hydrogen production by gasification and dark fermentation...

16
Hydrogen production by gasification and dark fermentation from woody wastes: Energy and Environmental Analysis. Carlos A. García, Carlos A. Cardona Biotechnology and Agroindustrial Institute Universidad Nacional de Colombia Sede Manizales

Upload: nguyenkhanh

Post on 30-Mar-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Hydrogen production by gasification and dark fermentation from woody wastes: Energy and

Environmental Analysis.

Carlos A. García, Carlos A. CardonaBiotechnology and Agroindustrial Institute

Universidad Nacional de Colombia Sede Manizales

Outline

1. Introduction

2. Methodology

3. Results and Discussion

4. Conclusions

1

Global EnergyOutlook

3

1. Introduction

Global Energy

Demand

Decreasedsupply fosil

fuels

IncreasedGHG

Renewable and sustainable Energy

Taken from British Petroleum

www.bp.com

Taken from U.S EnergyDepartment

www.energy.gov

Biomass in Colombia

4

SoftwoodPlantation

2,395,000 Ha

Residues1,941,135 ton/year

High Availability

High Energy Potential

Figure Pinus Patula Chips

*Mining and Energy Planning Unit (UPME)

Issues: Recollection and transport logistics

1. Introduction

Transformation pathways

5

LignocellulosicBiomasss

Figure. Technologies for Lignocellulosic Biomass transformation to hydrogen

1. Introduction

Hydrogen

6

PromisingSource of

Energy

High EnergyDensitiy

Low CO2

Emissions

Only 4% of Hydrogen isproduced from

Renewable Sources

Platforms for Hydrogen production

1. Introduction

2. Methodology

7

Experimental

• Pinus PatulaCharacterization

• Gasifier GEK • Portable Gas

Analyzer

Simulation

• Aspen Plus Modelling.

• Aspen EconomicAnalyzer.

• Waste ReductionAlgorithm (WAR)

Results

• EconomicEvaluation

• Energy Analysis• Environmental

Assessment.

Scenarios

8

3. Results

Lignocellulosic Biomass (LB) Gasification

Dark Fermentation

Synthesis Gas

Hydrogen

Electricity

Ethanol

Hydrogen

Hydrogen

Ethanol

Scenario 1

Scenario 2

Scenario 3

Scenario 5

Scenario 4

Thermochemical Pathway

Alcoholic Fermentation

Biochemical Pathway

Scenarios Technology Description Scenario 1

Gasification Hydrogen

Scenario 2 Hydrogen + Electricity Scenario 3 Hydrogen + Electricity + Ethanol Scenario 4 Dark Fermentation Hydrogen Scenario 5 Hydrogen + Ethanol

Gasification Procedure

9

Pyrolysis

Combustion

Reduction

Air

Ash

Biomass

Filtered Gas

Cyclon

Gas Filter

Feedstock Particle Size 1-2 cm Moisture Content 10-20 %wt Downdraft Gasifier Temperature 800 °C Air/Biomass Ratio 0.25 Kg Air/kg Biomass Gas Composition (%Vol) Experimental Simulation Hydrogen 16.87 19.69 Carbon Monoxide 15.7 19.13 Carbon Dioxide 10.75 12.63 Methane 2.56 0.005 Nitrogen 54.12 48.54 LHV (MJ/Nm3) 5.551 4.558

Experimental parameters used in gasification simulation.

Downdraft Gasifier Scheme

3. Results

Productivity

10

Scenarios Productiona Yieldsa Value Units Value Units

Scenario 1 6.71 Ton H2/day 0.059 Ton H2/ton wood Scenario 2 3.35 Ton H2/day 0.03 Ton H2/ton wood Scenario 3 2.24 Ton H2/day 0.02 Ton H2/ton wood

35,980 Liters Ethanol/day 318.2 Liters Ethanol/ton wood Scenario 4 0.78 Ton H2/day 0.007 Ton H2/ton wood Scenario 5b 5582.7 Liters Ethanol/day 49.4 Liters Ethanol/ton wood

3. Results

Pinus Patula

Chipper

Dryer

Air

Cyclon

Ash

Absorber

Desorber

Calcium Oxide

Air

Calcium Carbonate

Membrane

Syngas

H2-Rich GasClean Gas

Compressor

Hydrogen

Gasifier

Gas Engine

Exhaust Gas

Electricity

Biomass GasificationDark Fermentation

a Calculated for 113.1 Ton Pinus Patula/dayb Hydrogen productivity is the same for case 3

Energy Analysis

11

64.33758.909 59.155

49.309

77.812

0

20.000

40.000

60.000

80.000

100.000

MJ/

Ton

Pinu

s Pat

ula

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

37,25%49,14%

68,58%

4,88%10,24%

0%

20%

40%

60%

80%

Effic

ienc

y

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

EnergyEfficiency

EnergyConsumption

3. Results

Economic Evaluation

12

0% 10% 20% 30% 40% 50% 60% 70% 80%

Raw Materials

Operating Labor

Utilities

Operating Charges, Plant …

General and Administrative Cost

Depreciation of Capital

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

77,6% 61,9% 70,7%

-223,6%

-22,3%

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

Prof

it M

argi

n

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

Profitability

DistributionCost

3. Results

EnvironmentalAssessment

13

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g H

2

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g Et

hano

l+H

2

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g Pr

oduc

ts

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

A

B

C

A – H2 as main product.B – H2 and Ethanol as main

products.C – H2, Ethanol and Electricity

as main products.

3. Results

4. Conclusions

• Thermochemical processes have higher energy requirements incomparison to biochemical processes. Nevertheless, the processefficiency is higher due to the exploitation of a large variety ofbyproducts obtained from the hydrogen production.

• Improvement in the hydrogen production cost is necessary tocompete with mature technologies (i.e Steam Methane Reformer).

• Biochemical processes require more research not only in terms ofproductivity but also in the proper use of metabolites in thefermentation broth.

• Acetic and butyric acid separation could improve the hydrogenproduction cost and reduce the emissions.

14

References• P. Parthasarathy and K. S. Narayanan, “Hydrogen production from steam gasification of

biomass: Influence of process parameters on hydrogen yield - A review,” Renew. Energy, vol. 66, pp. 570–579, 2014.

• P. Lv, Z. Yuan, L. Ma, C. Wu, Y. Chen, and J. Zhu, “Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier,” Renew. Energy, vol. 32, pp. 2173–2185, 2007.

• I. Ntaikou, G. Antonopoulou, and G. Lyberatos, “Biohydrogen production from biomass and wastes via dark fermentation: A review,” Waste and Biomass Valorization, vol. 1, pp. 21–39, 2010.

• J. Moncada, M. M. El-Halwagi, and C. a. Cardona, “Techno-economic analysis for a sugarcane biorefinery: Colombian case,” Bioresour. Technol., vol. 135, pp. 533–543, 2013.

• N. Q. Ren, G. L. Cao, W. Q. Guo, A. J. Wang, Y. H. Zhu, B. F. Liu, and J. F. Xu, “Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2708–2712, 2010.

• K. Urbaniec and R. R. Bakker, “Biomass residues as raw material for dark hydrogen fermentation – A review,” Int. J. Hydrogen Energy, vol. 40, no. 9, pp. 3648–3658, 2015.

15

16

THANK YOUHydrogen production by gasification and dark fermentation from woody wastes: Energy and

Environmental Analysis.

Corresponding Author: Carlos Ariel Cardona Alzate.Km 9 Vía al Aeropuerto La Nubia, Manizales, Caldastel. +57 68879400 ext 55354e-mail: [email protected] Nacional de Colombia. Sede Manizales