hyperfine splitting of positronium - bipm · hyperfine splitting of positronium akira ishida the...

29
New precise measurement of the hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Upload: others

Post on 12-Jul-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

New precise measurement of the hyperfine splitting of positronium

Akira IshidaThe University of Tokyo

Fundamental Constants Meeting 201506/02/2015  Eltville, Germany

Page 2: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

MembersA. Ishida, T. Namba, S. Asai, T. KobayashiDepartment of Physics and ICEPP, The University of Tokyo

H. SaitoDepartment of General Systems Studies, The University of Tokyo

M. Yoshida, K. Tanaka, A. YamamotoHigh Energy Accelerator Research Organization (KEK)

Warm thanks to facilities and the entire members of the Cryogenics Science Center at KEK

Page 3: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Outline• Positronium Hyperfine Splitting (Ps‐HFS)• Material effect and Ps thermalization• Our New Experiment• Analysis and Results• Prospects & conclusion

3

Page 4: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Positronium (Ps)Positron

Electron

−+

• Bound state of an electron (e‐) and a positron (e+)

• Precision test of bound‐state Quantum ElectroDynamics (QED).

4

o‐PsS

p‐Ps

e+ e‐

= 1 (Triplet)Ortho‐positronium (o‐Ps)

e+ e‐

S

= 0 (Singlet)Para‐positronium (p‐Ps)

Spin=1 The same quantum number  as photon

Spin=0 pseudo‐scalar

o‐Ps → 3 (, 5, …)

p‐Ps → 2 (, 4, …)

Lifetime 142 ns

o‐Ps2k

1k

3k

S

Continuous spectrum 

Lifetime 125 ps

p‐Psk1 1k

Monochromatic 511 keV

Lightest and Exotic Atom

Page 5: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

13S1 o‐Ps

p‐Ps 11S0

(ground state) HFS0.84meV

Energy difference between two spin eigenstates of the ground state Ps  → Ps‐HFS  (203 GHz)

5

Positronium Hyperfine Splitting (Ps‐HFS)SINGLETS TRIPLETS LIFETIMES

203.388 65(67) GHz

142.043(14) nsec(3 decay)

0.125 142(27) nsec(2 decay)

21S0

21P1

23S1

23P223P123P0

8.624 4(15) GHz

13.012 4(17) GHz

18.499 7(42) GHz

11.180 0(64) GHz

1 233 607.216 4(32) GHz2 430 Å

1.14 sec(3 decay)

1.00 nsec(2 decay)

3.18 nsec(Lyman‐)

0.4 ms (2)

0.1 ms (2)3.3 ms (3)

electron

positron

*

time

electron

o‐Ps o‐Ps

Quantum oscillation effect is also large (40%)

spin‐spin interaction

positron

Page 6: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

(GHz)HFSΔ203.38 203.385 203.39

mg

Phys. Rev. Lett. 34, 246 (1975)

Phys. Rev. A15, 241 (1977)

Phys. Rev. A15, 251 (1977)

Phys. Rev. A27, 262 (1983)

Phys. Rev. A30, 1331 (1984)

Previous experimentalaverage

Theory (2014)PRD 89 (2014) 111301(R)PRA 90 (2014) 042502

Discrepancy Between Previous Experiments and Theory

Previousexperimental results are consistently lower than theory.

Previous experimental   average 

203.388 65(67) GHz(3.3 ppm)

O(3ln‐1)+ some of O(3) QED theory

203.391 90(25) GHz (1.2 ppm)

16 ppm (4.5 ) significant discrepancy6

Page 7: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Possible reasons for the discrepancy• Common systematic uncertainties in the previous experiments1. Non‐uniformity of the magnetic field. 2. Underestimation of material effects. Unthermalized o‐Ps 

can have a significant effect especially at low material density.  cf. o‐Ps lifetime puzzle (1990’s)

• Need new development on calculation of bound‐state QED or New physics beyond the Standard Model.

7

Page 8: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Estimation of Material Effect in previous experiments

8

• Need material (in this case gas molecules) so that positron can get electron and form Ps → Ps feels electric field of material

→If the Ps velocity is constant (under assump on that Ps is well thermalized), the material effect is proportional to gas density.

→The Previous experiments

Strength of the Stark Effect~ Collision rate with surrounding molecules(Density of surrounding molecules) x (Ps velocity  v) 3/5

Change of H

FS (G

Hz)

N2 gas density (amagat)

Phys. Rev. A 1984 30 1331Ritter, Egan, Hughes et al.

