i* of gas turbine alternative fuels - nasa

18
DOE/NASA/SOl 1 1 -1 NASA TM-100247 I * Combustion Characteristics of Gas Turbine Alternative Fuels R. James Rollbuhler National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 441 35 Work performed for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D Washington, D.C. 20545 Under Interagency Agreement DE-AI01 -85CE50111 Prepared for The Twenty-fifth Automotive Technology Development Contractors’ Coordination Meeting sponsored by the Society of Automotive Engineers Dearborn, Michigan, October 26-29, 1987 .

Upload: others

Post on 07-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: I* of Gas Turbine Alternative Fuels - NASA

DOE/NASA/SOl 1 1 -1 NASA TM-100247

I * Combustion Characteristics of Gas Turbine Alternative Fuels

R. James Rollbuhler National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 441 35

Work performed for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D Washington, D.C. 20545 Under Interagency Agreement DE-AI01 -85CE50111

Prepared for The Twenty-fifth Automotive Technology Development Contractors’ Coordination Meeting sponsored by the Society of Automotive Engineers Dearborn, Michigan, October 26-29, 1987

.

Page 2: I* of Gas Turbine Alternative Fuels - NASA

COMBUSTION CHARACTERISTICS OF GAS TURBINE ALTERNATIVE FUELS

I u

R . James R o l l b u h l e r N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n

Lewis Research Center C leve land, OH 44135

SUMMARY

An exper imenta l i n v e s t i g a t i o n , cosponsored by t h e Department o f Energy and NASA, was conducted t o o b t a i n combust ion per formance va lues f o r s p e c i f i c heavy- end, s y n t h e t i c hydrocarbon f u e l s . A f lame tube combustor m o d i f i e d t o d u p l i c a t e an advanced gas t u r b i n e engine combustor was used for t h e t e s t s . Each f u e l was t e s t e d a t s teady -s ta te o p e r a t i n g c o n d i t i o n s o v e r a range o f mass f low r a t e s , f u e l - t o - a i r mass r a t i o , and i n l e t a i r tempera tures . The combustion p ressu re , as w e l l as t h e hardware, w e r e k e p t n e a r l y cons tan t o v e r t h e program t e s t phase. Test r e s u l t s were o b t a i n e d i n rega rds to geomet r ic tempera ture p a t t e r n f a c t o r s as a f u n c t i o n o f combustor w a l l tempera tures , t h e combust ion gas tempera ture , and t h e combustion emiss ions , b o t h as a f f e c t e d by t h e mass f low r a t e and f u e l - t o - a i r r a t i o . The s y n t h e t i c f u e l s were r e a c t e d i n t h e combustor such t h a t f o r most t e s t s t h e i r performance was as good, i f n o t b e t t e r , than t h e b a s e l i n e gas- o l i n e or d i e s e l f u e l t e s t s . The o n l y d e t r i m e n t a l e f f e c t s were t h a t a t h i g h i n l e t a i r tempera ture c o n d i t i o n s , f u e l decompos i t ion o c c u r r e d i n t h e f u e l a tomiz ing n o z z l e passages r e s u l t i n g i n b lockage. s ions were above EPA l i m i t s a t low f low r a t e and h i g h o p e r a t i n g tempera ture c o n d i t i o n s .

And t h e n i t r o g e n o x i d e emis-

INTRODUCTION

An advantage t h a t gas t u r b i n e engines have ove r i n t e r n a l combust ion engines i s t h a t t hey can opera te w i t h a l a r g e r s e l e c t i o n o f a l t e r n a t i v e f u e l s . Th is i s e s p e c i a l l y an advantage i f i t can be done w i t h o u t ma jor m o d i f i c a t i o n s i n t h e engine and w i t h f u e l s t h a t can be d e r i v e d , a t a r e l a t i v e l y low c o s t , from domest ic sources.

Both NASA and t h e Department o f Energy a r e i n t e r e s t e d i n knowing i f pe r - formance can be ma in ta ined i n a g i v e n advanced gas t u r b i n e combustor a t a l e v e l comparable t o b a s e l i n e performance w i t h g a s o l i n e f u e l . The f u e l s most r e a d i l y a v a i l a b l e i n t h i s c o u n t r y a r e heavy-ended hydrocarbon types t h a t a r e low i n hydrogen-to-carbon r a t i o and h i g h i n a romat i c c o n t e n t . A common source o f such f u e l i s syn thes i s from c o a l . T h i s t y p e o f f u e l was s u p p l i e d f o r t h i s program and i s syn thes i zed by a process c a l l e d "Exxon Donor S o l v e n t " or EDS ( r e f . 1 ) .

The l i t e r a t u r e ( r e f . 2 ) i n d i c a t e s t h a t f u e l lean , homogeneous m i x t u r e s o f such f u e l s w i t h a i r have inc reased combustion t o l e r a n c e t o t h e d isadvantages o f low hydrogen and h i g h a romat i c c o n t e n t . I f such f u e l s a re n o t comp le te l y o x i d i z e d , t h e combustion f lame w i l l c o n t a i n h i g h carbon c o n c e n t r a t i o n s caus ing h i g h w a l l temperatures as w e l l as p roduc ing excess ive n i t r o g e n o x i d e s . So t h i s program had t h e goal of o p t i m i z i n g t h e f u e l combust ion. Th is r e q u i r e s complete a t o m i z a t i o n o f t h e f u e l and t o t a l m i x i n g w i t h an i d e a l amount o f combust ion a i r .

Page 3: I* of Gas Turbine Alternative Fuels - NASA

A techn ique used by t h e gas t u r b ( r e f . 3 ) . T h i s techn ique u t i l i z e s an maximizes m i x i n g o f t h e f u e l w i t h t h e

ne manufac turers i s i n t e r n a l f low f i e l d a i r . T h i s min imizes

ean-burn combust ion n t h e combustor t h a t t h e f o r m a t i o n o f

carbon monoxide and a l s o r e s u l t s i n s m a l l e r q u a n t i t i e s o f unburn t hydrocarbons. The combust ion gas res idence t i m e i s m in imized and l o c a l r e c i r c u l a t i o n r e g i o n s a r e avoided t o keep t h e n i t r o g e n o x i d e f o r m a t i o n low. Problems e x i s t i n t h a t t h e combustor must o p e r a t e ove r a wide t u r n down r a t i o and much o f t h e t i m e t h i s i s a t i d l e or low Dower c o n d i t i o n s which neqate t h e lean-burn conceDt t h a t i s used a t f u l l power c o n d i t i o n s .

