onebuilding.orgonebuilding.org/historical/hvacsim+/hvacsim...a.bstract n.scribed herein is •...

65
EE'jV ,/"i0 OF OXFORD Department of Engineering Science Parks Road Oxford REPORT " ... " .. ... t - 2 f. NOV.1.9.S1._ 0CAt" o .... ,·. rJ .:c..... , . _1 f. L " OUEL 1119 /91

Upload: others

Post on 16-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

EE'jV ,/"i0 8~

UNIVERSI~rY OF OXFORDDepartment of Engineering ScienceParks RoadOxford

REPORT

"...".. ~.i ... t~.. ~ -

~Il:. 2f. NOV.1.9.S1._0CAt" ~\ ot..(~.:yt~t~'

o .... , · .rJ

•.:c....., ._1

f . L "

OUEL 1119 /91

Page 2: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A General Zone Model for HVACSIM+User'. Manual

by

Edward F. Scrftll~partmntl or Computer Scinfe ael Meclaaaical EDliDHrinK

Califontia Stat. U.h..nity. ruUertoo&Dd

SERC Visid..I~" r.11owDepartmeat of EaaiHeri.. Sciac.

!epor! No. OUEt 1881,tl

UaivenilJ of Oxford~t~Eltlillelriac Sdeac:e

P.......()xfonI

OXI SPJ

T".(.-s)~

Page 3: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.bstract

n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a modulelor the HVACSIM+ limulation pqram. Thi. model cliffen from ot~er looe models lor modular.imulators in the level of detaillVith which thermal procell(!Scan be repreaented. For example.the zone can be represented by an arbitrary numb.r of nod.., amanl which there can b. heattransfer b~' conduction. coavecnon, and radiation. In particular. tbe IiIhtins 'yltem ran bemodelled in detail. includins the nODliDear power and Up' output of ftuoreacent lamps versuslamp wall temperature. Both .hort and 1001 wavelenllh difFuR radiation i. modelled. II desired.a plenum formed by a sUlpended cellnl C&D be included, and air low can be routed tbrouChthe lone and plenum in a maaDer specified by the uaer. If the need is lor a .imple &one model.mOlt of these details caD be omitted.

From th. penpectiv(' of the HVACSIM+ uaer, the model i. like other TYPE subroutines,"'itb inpub and outputs that allow it to be connected witb atMr module&. &Dd parameten thatalIo'" it to be specialiaed to particular 1000e characteristica. Theie HVACSIM+ interlace sets are01 reuonable size due to p1aciDl the details 01 tM leMle definition in a leparate file.

Page 4: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Contents

1 Introdurtion1.1 Backp;rounJ . . . . . . . . . . . . . . . . . . . . . . . .1.2 Thermal Proceslell in BuildinA Space ., . . . . . . . . . ..1.3 The General Zone Model. . . . . . . . . . . . . . . . . . . . .1.4 Limitationa . . . . . . . . . . . . . . . . . . . . . . . . . . ..

11146

2 V.inS the Model I2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82.2 Zone ~lodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82.3 Partition and Floor Model, . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102.4 Simulation Ddnition , , . . . . . .. 122.5 Rftults ,........................... 16

S Deftnina the Zone 203.1 O\'ef\'iew ,........ . ,.. 203.2 The Zont' Definition File . , . . . . . . . . . . . . . . . . .. .......,... 20

3.2.1 GeDerai Structure of the File . . . . . . . . . . . . . . . . . . . . . . . .. 203.2.2 ACl'uracy COIltroi . , . , . . . . . . . . . . . . . . . . . . . . . . . . . . .. 213.2.3 Wa\"(' Band DdnitioD5 ...,............ . . . . . . .. 213.2.4 Nodal Data , , , . . . . . . .. 223.2.5 Radiative Traalkr Data, . . . . . . . . . . . . . . . . . . . . . . . . . .. 233.2.6 Conductive/C'onvective Dafa . . . . . . . . . . . . . . . . . . . . . . . 243.2.7 Lamp Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 253.2.8 HVAC'SIM+ bterfac.lnformatioD .•............... ,.... 27

3.3 General TYPEI88 I/O lilli , , . . .. 34

Refere.ces ST

A Example Proble.. 10.. o.Iait.... IIA.l The Example Zoae • • . • . . .. .•.•••..••••••••••••...... 39A.2 %oDe DeIl.it. Yale •..........••••••••.••••••••.•..•• 31lA.3 SiuualatioD Delailioll. . . . . . . . . . , . . . . . . . . . . . . • . . . . . . . . ., 50