<Density dependence at V. Hughes et al.>

Linear extrapolation

Page 9: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Evolution of Ps velocity

Strength of the Stark Effect~ Collision rate with surrounding molecules(Density of molecules) x (Ps velocity  v(t))3/5

Ps velocity

 (m/s)

Time since Ps formation (ns)

< Simulation of time evolution of Ps velocity in N2 gas >

Ps loses its kinetic energy and gets room temperature   = Thermalization 

m=13.0x10‐16 cm2, E0=2.07 eV

9

It takes longer time to thermalize in lower density→ Linear extrapolation could be a large O(10ppm) systematic uncertainty→We measured Ps thermalization independently. Used obtained result for analysis of Ps‐HFS measurement.

o‐Ps lifetime

Page 10: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

3GHz

Experimental TechniqueIndirect Measurement using Zeeman Effect

Approximately,

.

,14121 2

HFS

B

HFSmix

hBgx

x

In a static magnetic field, the p‐Ps state mixes with the mZ=0 state of o‐Ps (Zeeman effect).

10

203 GHzHFS  can be obtained by mix

Direct measurement(Miyazaki et al., PTEP 2015, 011C01)

Indirect measurement

This is not precise enough, so we solve time evolution of density matrix.

→ 2‐ray annihilation (511 keV monochromatic signal)  rate increases.This increase is our experimental signal.

Zeeman transition

3

2

2

Page 11: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Measurement @ KEK CSC(Jul 2010 – Mar 2013)

Waveguide

Large bore superconducting magnet 

Cavity and detectorsat the center of the magnet.

11

Almost all of the materials inside the magnet bore is non‐magnetic

Page 12: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Our new Experiment

12

B (0.866 T)

RF cavity(Filled with pure i‐C4H10)

waveguide

22Na(1 MBq)

‐tagging system→Solve systema c error from non‐thermalized Ps.

High performance ‐ray detectors

→Solve systema c error from non‐thermalized Ps.

High power RF (500W CW)

Large bore superconducting magnet + compensation coils→Solve systema c error from non‐uniformity of magnetic field.

1.5 ppm uniformity and 1 ppm stability

Page 13: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

‐tagging system• Tag e+ from the 22Na by thin (0.1 mm) plastic scintillator.

→ t=0

22Na at the center

Plastic scintillator

• DAQ Trigger is made by coincidence of e+ tag signal and ‐ray detection.

• Time difference of these signals is Ps life time of each event.

RF CavityRI Source(22Na 1 MBq)

Ps

Plastic Scintillator

e+

Lid of cavity

13

Pb shield

Page 14: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

TIME (ns)0 200 400 600 800 1000 1200 1400

CO

UN

TS (/

keV

/ns/

s)

-510

-410

-310

-210

-110

RF-OFF Raw

RF-OFF Accidental

RF-OFF

Timing spectra (RF‐OFF)

14

→ 20 times higher S/N Unthermalized o‐Ps events are also suppressed.

Accidentalwindow

@ 0.881 amagat

Suppress Prompt and Accidental backgroundsby a Timing window of 50 ns – 440 ns

Page 15: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

TIME (ns)0 200 400 600 800 1000 1200 1400

CO

UN

TS (/

keV

/ns/

s)

-510

-410

-310

-210

-110

RF-OFF

RF-ON

Timing spectra (RF‐ON/OFF)

15

Accidentalwindow

@ 0.881 amagat

Lifetime is clearly shortened by RF due to the Zeeman transition.

Page 16: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Energy spectra

16

ON Resonance RF OFF

ENERGY (keV)300 350 400 450 500 550 600

CO

UN

TS

(/k

eV/n

s/s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

RF-OFF Raw

RF-OFF Accidental

RF-OFF

RF-ON

511 keV ± 1

High S/N

2 decay rate increases because of the Zeeman transition. Calculate (RF‐ON - RF‐OFF) / RF‐OFF of count rates in the 511 keV± 1 energy window.

Accidental spectrum is subtracted using  1000—1430 ns timing window

timing window 50 – 60 ns

@ 0.881 amagat

0

cf. S/N of previous experiment

BG

Page 17: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Resonance line

17

HFS = 203.394 2(16) GHz (8.0 ppm) 2/ndf = 633.3 / 592 (p = 0.12)

MAGNETIC FIELD (T)0.862 0.864 0.866 0.868 0.87

RF

-OF

F)

/ NR

F-O

FF

- N

RF

-ON

(N

-0.5

0

0.5

1

1.5

260-440 ns

165-200 ns

120-140 ns

90-105 ns

70- 80 ns

50- 60 ns

• Scanned by Magnetic Field with the fixed RF frequency and power. • 50—440 ns is divided to 11 sub timing windows. • Simultaneous fit of all of the gas density, magnetic field strength, and (sub) 

timing windows.• Time evolution of HFS and pick‐off rate (∝ nv3/5 ) is taken into account.