The program goal was t o de termine how e f f i c i e n t l y t h e s e l e c t e d a l t e r n a t gas t u r b i n e f u e l s would r e a c t i n an advanced gas t u r b i n e combustor o p e r a t i n g o v e r a range of c o n d i t i o n s . Whereas t h e combustor ope ra tes a t maximum e f f i - c i e n c y w i t h g a s o l i n e a t f u l l power c o n d i t i o n s , how e f f i c i e n t l y w i l l i t opera a t t h e same c o n d i t i o n s u s i n g t h e v a r i o u s a l t e r n a t i v e f u e l s ? What w i l l t h e e f f e c t on performance be when o p e r a t i n g t h e combustor o v e r a range o f power s e t t i n g s ( i . e . , d i f f e r e n t i n p u t mass f low r a t e s ) ?

ve

e

ALTERNATIVE FUELS TESTED

E i g h t a l t e r n a t i v e f u e l s were t e s t e d i n t h i s program. A l l w e r e s u p p l i e d by South W e s t Research, I n c . under a c o n t r a c t from t h e Department o f Energy. The fuels are listed in table I. The gasoline and diesel fuel served as a baseline performance source. Both have a p o s i t i v e hydrocarbon t o a romat i c c o n t e n t r a t i o and t h e h i g h e s t hydrogen c o n c e n t r a t i o n . The methanol does n o t q u i t e f i t i n t h e same ca tegory w i t h t h e o t h e r f u e l s because of a low h e a t c o n t e n t v a l u e , b u t i t was t e s t e d t o see how i t s performance compared. Each of t h e f u e l s was t e s t e d i n sequence i n t h e t e s t r i g so as t o m in im ize system con tamina t ion from one f u e l t o a n o t h e r . The f u e l s were i n i t i a l l y a t ambient tempera tures p r i o r t o f l o w i n g i n t o t h e combustor spray n o z z l e .

TEST FACILITY AND OPERATIONS

The t e s t i n g was conducted a t t h e Lewis Research Center Fundamental Combus- t i o n Research L a b o r a t o r y . T h i s f a c i l i t y was chosen because i t can d u p l i c a t e t h e heated combust ion a i r coming o u t of a r e g e n e r a t i v e equipped gas t u r b i n e engine. T h i s i s shown i n a schematic d iagram ( f i g . 1 ) . Up t o 2 l b o f combus- t i o n a i r -per-second can be heated t o approx ima te l y 1800 O F a t 10 atm p r e s s u r e . T h i s i s done by f l o w i n g t h e a i r th rough a heated, porous, ceramic h e a t exchanger. The heat exchanger wheel i s heated a t v a r i a b l e r a t e s by a gas t u r - b i n e exhaust on one s i d e and as t h e ceramic wheel r e v o l v e s p a s t f l e x u r e s e a l s ( t h a t keep t h e exhaust gases separate from t h e combust ion a i r ) , i t g i v e s up t h i s i n p u t heat t o t h e combust ion a i r f l o w i n g th rough i t . A f t e r t h e combust ion a i r has f l o w e d th rough t h e t e s t s e c t i o n , i t i s coo led and then r e l e a s e d t o t h e atmosphere. The gas p ressu re i n t h e t e s t s e c t i o n was ma in ta ined r e l a t i v e l y cons tan t (about 2 atm) by means o f a back p ressu re c o n t r o l v a l v e downstream o f t h e t e s t s e c t i o n . I t sensed mass flow r a t e and a d j u s t e d i t s open ing t o g i v e t h e d e s i r e d p r e s s u r e .

Opera t ions w e r e such t h a t a d e s i r e d a i r mass f low r a t e and a i r tempera ture were programmed i n t o t h e c o n t r o l s and once t h e s teady -s ta te c o n d i t i o n s were a t t a i n e d , t h e f u e l was i n t r o d u c e d . The f u e l flow r a t e was a d j u s t e d t o o b t a i n

I 2

Page 4: I* of Gas Turbine Alternative Fuels - NASA

t h e t e s t f u e l - t o - a i r r a t i o and when s teady s t a t e t e s t d a t a was r e a l i z e d , t h e t e s t p o i n t d a t a were recorded. a t any g i v e n t e s t c o n d i t i o n .

Th is u s u a l l y r e q u i r e d 4 t o 6 min o f o p e r a t i o n

TEST COMBUSTOR

The t e s t i n g done i n t h i s program made use of one combustor. I t was b a s i - c a l l y a f lame tube t ype t h a t was mod i f i ed t o s i m u l a t e a l e a n burn , advanced gas t u r b i n e combustor. A schematic d rawing of t h e combustor i s shown i n f i g u r e 2.

A l l t h e t e s t f u e l and 1 t o 2 p e r c e n t of t h e combustion a i r were i n j e c t e d i n t o the combustor th rough an a i r b l a s t f u e l a t o m i z i n g n o z z l e . The n o z z l e was i n the head end o f the combustor and i t was p h y s i c a l l y i s o l a t e d from t h e h o t combustion a i r f l o w i n g i n t o the combustor, a l s o a t t h e head end. Be ing a l e a n burn concept combustor, none of the a i r was i n t r o d u c e d as d i l u e n t downstream. To promote i g n i t i o n , a combustion cup surrounded t h e nozz le spray and o n l y enough combustion a i r was i n t r o d u c e d i n t o the cup so as t o a t t a i n s t o i c h i o - m e t r i c i g n i t i o n c o n d i t i o n s ( u s i n g a h i g h energy s p a r k i n g source) . The i g n i t e d f u e l - a i r m i x t u r e was then mixed w i t h t h e r e s t of t h e incoming s w i r l i n g a i r and combustion cont inued down the combustor. The d u r a t i o n of i n t e r n a l combustor r e a c t i o n , t h e res idence t ime , was a f u n c t i o n o f t h e combustor volume, t h e mass f low r a t e , and the gas temperature and p ressu re . Th is t i m e was g e n e r a l l y 4 to 8 msec, d u p l i c a t i n g t h a t o f a t y p i c a l gas t u r b i n e combustor.