B Proaram 1 tat aMI U.uts IIB.l Aboat tM tatioa ...•.•.............•.....•.. , .. 5&

8.1.1 W1aere Tlaiap A , ..•............••.. " 5&8.1.2 CGmpiiatioll ud Liabp . . . . . . . . . . . . . . . . . . . . . • • . . .. S88.1.3 Ilev•• '..r."" •.....•.......•............... , S8

Page 5: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

8.1.4 t'iing the Model with HVACSIM+ .8.2 Program limits .

u

5859

Page 6: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

List of Figures

1.1 Schematic of typical room 21.2 Fluorescent Lamp Power and Light Output 31.3 Zone with node usig!,ments. . ..1.4 Zone boundary 61.5 Zonl" interfaces 7

2.1 Three node wall . 112.2 HVACS1M+ diapam . 122.:l Temperatures: floor slab . 172.4 Heat: floor slab 18v) Temperatures: slab above plenum. 182.6 Heat: slab above plenum. 19

3.1 Zone Air Flow Paths . 313.2 Zonp Air Flo,' Paths (conduded) . 32

w

Page 7: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Section 1

Introduction

1.1 Background

Studies of the dynamic operation and control of thermal conditions in building spaces are of­ten carried out 1I.·ith simulation models. Modular simulators such as TRNSYS [Kea88) andH\"A(,SI~I+ ICla85] allow convenient construction of such models by interconnection of soft­wart' module-s that represent the various eomponents o( the ph)'sical system, e.g., fans, heatingand cooling coils. and control elements. This report describes a thermal model of a buildingspace, called a zone. to be used in models of this kind. It is implemented as a TYPE subroutine­(or the HVACSIM+ pf()fl;ram.

There are. of course. other zone models for modular simulators, including several for theH\'ACSnl+ program. Howe\'er, many o( the p~viously available models drastically simplifythe zone, perhaps representing it as two or three lumped thermal mUles and accounting foronly the most obvious thermal processes taking place in the space. Such models leave much tobe desired, For exam pl--, the thermal masses usually ~p~sent only the most massive elementssuch as the floor. and even then ma)' lump the entire floor mass together, Such a model maycapture the long period d)·namies. i.e., daily cycles, but cannot possibly predict response ofthe zone to short period disturbances such as ftuctllations in lI01ar load caused by rapid cloudmo\'etIlt'nts and the 1!.·armup o()amps and housing of the luminaire!! 1!.·hE'R lipts are lwitched 011.

IC used for control system dftign and tuning. such a modd ma)' be misleading. The prindpal aimof the model described here bas tbere(Oft beeD to e1iminaw tbeee deficiencies by representingthe space in grt'ater detall, and accounting (or all energy transfer m«hanisms witmn the space.SpflCial auentiOiI has been Kiven to tbe utilitiaJ liptiqsystem. including nonlinear phenomenain the operation o( ftuorftCent lamps.

1.2 Thermal Processes in BuDding Spaces

There are complex tbermal proceues taking place in buildinl apaces tbat malt be .ndentoocl iDorder to construct a proper model. The. proceseea can be dftcribecl in the coatext 01 a typicalroom in a modern, air-conditioaed commercial buildinl, Fipre 1.1. This room il ..umeet to beon a mid-floor of a mllitiatory building, 10 that there ue similar rooms above aDd below. Tlaere isa IUlpended ceiling, forming a plenum lpace above the room, aDd receaed luorelCeat lumiaairea.Air.conditioninl il provided by a allpply air Itream to the room wbich is extracted tluoup slotaaround the luminaires into the plenum. The air ia in turn extracted from the pleDlIm for exhaustto the outside, or conditiOlliDI aDd recircala&ion. Now tbat Filure 1.1 i. tebematic ooly. Actual

1

Page 8: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2

supply ducts normally pass through the plenum on their way to ceiling-mounted diffusers whichintroduce air to the zone.

-......

-

Figure 1.1: Schematic of typical room

There are several sources of heat into such a room, and all of this heat must be eventuallyremoved in order to prevent excessive room temperatures. Among the more important sourcesare:

• Luminaires and th(" r ballasts

• Equipment such as computers and typewriters

• Occupant metabolism

• Solar radiation throup windows

• Transmission throup walls and partitions

The.e are referred to has hea, fGin to the space. Heat il mnowd from the apace by the airItream which il cold .poa entry. but lea¥el at the temperature of the lpace.