MAGNETIC FIELD (T)0.862 0.864 0.866 0.868 0.87

RF

-OF

F)

/ NR

F-O

FF

- N

RF

-ON

(N

-0.5

0

0.5

1

1.5

200-260 ns

140-165 ns

105-120 ns

80- 90 ns

60- 70 ns

@ 0.881 amagat

Page 18: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Quality check: gas‐density dependence of Ps‐HFS

18

Completely separate analysis which determine HFS value at each gas density has been performed to provide additional insight into the complete experimental data set and confirm their quality, although this method cannot take into account the time evolution of Ps‐HFS.

GAS DENSITY (amagat)0 0.2 0.4 0.6 0.8 1 1.2 1.4

(G

Hz)

HF

203.34

203.36

203.38

203.4

203.42

/ ndf 2χ 10.85 / 9

Prob 0.286

Constant 0.001738± 203.4

Slope 7.986± -196.6

/ ndf 2χ 10.85 / 9

Prob 0.286

Constant 0.001738± 203.4

Slope 7.986± -196.6

No strange behaviour

Page 19: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Systematic errors (Main ones)Source ppm in DHFS

o‐Ps pick‐off rate 3.5Gas density measurement 1.0Spatial distribution of density and temperature of gas in the RF cavity

2.5

Thermalization of Ps 1.9Non‐uniformity 3.0Offset and reproducibility 1.0NMR measurement 1.0RF power 1.2QL value of RF cavity 1.2RF frequency 1.0Choice of timing window 1.8Quadrature sum 6.4

19

Magnetic Field

Material Effect

RF

Combined with 8.0 ppm stat. err.,  HFS = 203.394 2(21) GHz (10 ppm).

Analysis

Page 20: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Estimation of non‐thermalized o‐Ps effect

20

• In order to evaluate the non‐thermalized o‐Ps effect on Ps‐HFS, fitting without taking into account the time evolution of HFS and pick‐off rate was performed. (well‐thermalized assumption)

• Other procedures were the same (used 50 – 440 ns timing window)• Result was:

203.392 2(16) GHz (2/ndf=721.1/592, p=2x10‐4)(cf. with time evolution 203.394 2(16) GHz, (2/ndf=633.3/592, p=0.12))

• This value is lower than the fit with time evolution by as large as 10 ± 2 ppm. This is comparable to the discrepancy of previous experimental results and theory (16 ppm).

• This effect might be larger if no timing window is applied, since Ps‐HFS is dramatically changing in the timing window of 0—50 ns    because of the rapid change of Ps velocity.

• It strongly suggests that the reason of the discrepancy in HFS is the effect of non‐thermalized Ps.

Page 21: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Result

Our new result taking into account the Ps thermalization is:HFS = 203.394 2 ± 0.001 6 (stat., 8.0 ppm)

± 0.001 3 (sys., 6.4 ppm) GHz21

(GHz)HFSΔ203.386 203.388 203.39 203.392 203.394 203.396

Old method

Phys. Rev. A 27 (1983) 262

Phys. Rev. A 30 (1984) 1331

New measurement

Previous experimental Theory (2014) average

Phys. Lett. B 734 (2014) 338

Phys. Rev. D 89 (2014) 111301(R)

Phys. Rev. A 90 (2014) 042502 Favors QEDcalculation

(Consistent with theory within 1.1, disfavors previous experiments by 2.6 )

Page 22: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Future prospectsMeasurement in vacuum using slow positron beam(hopefully better than 1 ppm result within 4—5 years)

22

Large bore superconducting magnetPositron beam

(ns pulsed) Ps formationPs

RF

• High statistics (scan in vacuum instead of extrapolation)• Completely free from material effect• Short measurement period reduces systematic errors

Page 23: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

ConclusionThere is a large 4.5  discrepancy of Ps‐HFS between the previous experimental values and theoretical calculation. We performed a new precise measurement which obtains time information.• It reduced possible systematic uncertainties in the previous 

experiments (Non‐thermalized Ps effect and Non‐uniformity of magnetic field). 