I t was t h e i n t e n t of t h e program t o use one a i r b l a s t f u e l spray nozz le f o r t h e e n t i r e program, b u t we had t o use two d i f f e r e n t a i r b l a s t n o z z l e s . These nozz les a re shown i n a schematic c r o s s - s e c t i o n a l d rawing i n f i g u r e 3. The i n i t i a l nozz le i s l a b e l e d "P-A" and the f i n a l one i s l a b e l e d "C-A". The P-A nozz le worked f i n e a t a low tempera ture ( i . e . , up t o 1200 O F i n p u t a i r ) c o n d i t i o n s b u t a t h i g h e r tempera tures , and e s p e c i a l l y a t low f u e l flow r a t e s , b lockage and p l u g g i n g occu r red i n t h e smal l f u e l passages. I t was v e r y d i f f i - c u l t t o c l e a n these passages e f f e c t i v e l y , so we swi tched t o t h e C-A n o z z l e . I t gave performance s i m i l a r t o the P-A nozz le , i n c l u d i n g f u e l decompos i t ion a t h i g h temperature c o n d i t i o n s , b u t i t had t h e advantage t h a t i t c o u l d be taken a p a r t t o be c leaned.

INSTRUMENTATION

The s teady -s ta te o p e r a t i o n d a t a a c q u i s i t i o n c o n s i s t e d of : t h e f u e l i n p u t tempera ture , p ressure , and f low r a t e ; t h e i n p u t combustion a i r ( i n c l u d i n g t h e nozz le a i r ) temperature, p ressu re , and flow r a t e ; and t h e combust ion gas pres- sure and temperature, as w e l l as the gas compos i t ion . Fuel f low r a t e s were measured w i t h F low t ron mass f lowmeters. The a i r flow r a t e s were measured w i t h o r i f i c e f lowmeters and p i t o t tube f lowmeters. A i r , f u e l , and gas tempera tures and pressures were measured w i t h thermocouple probes and s t r a i n gage t ransducers .

The combustion gas compos i t ion was determined u s i n g a con t inuous gas sam- p l i n g probe l o c a t e d a t t he e x i t end o f t h e combustor. The probe l i n e was heated t o p reven t condensat ion and t h e sample was ana lyzed for oxygen, p a r t i c u - l a t e s , s u l f u r ox ides , n i t r o g e n ox ides , carbon d i o x i d e , carbon monoxide, and unbur n t hydrocarbons .

3

Page 5: I* of Gas Turbine Alternative Fuels - NASA

The combustor w a l l temperatures were measured u s i n g i n d i v i d u a l p l a t i n u m type R thermocouples brazed i n t o tungs ten s lugs t h a t were mechan ica l l y f as tened i n t o t h e s t a i n l e s s s t e e l combustor w a l l . The s lugs had t h e i r i n n e r sur face exposed to the combust ion gases and they were arranged on t h r e e c i r c u m f e r e n t i a l p lanes : 5, 8 , and 1 1 i n . downstream o f the f u e l spray nozz le . Each p lane had e i g h t e q u a l l y spaced thermocouples.

The combust ion gas tempera ture was an average from a rake c o n t a i n i n g 12 thermocouples a t t he combustor e x i t . Another thermocouple rake was l o c a t e d i n the gas stream, t w i c e the d i s t a n c e downstream from the f u e l spray n o z z l e as the combust ion gas thermocouple rake .

TEST PROCEDURE

Each f u e l was t e s t e d i n sequence u s i n g a m a t r i x t e s t p a t t e r n . That i s , a g i ven i n p u t a i r tempera ture was s e l e c t e d and then a range o f d i f f e r e n t a i r mass f low r a t e s were run . I n any a i r mass f low r a t e r u n sequence, t h e f u e l - t o - a i r r a t i o was v a r i e d . Because o f the b lockage problems w i t h t h e P-A f u e l nozz le , some o f t h e f u e l s were r e - r u n u s i n g t h e C-A f u e l nozz le .

The i n p u t tempera ture o f the a i r was about 1000, 1250, and 1500 O F . A t t h e h i g h e r temperatures we had problems i n thermal feedback th rough t h e f u e l i n j e c t o r f a c e decomposing t h e f u e l . The i n p u t a i r mass f low were about 0.25 t o 1 l b / s e c . The f u e l - t o - a i r r a t i o range was 0.008 t o 0.022, excep t f o r t h e a l c o h o l where t h e range was 0.015 t o 0.040. The lower l i m i t was where f lame- out g e n e r a l l y occu r red and the upper va lue was s e t by the thermal l o a d on t h e combustor w a l l s .

TEST RESULTS

P a t t e r n Fac to r

A c o n s i d e r a t i o n i n t e s t i n g t h e d i f f e r e n t f u e l s i s how e f f e c t i v e l y a r e t h e y atomized and vapor i zed u s i n g a s i n g l e fue l n o z z l e f o r a l l t h e t e s t s . Also do t h e v a r i o u s f u e l s r e a c t even ly as they proceed th rough the combustor?

Before each t e s t , t h e heated a i r f l owed by i t s e l f th rough t h e combustor. Th i s e s t a b l i s h e d a b a s e l i n e thermal c o n d i t i o n t o compare to the d a t a o b t a i n e d when the v a r i o u s f u e l s were b u r n t i n the combustor. A t y p i c a l tempera ture p a t t e r n as a f u n c t i o n o f mass flow a t 1400 O F i n p u t c o n d i t i o n s i s shown i n f i g u r e 4 . A s the i n p u t a i r mass f l ow r a t e inc reased, above 0.5 l b / s e c , t he combust ion gas average tempera ture s tead ied o u t a t about 1380 O F ; some o f the i n p u t hea t was be ing conducted away th rough t h e combustor w a l l . A t t he same t ime the combustor w a l l average c i r c u m f e r e n t i a l temperatures were i n c r e a s i n g a t a s teady l i n e a r r a t e .

I n f i g u r e 5 we p r e s e n t the same thermocouple da ta a t a f i x e d i n p u t a i r tempera ture and f low r a t e as a f u n c t i o n o f the g a s o l i n e f u e l - t o - a i r i n p u t r a t i o . The w a l l temperatures inc reased approx ima te l y 200 O F a t t h e 5 i n . down- s t ream c i rcumference, 300 O F a t the 8 i n . downstream c i rcumference, and 350 O F

a t t h e 1 1 i n . c i rcumference. The average gas temperatures i nc reased 300 t o 500 O F o v e r the b a s e l i n e a i r temperature as a f u n c t i o n o f t h e f u e l - t o - a i r r a t i o .

