - KCL»R"68" " //.A-*— 7 . 3 2 3 . b * - li.'i 0 . 1 . 7 » 0 f - . 1 6 2 I P O . 9 * - 7 . 0 RFCOMKEND'iO.

    2 3 . S t - 0 . 4 . 3 *> + - 0 . 2 9

    i ' j n * . 2 7 5

    l ' i ? • t .COJ.7* . . - ! . 9 ~ 2 ) 9 . C * - 1 2 . S

    2 3 . S t - o . b 0 . 4 . 3 *> + - 0 . 2 9

    i ' j n * . 2 7 5

    BCCKHCFF 66

    3CCKHCFF 66 . . . . 119. W . l . t * - 0 . ? ~ 2 ) 9 . C * - 1 2 . S

    2 3 . S t - o . b 0 . 4 . 3 *> + - 0 . 2 9

    i ' j n * . 2 7 5 J.19- l V i ' . l . i * - " . 6 2 ) 9 . * - 1 2 . 2 3 . S t - o . b 0 . 4 . 3 *> + - 0 . 2 9

    i ' j n * . 2 7 5 2 3 2 . 6 * - 1 2 . 0 iUCT«MEND=1

    ' 2 3 . 2 ' ? . 3 . 5 * - 1 . 3 ~

    * 2 . 3 * - 7 . 1 " 4 > . 3 * - 7 . 3

    ? . s ? + - o . l < >

    . 8 2 0 * - . 1 1 1

    " 1.23 l ^ U M * - ' ' . "

    .12) . 1 9 " . . " 1 5 . 9 < ~ 6 . 1

    (? """ 3 ? . •>*- 6 .1

    ' 2 3 . 2 ' ? . 3 . 5 * - 1 . 3 ~

    * 2 . 3 * - 7 . 1 " 4 > . 3 * - 7 . 3

    ? . s ? + - o . l < >

    . 8 2 0 * - . 1 1 1

    KCLSO. s» •UGNFCC ft1!

    1 0 1 . 7 * - 9 . 5 RCCPMHC-jnF 3

    - . 1 . 3 ~

    * 2 . 3 * - 7 . 1 " 4 > . 3 * - 7 . 3

    ? . s ? + - o . l < >

    . 8 2 0 * - . 1 1 1

    1.21 l 9 * 3 . 3 + - f l . o " T 2 I - TTVT&*-*. T '

    122 l 9 « 9 . 7 * - " > . 0

    a . ; * - 5 . r > 8 . J * - 5 . ? 2 3 . 5 ' - " 0 . 3 " 0 .

    " " . I d * - n . n . 1 8 1 * - . U 3

    1 .S7 • - 0 . 1 - '

    KCLt"* SB 3 1 . 5 * - 5.'"> R P C O M P E \ i ' )

    O C C K H W 66 . 122 H « 0 . l * - i . 7 " 3 2 ; 5 * - 7 . 6

    2 3 . 5 ' - " " " . I d * - n . n . 1 8 1 * - . U 3

    1 .S7 • - 0 . 1 - ' K C H " . «E 12d 1 J 4 U . 4 * M. 6 U 2 . ! ) * - 7 . 6 2 i . b> * -

    ' 2 3 . 2 2 3 . 5 * -

    ' O . T '

    " 0 . 3 -2 4 . 5 * - 3 . " 2 ' * . 5 * - 3 . '

    ' T . B S O * - " . 1 7 2

    R.Q' l * - n . 3 ^

    5 ; 9 5 ! * - . 3 6 2

    1 . 5 3 • - O . f ' . 5 3 3 1 -