• Ps thermalization function was measured to treat material effect correctly. Time evolution of DHFS and pick‐off rate due to Ps thermalization was taken into account.

• Non‐thermalized Ps effect turned out to be as large as 10± 2 ppm. The result taking into account the Ps thermalizationeffect correctly was HFS = 203.394 2 ± 0.001 6 (stat., 8 ppm) ± 0.001 3 (syst., 6.4 ppm) GHz, which is consistent with QED calculationwithin 1.1, whereas it disfavors the previous measurements by 2.6.

• Our new result shows that the Ps thermalization effect is crucial for the measurement.

23

Page 24: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Backup

24

Page 25: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

How to measure the Ps velocity  v(t) ?

25

• Use pick‐off of o‐Ps

• pick‐off(t)= pick‐off cross section x density of materialx o‐Ps amount (t) x v(t)0.6

<pick‐off>

↑↑ + ↓

↑↑ + ↓⇒o‐Ps

SurroundingMaterial

v(t)0.6pick‐off (2 decay)

o‐Ps (3 decay)

+↑

511keV 2 decay

⇒ Immediately annihilate 

Page 26: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Measurement of Ps ThermalizationExperimental Setup (Overall)

• Timing; START by Plastic Scintillator & STOP by Ge detector

• Stop e+ in the gas and form Ps• Source is inside the vacuum 

chamber.• Change thermalization condition 

by changing the gas pressures.

e++ source (22Na, 30kBq)

Tag +  with plastic scintillator

Ps formation‐rayGe detector

lq. N2Tank

i‐C4H10 gas(gas only or gas+aerogel)

Vacuum chamber

26Yuichi Sasaki

Page 27: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Estimate amounts of o‐Ps and pick‐off

27

1, Make energy spectrum at each timing window

2, o‐Ps is normalized at continuous region(480—500 keV).

3, 511 ± 3 keV is taken as pick‐off

4, Efficiencies of o‐Ps, pickoff, and pileup are estimated by MC simulation.

o‐Ps+pick‐off(Real Data)

3 Spectrum(Simulation)

o‐Ps normalization

pick‐off

Energy(keV)

v(t)0.6pick‐off (2 decay)

o‐Ps (3 decay)

Isobutane only / Isobutane+ aerogel measurement.Change gas pressure, measure 2g/3g at various gas pressures

Page 28: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

Analysis of thermalization measurement

28

• Thermalization of Ps before 40 ns, where kinetic energy of Ps is high, has been already measured by Doppler Broadening Spectroscopy (DBS) method to be m = 146 ± 11  2, E0 = 3.1         eV (initial kinetic energy)

• Isobutane has a rovibrational level at 0.17 eV. Value of m can be different above (DBS) and below (pick‐off) this level. → Fit with fixed initial condition of DBS result, but change m at 0.17 eV.

ddt

Eav (t) 2mPsEav (t) Eav (t) 32

kBT

83

23

2mnM

Eav (t)kBT

Aerogel term

from J. Phys. B 31 (1998) 329 Y. Nagashima, et al.

mPs : Ps massn : gas densityM : mass of molecule

• Use timing window of 40—800 ns in order to avoid prompt peak. Use the following equation for fitting.

DBS: Phys. Rev. A 67, 022504 (2003)

Parameter to fit:m: Momentum‐transfer cross section

+1.0‐ 0.7

Page 29: hyperfine splitting of positronium - BIPM · hyperfine splitting of positronium Akira Ishida The University of Tokyo Fundamental Constants Meeting 2015 06/02/2015 Eltville, Germany

2/3 fitting

29

TIME (ns)0 100 200 300 400 500 600 700

RA

TIO

γ /

3γ2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.138 amagat

0.277 amagat

0.657 amagat

ガスのみでの結果

TIME (ns)0 50 100 150 200 250 300 350 400

RA

TIO

γ /

3γ2

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.92atm0.37atm0.16atm (Run1)0.16atm (Run2)0.00atm (Run1)0.00atm (Run2)0.00atm (Run3)

Aerogel + gas

m = 50.7           2+8.8‐ 7.9

m =46.0±4.5 2

Velocity dependence of pickoff rate in isobutanegas

v0.6 (= E0.3 )Simultaneous fit of all gas densities

Consistent results from gas‐only measurement and with aerogel measurement.mean m = 47.2 ± 3.9 Å2

systematic error 5.4 Å→ m = 47.2 ± 6.7 Å2