4

Page 6: I* of Gas Turbine Alternative Fuels - NASA

F i g u r e 6 i s a p r e s e n t a t i o n o f t h e average w a l l tempera ture i nc rease fo r a l l t h e f u e l s t e s t e d a t a g i v e n s e t o f c o n d i t i o n s : app rox ima te l y 2600 l b / h o u r flow r a t e , 1450 O F i n p u t a i r tempera ture and 8 i n . downstream o f t h e f u e l noz- z l e . The Canadian t a r sand and t h e EDS b lends r e s u l t i n h i g h e r w a l l tempera- t u r e s than t h e base f u e l s o v e r the f u e l - t o - a i r r a t i o range t e s t e d . Th is h i g h e r w a l l tempera ture m igh t be due i n p a r t t o h i g h thermal r a d i a t i o n from t h e aro- m a t i c s i n these f u e l s , b u t t h e main p o i n t i s t h a t t h i s same p a t t e r n i s occur - r i n g f u r t h e r upst ream as w e l l as a t t h i s l o c a t i o n . There was no problem i n b r i n g i n g about i g n i t i o n and b u r n i n g o f these heavy-end hydrocarbon f u e l s a t these t e s t c o n d i t i o n s .

The tendency f o r even c r o s s - s e c t i o n a l b u r n i n g as t h e r e a c t a n t s proceed th rough the combustor i s r e v e a l e d i n a p a t t e r n f a c t o r . f a c t o r s a re based on combustion gas tempera tures , i n t h i s program we used w a l l tempera tures . The s e l e c t e d p a t t e r n f a c t o r i s a f u n c t i o n o f t h e maximum w a l l tempera ture and the average w a l l temperatures i n a g i v e n combustor c ross- s e c t i o n p lane . One such example i s p l o t t e d i n f i g u r e 7 as a f u n c t i o n o f t h e t e s t e d f u e l - t o - a i r r a t i o f o r a g i v e n c r o s s - s e c t i o n a l p lane 1 1 i n . downstream o f t h e f u e l nozz le . Th is p l o t i s a l s o i n t e r e s t i n g i n t h a t i t shows how the f u e l nozz le b lockage problems a f f e c t t he p a t t e r n f a c t o r s .

Whereas, most p a t t e r n

The P-A nozz le per formance i n i t i a l l y r e s u l t e d i n a p a t t e r n f a c t o r o f about 0.2, t h e va lue g e t t i n g lower a t h i g h e r f u e l f low r a t e s and i n j e c t o r p ressu re drops . A s t h e f u e l s w e r e t e s t e d i n sequence w i t h t h i s nozz le , t h e p a t t e r n f a c - to r g o t p r o g r e s s i v e l y l a r g e r , u n t i l w i t h g a s o l i n e and a l c o h o l t h e va lue was 0 . 5 or more. Th is was n o t i c e a b l e a l s o from the f u e l i n j e c t i o n tempera ture and p ressu re . For the 1000 O F i n p u t a i r t e s t t h e f u e l nozz le w a l l temperature was 200 t o 400 O F and t h e f u e l tempera ture i n t h e nozz le was about 200 O F .

u s i n g 1500 O F i n p u t a i r t h e n o z z l e w a l l g o t to 400 t o 600 O F and the f u e l tem- p e r a t u r e g o t t o 400 t o 800 O F w i t h the g a s o l i n e and a l c o h o l be ing t h e h i g h e s t . The g a s o l i n e i n j e c t i o n p ressu re drop e s s e n t i a l l y doubled. We had v a p o r i z a t i o n and/or decompos i t ion two phase f low c o n d i t i o n s i n the n o z z l e . Decomposi t ion d i d n o t occur even ly i n each f u e l passage so t h e f u e l f l o w r a t e became uneven around t h e nozz le e x i t c i r cumfe rence .

When

A f t e r t r y i n g t o c l e a n t h e P-A nozz le f u e l passages w i t h o u t n o t i c e a b l e suc- cess, we sw i tched t o t h e C-A f u e l nozz le and we w e r e a b l e t o o b t a i n t e s t d a t a a t a low p a t t e r n f a c t o r va lue . We s t i l l had h i g h nozz le temperatures and f u e l decomposi t ion, b u t when t h e p a t t e r n f a c t o r s t a r t e d i n c r e a s i n g , t h e f u e l nozz le was disassembled and the p a r t s were mechan ica l l y and u l t r a s o n i c a l l y c leaned. The C-A nozz le t e s t d a t a f o r t h e f u e l s used was c o n s i s t e n t l y taken a t a pa t - t e r n f a c t o r c l o s e t o 0.2 ( f i g . 7).

Combustion Gas Temperature Performance

The genera l performance o f t h e d i f f e r e n t f u e l s t e s t e d was based on t h e average combustion gas tempera ture as measured from a h i g h tempera ture thermo- coup le rake a t t he combustor e x i t , 18 i n . downstream o f t h e f u e l nozz le .

The temperatures o f t h e combustion gas from t h e f u e l s t e s t e d f o r a g i v e n s e t o f o p e r a t i n g c o n d i t i o n s i s shown i n f i g u r e 8 . The average temperatures a re p l o t t e d as a f u n c t i o n o f t h e f u e l - t o - a i r r a t i o . o t h e r mass flows and i n p u t a i r tempera tures . Also shown i n the f i g u r e i s t h e

The t rends a r e t h e same f o r

5

Page 7: I* of Gas Turbine Alternative Fuels - NASA

t h e o r e t i c a l gas tempera ture f o r t h e r e a c t i o n o f Jet-A f u e l and 1500 O F a i r ( r e f . 4 ) . A s would be expected, t h e combustion gas tempera ture inc reases as more f u e l i s mixed w i t h a g i v e n q u a n t i t y o f a i r .

The EDS b lends , Canadian t a r sand f u e l , and hydrogenated EDS a l l had com- b u s t i o n gas tempera tures c o n s i s t e n t l y h i g h e r than t h e b a s e l i n e g a s o l i n e . The a l c o h o l f u e l , a t t h e f u e l - t o - a i r r a t i o shown, had t h e lowest gas tempera ture .