At fint thought it woald seem that a iutaatueoul heat balace OIl the room WOllld requirethat the heat removed by the air ItrealD should equal tbe lum of the inltaDt&Deo1l1 heat gaiu.Ho~ver, thil analylis does DOt take into account the radiation ad heat ltarap proc:eues takingplace in the apace. A portioa of eacll of the above heat pial enten the lpau as loog wave [i.e.,thermal) radiation. Because the air abtorbl very Uttle of thil radiation, nearly all cJf it fa1lsUpOll solid lurfaces ad after a eeries of iatenelectiona is abeorbed by thele amaces. It is onlyafter the lurface temperatures rile above apace air temperature that thia heat cu eater the air,becoming then coolin, IoGcI. It is the iaatutaHoUa coaling load that maat H balanced by heatremoved by the air Itream. Due to the thermal mau tA the IOlid elemeatl of the Ipace, thelarface temperatares cla.p takes place over a period of time, 10 that tile cooling load lap the

Page 9: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

1.2. THERMAL PROCESSES IN BUILDING SPACES 3

heat gain. Thus we see that radiant heat transfer, often neglected in simplified models, stronglyaffects the dynamics of the space.

The importance of radiation suggests that it be considered in more detail. The artificiallighting system (often introducing a significant portion of the room heat &ain), the suspendedceiling. and plenum contribute to the complexity of the problem. When the po~r ,·0 the lampsis switched on. a large portion of the input power is emitted from the surface of the lamp asshort wavelength [i.e., visible) radiation. This radiation undefloes interre8ection within theluminaire, with a portion being absorbed by luminaire surfaces (and the lamp itself), and aportion transmitted through the lens into the oc:cupied space. The portion that does not escapethe luminaire by this mechanism causes heating of the lamp, lens, and luminaire housing, whichthrough convection heats the air in the luminaire cavity, the plenum space, and the oc:cupiedspace. The heated surfaces also emit radiation in the thermal wavelengths (infrared), which alsois interre8ected and eventually absorbed in the luminaire, plenum, and room. As the walls, floor,and reilings of the plenum and room absorb radiation (in both wave bands), their temperaturesrise, resulting in convective transfer to the adjacent air, and conduction into the solid materials.

A further complication arises in the common case of fluorescent lighting. With fluorescenttubes. both input power and light output are nonlinear functions of minimum lamp wall temper­ature. A typical lamp characteristic is shown in Figure 1.2. Because the lamp wall tempera.tureis strongly affected by other temperatures in the room. plenum and luminaire, which in tum aredetermined in part by the lamp input power, there is a cyclic, nonlinear problem of significantcomplexity.

I 0.'

..I 0.'

I~0.2

010 t....... 40 ••• 10

lIq)WIIl T....... (C)

Fipre 1.2: Fluoracent Lamp Power ud Lipt Output

Page 10: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

4

1.3 The General Zone Model

The zone model discussed here is based on a general thermal network of the zoue as describedby Sowell [Sow89, Sown]. Each surface or volume in the physical zone is represented by a nodein this network, as suggested in Figure 1.3. Nodes can be either internal to the zone or at theboundary, and either massive or massless. Conduction, convection, and short and long waveradiative heat transfer can occur between any pair of nodes. An energy balance at each nodeprovides a basis for calcui. :ion of unspecified temperatures, A node specified to represent lampsin the artificial lighting system can have a nonlinear characteristic as suggested in Figure 1.2.

.... .­.-.-.....­.-

••

..

-

Figure 1.3: Zone with node assignments.

With a model such as this, the room can be represented with as much or as little detail asrequired by the objectives of the simulation. For example, if only low frequency phenomenaare of interest, light weight elements such as lamps and ceilings un be defined as musless.Also, heat transfer paths judgerl to be of little importance can he omitted. On the other hand,complex phen ,mena that may have a sipificant eft'ect can be properly represented..

The relative ease of addition and removal of detail makes it possible to create an appropriatemodel with a series of "numerical experiments." The zone is first modelled with a great dealof detail to give a baseline "correct" result. Details are theD remo~ one by one, comparingresults with the baseline. ThOle details fouad to have insignificant eff'ed can be omitted. fromthe final model.