A l though t h e average combustion gas tempera ture was i n c r e a s i n g w i t h i n c r e a s i n g f u e l - t o - a i r r a t i o , i t was n o t d o i n g so a t as f a s t a r a t e as t h e o r e t - i c a l l y p o s s i b l e . T h i s i s shown i n f i g u r e 9 when t h e p e r c e n t o f t h e o r e t i c a l combustion tempera ture , u s i n g t h e same d a t a as appears on f i g u r e 8 , i s p l o t t e d a g a i n s t t h e f u e l - t o - a i r r a t i o . A l l t he f u e l s decreased i n pe rcen t o f t h e o r e t i - c a l temperature w i t h i n c r e a s i n g f u e l - t o - a i r r a t i o , some a t f a s t e r r a t e s than o t h e r s . The h i g h e s t e f f i c i e n c y f u e l , a b lended EDS, decreased from about 95 pe rcen t a t 0.008 f u e l - t o - a i r r a t i o to about 92 p e r c e n t a t 0.020 f u e l - t o - a i r r a t i o . r a d i a t e d away th rough t h e combustor and r i g w a l l s .

I t may be t h a t w i t h i nc reased gas tempera ture more o f the hea t i s be ing

Another e x p l a n a t i o n f o r dec reas ing e f f i c i e n c y w i t h h i g h e r f u e l - t o - a i r r a t i o s , e s p e c i a l l y w i t h t h e lower e f f i c i e n c y f u e l s , i s t h a t t h e combustor r e s i - dence t i m e i s n o t l o n g enough. Th is i s shown i n d i r e c t l y i n f i g u r e 10. The combustion gas minus the exhaust gas tempera ture i s p l o t t e d a g a i n s t t he f u e l - t o - a i r r a t i o b e i n g t e s t e d . The combustion gas tempera ture was measured a t the e x i t of t h e combustor and t h e exhaust tempera ture was measured o u t s i d e t h e combustor, t w i c e as f a r downstream o f t h e f u e l n o z z l e as t h e combust ion temperature.

For those f u e l s w i t h a h i g h e f f i c i e n c y , e . g . , t h e b lended EDS and hydro- genated EDS, t h e d i f f e rences between t h e combust ion and exhaust gas temperature i s n e g l i g i b l e ove r t h e t e s t e d f u e l - t o - a i r r a t i o . However , f o r t h e lower e f f i - c i e n c y f u e l s , such as the g a s o l i n e and a l c o h o l , t h e exhaust gas becomes much h o t t e r than t h e combust ion gas w i t h i nc reased f u e l - t o - a i r r a t i o . Th i s would i n d i c a t e t h a t a t h i g h e r f u e l f lows, these poor f u e l s r e q u i r e a g r e a t e r r e s i - dence t i m e t o r e a l i z e t h e i r p o t e n t i a l . A long w i t h i nc reased b u r n i n g t i m e , these f u e l s may be m i x i n g w i t h a d d i t i o n a l a i r o u t s i d e t h e combustor which improves t h e i r b u r n i n g c h a r a c t e r i s t i c s .

Combustion Gas Emiss ions

The combustion gases a t t he combustor e x i t were c o n t i n u o u s l y sampled and checked f o r emiss ions o f oxygen, carbon d i o x i d e , carbon monoxide, n i t r o g e n ox ides , s u l f u l o x i d e s , unburn t hydrocarbons, and p a r t i c u l a t e m a t t e r .

The gas d e t e c t i o n equipment never d i d measure any mean ing fu l q u a n t i t i e s o f s u l f u r ox ides o r p a r t i c u l a t e m a t t e r . Unburnt hydrocarbons were d e t e c t e d d u r i n g s t a r t u p c o n d i t i o n s or a t low a i r temperatures o r h i g h f u e l f low r a t e s which amounted t o a smal l percentage o f o p e r a t i n g t i m e .

The q u a n t i t y o f oxygen i n the combustion gas i s a f u n c t i o n o f t h e opera t - i n g f u e l - t o - a i r r a t i o and t h e combustion e f f i c i e n c y . g i v e n s e t o f o p e r a t i n g c o n d i t i o n s i n f i g u r e 1 1 . Also p l o t t e d i n t h e f i g u r e i s t he t h e o r e t i c a l oxygen c o n c e n t r a t i o n b u r n i n g Jet-A f u e l a t t h e same c o n d i t i o n s

Th is i s p l o t t e d f o r a

6

Page 8: I* of Gas Turbine Alternative Fuels - NASA

( r e f . 4 ) . t o - a i r r a t i o compared t o t h e b lended EDS and Canadian t a r sand f u e l s .

The g a s o l i n e and a l c o h o l had the h i g h e s t c o n c e n t r a t i o n s a t any f u e l -

The q u a n t i t y o f carbon d i o x i d e i n t h e combustion gas behave j u s t t h e oppo- s i t e of t h e oxygen, w i t h i nc reased f u e l - t o - a i r r a t i o . Again, t h e t h e o r e t i c a l carbon d i o x i d e c o n c e n t r a t i o n i s p l o t t e d a long w i t h o t h e r s e l e c t e d d a t a i n f i g - u r e 1 2 . The carbon d i o x i d e c o n c e n t r a t i o n d r a s t i c a l l y i n c r e a s e w i t h inc reased f u e l b u r n i n g . The hydrogenated EDS hav ing h i g h e r average va lues than the d i e - s e l and g a s o l i n e b a s e l i n e f u e l s .

The changing c o n c e n t r a t i o n o f carbon monoxide i n t h e combust ion gases was l e s s an e f f e c t o f t h e o p e r a t i n g f u e l - t o - a i r r a t i o as i t was an e f f e c t o f the combustion a i r tempera ture and mass flow r a t e . T h i s i s p resen ted i n f i g u r e 13 for t h e b a s e l i n e f u e l g a s o l i n e . 1000 g o f g a s o l i n e burned i s p l o t t e d a g a i n s t t h e f u e l - t o - a i r r a t i o f o r v a r i o u s o p e r a t i n g c o n d i t i o n s . 1 l b / s e c o f a i r , and t h r e e a i r tempera tures , 1000 O F , 1250 O F , and 1500 O F

range, f o r each mass f low r a t e . The g r e a t e s t q u a n t i t y of carbon monoxide was produced a t t h e h i g h mass f low r a t e s and low i n p u t a i r tempera tures . c o n d i t i o n s changed, t h e carbon monoxide decreased u n t i l i t was l e s s than t h e r e q u i r e d EPA l i m i t o f 38 a t t he lower mass f low and/or h i g h e r i n p u t a i r tempera ture .

Here t h e grams o f carbon monoxide produced per

Two mass flow r a t e s a r e shown, app rox ima te l y 0.50 and

A s these

I n f i g u r e 14, t h e carbon monoxide c o n c e n t r a t i o n v a l u e for o t h e r f u e l s i s p l o t t e d a t s p e c i f i c c o n d i t i o n s . When t h e i n p u t a i r tempera ture was approx i - ma te l y 1500 O F , a l l t h e f u e l s had carbon monoxide c o n c e n t r a t i o n s whose index va lue was l e s s than 20.

The n i t r o g e n o x i d e emiss ions v a l u e i s a l s o a f u n c t i o n o f t h e tempera ture , A s t h e i n p u t a i r tem- b u t o p p o s i t e to t h a t o c c u r r i n g for t h e carbon monoxide.

p e r a t u r e (and t h e combust ion gas tempera ture) inc reased, t h e o x i d a t i o n o f t h e n i t r o g e n i n t h e combust ion a i r a l s o inc reased. For t h i s program t e s t , t h e f u e l - t o - a i r r a t i o appears t o have a minor a f f e c t compared t o t h e mass flow r a t e and i n p u t tempera ture . o l i n e a t s p e c i f i c c o n d i t i o n s . 0 .5 l b / s e c , and t h e i n p u t tempera ture was increased, t h e emissi 'on v a l u e o f t h e n i t r o g e n o x i d e inc reased; t h e change i n tempera ture hav ing t h e m o s t e f f e c t . The l a r g e r mass f low i s i n d i c a t i v e o f lower res idence t i m e g i v i n g t h e gases l e s s t i m e a t h i g h tempera tures to r e a c t and form t h e n i t r o g e n o x i d e s .

Th is i s shown i n f i g u r e 15 f o r t h e b u r n i n g o f gas- A s t h e mass f low r a t e was decreased from 1 t o

The n i t r o g e n o x i d e emiss ions va lues for t h e o t h e r f u e l s t e s t e d u s i n g t h e C-A n o z z l e hardware a re shown i n f i g u r e 16. A t a g i v e n mass f low r a t e , t h e hydrogenated EDS had t h e l owes t emiss ion va lue a t any i n p u t tempera ture . U n f o r t u n a t e l y , i t was s t i l l above t h e EPA l i m i t a t i o n s o f 4.6 a t t h e h i g h e r i n p u t tempera tures .

CONCLUSION

The a l t e r n a t i v e f u e l s t e s t e d i n t h i s program gave v e r y good performance r e s u l t s i n comparison w i t h t h e b a s e l i n e g a s o l i n e r e s u l t s . because o f a l e a n bu rn combustor and an a i r b l a s t f u e l n o z z l e b e i n g used. The hydrogenated EDS and t h e b lended EDS f u e l s had a u n i f o r m combustion p a t t e r n , a h i g h combust ion gas tempera ture , and low emiss ion c o n c e n t r a t i o n s i n r e s p e c t t o the r e s u l t s o b t a i n e d w i t h t h e o t h e r f u e l s .

T h i s may have been

7

Page 9: I* of Gas Turbine Alternative Fuels - NASA

Problem areas assoc ia ted w i t h o p e r a t i o n s a t h i g h i n l e t combust ion a i r tem- p e r a t u r e s and low power or i d l e f u e l f low r a t e s i s f u e l v a p o r i z a t i o n and /o r decomposi t ion w i t h i n the f u e l n o z z l e . Th is can l e a d t o nonun i fo rm f u e l passage f o u l i n g . Th is i s more o f a p rob lem w i t h low b o i l i n g range f u e l s l i k e g a s o l i n e and a l c o h o l r a t h e r than t h e h i g h e r b o i l i n g range s y n t h e t i c f u e l s .

I g n i t i o n was no prob lem w i t h any o f t h e f u e l s i n t h e f u e l - t o - a i r range be ing t e s t e d . O f course, t h e minimum a i r tempera ture was 800 O F a t which i g n i - t i o n was o c c u r r i n g and i t i s s t i l l a q u e s t i o n as t o what t h e i g n i t i o n cha rac t - e r i s t i c s would be w i t h these s y n t h e t i c base f u e l s u s i n g ambient tempera ture a i r f o r s t a r t i ng .

REFERENCES

1 . S c h u l t z , D.F . : Summary of Synfuel C h a r a c t e r i z a t i o n and Combustion S t u d i e s . NASA TM 83066, DOE/NASA/13111-15, 1983.

2. Su t ton , R.D.; T r o t h , D.L. ; and M i l e s , G . A . : A n a l y t i c a l Fuel P r o p e r t y E f f e c t s on Small Combustors. (EDR-11683, D e t r o i t D i e s e l A l l i s o n ; NASA c o n t r a c t NAS3-23165) NASA CR-174738, 1984.

3 . Sanborn, J.W.; Mongia, H.C. ; and K i d w e l l , J.R.: Design o f a Low-Emission Combustor f o r t h e Automot ive Gas Turb ine . A I A A Paper 83-0338, Jan. 1983.

4. Jones, R . E . , e t a l . : Combustion Gas P r o p e r t i e s . I -ASTM Jet-A-Fuel and Dry A i r . NASA TP-2359, 1984.

NASA LEWIS RESEARCH CENTER AGT ALTERNATIVE FUELS TEST PROGRAM

F u e l s

Gaso l i ne No. 2 D i e s e l f u e l T a r sands d i e s e l f u e l M e t h a n o l Exxon d o n o r s o l v e n t (EDS) H y d r o g e n a t e d EDS B l e n d o f 50 p e r c e n t EDS and

50 p e r c e n t d i e s e l f u e l B l e n d o f 77 p e r c e n t EDS and

23 p e r c e n t d i e s e l f u e l

E l e m e n t a n a l y s i s , 1 S a t u r a t e d

- C

85 8 6 87 37 8 9 88 87

8 8

-

-

w t % - H

13 13 12 13 10 11 12

11

-

-

S O I 6 0

--- 1 66 33

_ _ _ _ _ _

18

. 2 37 O : : : 1 37

A r o m a t i c h y d r o c a r b o n s ,

v o l %

36 32 67

75 63 63

_ _

_ _

N e t h e a t v a l u e , B t u / l b

18 249 18 295 17 9 3 4

8 5 7 0 17 794 17 9 9 0 18 008

17 881

8

Page 10: I* of Gas Turbine Alternative Fuels - NASA

BURNER GAS EXHAUST

CERAMIC WHEEL ROTATION DRIVE

EXCHANGER HOT

FIGURE 1. - TEST FACILITY SCHEMATIC.