Detailed models of zones do not fit naturally into the modular simulation scheme. For onething, the amount of descriptive data implied by an highly detailed. lOne model can createlengthly parameter lists, in contrast to simple components like fans or heating coils. To get getaround this problem, the General zooe model reads the detailed lOne description from a lep&Tatefile. The HVACSIM+ uller therefore Mel ODly a abort parameter lilt including things that aresubject to frequent change durinS a study, such as number of occupants and installed equipmentand lightin8 power. If aecenary, a penon more familiar with building thermal mode1ins can be

Page 11: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

1.3. THE GENERAL ZONE MODEL 5

called upon to develop the zone description file.

Another difficulty encountered when embedding a detailed zone model in a modular simula­tion is providing flexible coupling to other portions of the building and the environment, withoutan overly complex Interface. For example, a perimeter zone needs to be coupled to the outsideenvironment through a wall. If this wall is made part of the zone, environmental variables suchas solar irradiation and ambit'nt temperature must be in the interlace. If the zone is to allow anarbitrary number of exterior walls, the interface becomes luge and complex. Similarly, if thesimulation is to have more than one zone and interzone heat transfer is to be considered, thereis the problem of partitions and floors between adjacent building levels. If these elements areviewed as belonging to the zone, then temperatures and and heat fluxes at their surfaces mustbe somehow identified with those of the adjacent space which presumably includes the sameelement. The approach to modeling these situations becomes much more clear if it is recognisedthat these shared elements are not proptrtie, 0/ the ZO~; they should be represented as separatemodules so that they appear only once in the simulation. However, radiation among the surfacesmust be handled within the zone mode. Otherwise, the interface becomes very complex becauseeach surface can have incident radiant flux from aU other surf.res, and its leaving radiant fluxmight impinge on any other surface.

TI.e General model therefore ascribes to the zone model only those properties and behaviourwhich dearly belong to the zone only, and likewise for the boundary elements. In this spirit, thezone is an enclosure with behaviour that includes radiant exchange among its bounding surfaces.It also encompasses all elements that do not interact with other portions of the building, suchas the lighting system, internal loads such as equipment and occupants, and the ceiling. On theother hand, the conduction in the material of the bounding element. is behaviour that cannotbelong to anyone zone, and therefore must belon! to a separate element. Therefore the materialof the bounding elements is placed in separate modules (i.e., HVACSIM+ TYPEs), whitt' thesur/aces of these same elements are part of the zone. This is depicted in Figure 1.4 where animaginary surface is shown conformal to all boundary BUrfaces. With this division, the onlyinterfaces are temperature and net heat rate, l.e., heat unbalance, at each boundary node andat each material element, as shown in Figure 1.5. The temperature or each boundary nodeis input to the zone module, and the zone calculates the correepondlng heat unbalance. Thematerial module reeeiv-s heat fluxes at each side and calculates correspondin« temperatures.This approach is quite flexible, ":l{'Wing bounding elements to be partitions, outside walls, orfloors, either massive or masslesb and modelled in any desired way. Note that the heat flux at theoutside surface of boundary elements CaD be made adiabatic .. demonstrated in the floor of theleft zone of Figure 1.5, or symmetric .. shown ror the ricbt zone. Alternately. a mid-floor zonein a multi- story buildin« can be simulated by connectiq the heat tux at the bottom surface ofthe floor to tha.. of the plenum upper boundary within the zone.

It should aJ'I() be noted that the zone descript.ion is entirely up to the user. For example,Figure 1.3 shows a case where a suspended ceiliD~ forma a plenum above the room, with all ofthis included in the zone model. If desired, the ZODe could be described wit.hout a plenum. Also,the number of boundary nodes i. decided by the user. A. showa in Fipre 1.5, there is a sinslewaIl designated .. a bounduy node 10 it. can ioterface with adjacent. zones tbroqh a partition(as shown), or could 1:..: CODnected to an outside wall. It also h.. the tloor as a boundary node. Int.his cue, all other ."r/a«, 0/"Ie enclD,.re are ,..,ed cu intemgJ, adialHa,ic ••rface•. In a morerealistic simulation, the zone defhliti_ would be cia..... to aDow transrer throqh additionalwaIls.

Page 12: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

6

Figure 1.4: Zone boundary

1.4 Limitations

Naturally, the General zone model has restrictions and limitations. Some of these can be easilyremoved, while others are more fundamental. Discussed below are known limitations; otherswill no doubt be discovered during use.