HOT CAS i A i P L E PROBE

o----------O-

cc

FIGURE 2. - TEST COMBUSTOR CROSS-SECTION.

9

Page 11: I* of Gas Turbine Alternative Fuels - NASA

FUEL

1

W CT x + 4: CT W

2

FUEL

I

I

.

P-A FUEL NOZZLE (30-87-29980

FIGURE 3. - TES T COMBUSTOR FUEL

C-A FUEL NOZZLE ATOMIZING NOZZLES.

,o------ +-+-- COMBUSTOR E X I T GAS TEMPERATURE

I / INPUT AIR TEMPERATURE = 1400 OF L L NO FUEL INPUT 0

AVERAGE WALL TEMPERATURE

11 I N . DOWNSTREAMI, W + W LD 4:

8 I N . DOWNSTREAM1

5 I N . DOWNSTREAM7 1000 k

1000 2000 3000 4000 800

MASS FLOW RATE. LB/HR 131)-87-29982

FIGURE 4. - CoMwsroH TEMPERATURES. AIR FLOW ONLY.

10

Page 12: I* of Gas Turbine Alternative Fuels - NASA

W L

lE W l 6 O 0 I

FUEL = GASOLINE MASS FLOW = 2800*100 LB/HR INPUT AIR TEMPERATURE

C-A FUEL NOZZLE = 1500~100 OF

AVERAGE WALL TEMPERATURE w 1400

9 1 / 11 I N . DOWNSTREAM

U

1000 I I I I I CD-8?-29983

0 .004 .008 .012 .016 ,020 ,024 FUEL-TO-AIR RATIO

FIGURE 5. - COMBUSTOR TEMPERATURES DURING THE BURNING OF GASOLINE,

450

L L 0

J J

300 E W v)

5 250 E 0

W W

s 200 Y U

P-A NOZZLE

GASOLINE DIESEL 2 CANADIAN DIESEL HE T H A N 0 L

EDS HYDROGENATED EDS

../-

11

Page 13: I* of Gas Turbine Alternative Fuels - NASA

0 - 7 r 0

I

GASOL I NE DIESEL 2 CANADIAN DIESEL ETHANOL 50/50 DF2 + EDS 23/77 DF2 + EDS EDS HYDROGENATED EDS

**x --R

-. SOLID SYMBOLS = C-A NOZZLE OPEN SYMBOLS = P-A NOZZLE

's, O *9. '*bk.. MASS FLOW = 2400 TO

2800 LB/HR

= 1400+50 OF

DOWNSTREAM OF FUEL NOZZLE

INPUT AIR TEMPERATURE

WALL TEMPERATURE 1 1 IN.

P-A NOZZLE ,- THEORETICAL COREUSTION 1 TEMPERATURE FOR JET-A FUEL AND 1500 OF AIR 2 2 0 0 L i

GASOLINE DIESEL 2 CANADIAN DIESEL ETHANOL 50/50 DF2 + EDS 23/77 DF2 + EDS EDS HYDROGENATED EDS

TO 2800 LB/HR

INPUT AIR TEMPERATURE = 1500*50 OF 3 1 8 0 0 c ; a E: L

1600 , 0 .004 .008 ,012 ,016 .020 .024 c~-87-?9'?YS

FUEL-TO-AIR MASS RATIO

FIGURE 8. - COMBUSTOR GAS TEMPERATURE WHEN BURNING DIFFERENT FUELS.

12

Page 14: I* of Gas Turbine Alternative Fuels - NASA

0 GASOLINE 0 DIESEL 2 V CANADIAN A ETHANOL 0 50/50 DF2 + EDS [3 23/77 DF2 + EDS -..

'.. 0 EDS '4.. '. . 0 HYDROGENATED EDS

'..A V az W n

76 0 .004 ,008 .012 ,016 .020 .024

FUEL-TO-AIR MASS RATIO CD-87-29994

L W V az W

n 76

0 .004 ,008 .012 ,016 .020 .024 FUEL-TO-AIR MASS RATIO CD-87-29994

FIGURE 9. - THEORETICAL COMBUSTION EFFICIENCY WHEN BURNING DIFFERENT FUELS.

0 0

P-A NOZZLE DATA MASS FLOW = 2400 TO 2800 LB/HR INPUT A I R TEMPERATURE = 145m100 OF

V CANADIAN DIESEL A ETHANOL 0 50/50 DF2 + EDS [3 23/77 DF2 + EDS

0 HYDROGENATED EDS 0 EDS '.

I I I I I I I 0 .004 .008 .012 .016 ,020 ,024

CD-87-29995 FUEL-TO-AIR MASS RATIO

FIGURE 10. - TEMPERATURE DIFFERENCE BETWEEN COMBUSTION AND EXHAUST GASES WHEN BURNING DIFFERENT FUELS.

13

Page 15: I* of Gas Turbine Alternative Fuels - NASA

22 r P-A NOZZLE DATA

U

bp

0 HYDROGENATED EDS

J

J 0 > L . 20

bp

J 0 > L

3.0 4 cc

W U z 0 V

w

x

k

fl

2 2.0 a m 0 e 5 v)

3 E

m

L

1 . 0 3

z W Y

5 EI

1 6 v)

L

-THEORETICAL CARBON DIOXIDE

TRATION CONCEN-

-

-

1 d 0 GASOLINE [7 DIESEL 2 0 HYDROGENATED EDS 0 EDS

i -

r THEORET I CAL OXYGEN L<: CONCENTRATION

U , I

MASS FLOW = 2 4 0 0 TO 2800 LB/HR INPUT AIR TEMPERATURE = 1450*100 OF

I

* -..*..-..- ..-..-..-..

-..... '% ... .. 0.. ..

I 14

Page 16: I* of Gas Turbine Alternative Fuels - NASA

J

20

W Y

2

'

-I W 3 LL

x w

140 L W

LL

W 100

n f

1 COMBUSTION

FLOW RATE, LB/HR

GASOLINE FUEL DATA C-A NOZZLE DATA MASS

3. I N P U ~ AIR @ 3450+50

TEMPERATURE.

4 OF

1025 c *@

8o t 60

40 t 1025 \

I 0 GASOLINE I 0 DIESEL 2 0 HYDROGENATED EDS 0 EDS

INPUT AIR TEMPERATURES

4

\ I

(1220 OF)

h SHOWN (XXXX) \ ' (Io3' OF) C-A NOZZLE DATA

INPUT AIR FLOW ' ,' b0 = 230W100 LB/HR

r 0 3 20 -(I500 OF) 5

CD-87-29999 0 -004 .008 ,012 .016 ,020 .024

FUEL-TO-AIR MASS RATIO

FIGURE 14. - COMBUSTION GAS CARBON MONOXIDE EMISSION VALUES WHEN BURNING DIFFERENT FUELS.

15

Page 17: I* of Gas Turbine Alternative Fuels - NASA

14 W

12- J W T3 LL

W x 10 9 - v)

2 6 v)

(3

W

-1 W 3 LL

x W Q

z,

E 2

r

v)

E W

0 W

x 0 L w W 0 CT

L

E

L

INPUT AIR

TEMPERATURE. MASS FLOW, OF LB/HR

1500 /- ' Ids0 - 2800

4--\ 1540

3500 1560 =999-.. -

GASOLINE FUEL DATA 8 - C-A NOZZLE DATA

6 -

14

12

10

,---- 1930 1050 ::'I

-

-

-

8-

6-

4-

2-

1030 ---c------

1025 - 3400 r

0 .004 .008 .012 .016 .020 .024 FUEL-TO-AIR MASS RATIO C"-87-3*" '~

FIGURE 15. - COMBUSTION GAS NITROGEN OXIDES EMISSION VALUES WHEN BURN- ING GASOLINE.

I

0 GASOLINE 0 DIESEL 2 0 HYDROGENATED EDS 0 EDS

I I

INPUT AIR FLOW RATE 2300+100 LB/HR

INPUT AIR TEMPERATURES (OF) SHOWN (XXXX)

C-A FUEL NOZZLE

(1030)

(1050) -

FIGURE 16. - COMBUSTION GAS NITROGEN OXIDES EMISSION VALUES WHEN BURNING DIFFERENT FUELS.

Page 18: I* of Gas Turbine Alternative Fuels - NASA

Report Documentation Page

A l t e r n a t i v e f u e l s ; Gas t u r b i n e combustor; Hydrocarbon f u e l t e s t i n g

Space Admin.slrat%on

NASA TM-100247 2. Government Accession No.

\-e and Subtitle

U n c l a s s i f i e d - U n l i m i t e d Sub jec t Category 07 DOE Category UC-96

, I Combustion C h a r a c t e r i s t i c s o f Gas Tu rb ine

A 1 t e r n a t i ve Fuel s

19 Security Classif (of this report) 20 Security Classif (of this page) 21 No of pages

Uncl ass i f i ed Uncl ass i f i ed 17

7 Author(s)

R . James R o l l b u h l e r

22 Price’

A02

9 Performing Organization Name and Address

I N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n

1 C leve land , Oh io 44135-3191 Lewis Research Center

12 Sponsoring Agency Name and Address

U.S.Department o f Energy O f f i c e o f V e h i c l e and Engine R&D

, Washington, D .C . 20545 I 15 Supplementary Notes

3. Recipient’s Catalog No

5. Report Date

December 1987 6. Performing Organization Code

778-32-1 1

8. Performing Organization Report No.

E-3869 - _~___.____.

10. Work Unit No.

11. Contract or Grant No.

13 Type of Report and Period Covered

Techn ica l Memorandum

14. Sponsoring A g e n c g e c d e R e p O r t Mo. DOE/NASA/5Dlll- l

F i n a l Repor t . Prepared under I n t e r a g e n c y Agreement DE-AI01-85CE50111. Prepared f o r t h e T w e n t y - f i f t h Automot ive Technology Development C o n t r a c t o r s ’ C o o r d i n a t i o n Meet ing (ATD/CCM>, sponsored by t h e S o c i e t y of Automot ive Engineers, Dearborn, Mich igan, October 26-29, 1987.

I 16. Abstract

An exper imenta l i n v e s t i g a t i o n , cosponsored by t h e Department o f Energy and NASA, was conducted t o o b t a i n combust ion performance va lues for s p e c i f i c heavy- end, s y n t h e t i c hydrocarbon f u e l s . A f lame tube combustor m o d i f i e d t o d u p l i c a t e an advanced gas t u r b i n e engine combustor was used for t h e t e s t s . Each f u e l was t e s t e d a t s teady -s ta te o p e r a t i n g c o n d i t i o n s ove r a range o f mass flow r a t e s , f u e l - t o - a i r mass r a t i o , and i n l e t a i r tempera tures . w e l l as t h e hardware, were k e p t n e a r l y cons tan t o v e r t h e program t e s t phase. Tes t r e s u l t s were o b t a i n e d i n rega rds t o geomet r ic tempera ture p a t t e r n f a c t o r s as a f u n c t i o n of combustor w a l l tempera tures , t h e combust ion gas tempera ture , and t h e combust ion emiss ions , b o t h as a f fec ted by t h e mass f low r a t e and f u e l - t o - a i r r a t i o . The s y n t h e t i c f u e l s were r e a c t e d i n t h e combustor such t h a t f o r most t e s t s t h e i r per formance was as good, i f n o t b e t t e r , t han t h e b a s e l i n e gaso- l i n e or d i e s e l f ue l t e s t s . i n l e t a i r tempera ture c o n d i t i o n s , f u e l decompos i t ion o c c u r r e d i n the f u e l a t o m i z i n g nozz le passages r e s u l t i n g i n b lockage. s ions were above EPA l i m i t s a t low flow r a t e and h i g h o p e r a t i n g tempera ture con- d i t i o n s .

The combust ion p ressu re , as

The o n l y d e t r i m e n t a l e f f e c t s were t h a t a t h i g h

And t h e n i t r o g e n o x i d e emis-

.

I