Although easily removed, there is currently a limitaUon in variability among different zoneinstances in a particular simulation. This is because there is a single zone definition file, wherestructural things like number of nodes, as well as geometry and surface properties, are speci­fied. A solution would be to have a different HVACSIM+ TYPE ror each structurally differentinstance.

Currently, the underlying nodal network deals with en.-rgy only. More generality would bepossible if the mass ftows and humidity relationships were modelled with llep&l'ate networks.However, the present ad hoc way of dealing with these quantities appears to be adequate formost common lituations.

Since the pal". nt propa.m (LIGHTS) weulates lipting, mOlt of the code is in place toprovide illumination data at all zone IUrfaces. However, a little more work is needed to bringthis information to the HVACSIM+ interface.

Solar, equipment, aad occupant heat pin are input as sinsle values and dist.:_olted asaluor6ed hellt to zone nodes according to profiles fixed in the lOne definition Ale. Idealy, thesolar absof))tion at each surface should be calculated from incitknt dirtd radiation and seometricdata.

The LIGHTS program upon which the General model il baaed has aD "Equilibrium start"feature, whereby all nodes are temporarily treated as musless with time-zero boundary condi­tions. This gives initial temperatures for all mauive nodes that represent equilibrium. Withoutsuch a feature, its almost impossible to specify a set of initial temperatures that is realistic,leading to strange start-up tranlients. With additional effort, this feature could be provHed in

Page 13: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

1.4. LIMIT.4TIONS

-

7

..-Figure 1.5: Zone intufues

the HVACSIM+ context.The input in the zone description file is in terms of model coefficients, rather than physical

descriptions of construction elements. This plates the burden of calculating thete coefficients onthe user. AlthouKh the work to do 10 should not be underestimated. one could develop a menu­based interlace to help create the zone definition file. One difficulty would be automating viewfactor computation without limiting flexibility in zone description or compromising ac~racy.

The model is baaed on rigorous models aDd numerical methods. For example. exact difl'ule fa­

diatin truafer calculationa aft performed, using 4th power ftlationships, and Newton·R.aphlODiteration i. uted to force conwrge...ce at all musl", nodes. A good deal of attention has beenpven to computational efficiency. For example, 'he radiative 'ransfoer matrices .,. iaverted onceonly. and short wave distributions are calculated from a precalculated, normalised distributioDdone at the beginning of 'he simulation. Nonetllelaa, the model is not as swift as the l.implifiecl.linearilecl moo.ls. eapfoCially if a large number of nodes aft used. It seems to be fut enough forcontrol studies or relanve short duration, e. g., houra. With lOme profiling and tuaing work.it could be fut enough for ernulaton witla ~ _ODd aamplinl int«Vall. It probably win nO\ befut enoup for annual calculations.

Page 14: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Section 2

Using the Model

2.1 Overview

This section shows how the General looe model is uM'd in an HVACSIM+ simulation. It Ulumelthat the zone definition file hu alrE'ady Men c,.at~ .. ~xpl&ined in S«tioo 3. The exampleproblem is to find the transient temperatu,.. and coolin I loads in t.·o identical. adjacent 1011"

when the Iilhts are operated from 8AM to 6PM in one JOIle oaly.

2.2 Zone Model

Figure 1.3 shows the lone with node desilDations. The cor,..pondinl H\·ACSH.I+ input. output.and parameter definitions aR sho.·n in Tables 2.1 . 2.3. The lIock labels uM'd in t~ tablet .,.&.'i defined in FilUre 1.3.

Th~ fint four illp"ts ~~r to the 10M t piD•• ,.ant... aI ,lie 10M ddDitioa file.Occupant. equiplMnl, and lilhliDI power amH to ... aormal_ by ,lie llOIIliaal val..pven in the paruneter li.t. n .. lOlar pin tlal'Olllla wiadowl i. DOt aaraaIi...... T1piuU)'. t....inputs come from the HVACSIM+ beMa.dar)' lie. or .... calcalaIN by atlaH moA.... ill t ....•imulation.

The fifth input is also alwa)" ,h. IUIM. tile .... leavi. Ia..idity. II is a Nq.iM inpat'accordinl to th. HVACSIY+p~ bee... die IOaeIDodel cain.... iU dniwaliw.

The remaininl inp... wiD YU)'..eli. a,. tile 10M ".i'ioa lie. For ,Ile caM Dowahere. there i. a Ii.... air tow.t.... i.to tile aoH 10 ,IMNisaM ••pplyair ( llluaic1i'y·ratio) pair; if 'here were~ i.tow ......... ,.... ..w be an aI .-in atthis point in the input lilt.I

After the .upply air iaput. come ,Ile ....,.,..... fJI t" ...,.,.., ....w...... ,.....are required inputs accorclinl to th. BVACSI..+ protoalI 1M 10M IDOdeI cakUateItheir derivatives. In this cue tile... an ro.r .aclll ..-eIy tlle p (luapl......... (Wa').luminaire hOllliq (lmbp), ad 'Ile'~ i. tM 1pIa (tJU).

1T1te ••ppI, ur • &reued .. _ houloiI., ia _ eo ....., _ ..build." II04Ie talpa_I... raahr 'Ilu 11 cia willi aIIf ,.

8

Page 15: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

:1.2. ZO,\'E }.IODEL

Table 2.1: Input Lilt for Example Zone Model (TYPE 1881

Variabit' Typt' Definition UnitlCONTROL Fraction of nominl numb.r of o(('upantl (0-1)CONTROL FractioD of nominal equipment power (6-1)CONTROL Fraction of nominal power to IiP'1 (D-1)POWER Sellar pin tbroup Ii... ow)HUMIDITY RATIO Zone "avinl bumidity ratio (kl/kl)FLOW Supply air low 1 (ks/l)Hl'MIDITY RATIO Humidity ratio of lupply air flow 1 (kllkS)TEMPERATURE lamp Temperatu,. (C)TEMPERATURE blst Temperatu,. (ClTEMPERATURE Imbp Temperatu,. (ClTEMPERATl'RE trul T.mperatu~ (C)TEMPERATllRE Temperature of boundary IUp.A (C)TEMPERATURE Temperatu~of boundary ~"..r (C)

TEMPERATl'RE Temperature of boundary tin (C)

9

The last inputs are the t.mperatures of the boundary nodes. In this caw there ~ th~.

namely the supply &.ir (IUP.A). th. eut wall of the room (,.wr). and tb. top surface of tbe loorIlab (flnl.

Tbis example zonp mod~1 hu 14 outputl U HeR in Table 2.2. FoIlowiRS the HVACSIM+protocol. the first fiv. are the lOll. Itat. v.ri.b i.e., tb~ for wbicb tb. lOne modelcomputetderi\·.th·" for intpSr.tion by HVACSIM+. n ~ th. temPft'atu.... 01 the intena" m...heoilodft. follo..~ b)' tbe WIle _vi.. humidity.

The d.riv.tive variable outpUll are roIlowM by the tftllPft'at.,. 01 tile leavi.. air It...arn.The IOIlt' definitioa file _pat.. dlil node from UIIOIII U•• air ma- node in '''e model. inthis cue the plenum air. pLa (See Fip... 1.3).

Aft.r tb. leavios air tem.....atu... CClIfteI ,lie Ma' lues at tit. bolondary 1MMIea. puallftiaKthe boundar)' 'emperat1lrel in 1Minp.t _t. Hne w. Me IIwlues al t'" s.pply air node. I'OOIIJ

...t wall. and tile up,... toor .urfate.

Aftf'l' ttl. boaadary "'t I ..x.. come ....xiliuy.. outputs. TMae are opt_at outp1ltl ofvarious qllutities at .l«ted aodes i. tile aodeI•• lp«iW in 'M aitioa.... .. t".example we baw 'elDperat..... ud ".. IUCIIII air ( ICe Ma& a& 'M iampud ballast. and tbe tempera'.re 01 t ",.r.'.'"~. lUI _ .... iad.eIediD tbe model.

Tile~ lis, is always tIM ...- , 01 'M Mal.- n-e puaIII-

etenrelate to ...mwn" .... aM ti n.1n, t ll*ifJ 0« ' ....wielDdata. Tb.. 'M aamiaal occ.put We pia is aap.l4Id i......' • tM .....aet 01'M Ant , parameters. TM i..tut is tltis prodact .alUpW .., tMlnt ...,.,.Equip ' Mal pia is ...... 1i1lWarly. TM MWi... rate • occaPU' p'" "_POaan' lateat pia. (tile NlDaiaden) eli , tM Mat fJI YIpGlI~. N...... powr to 1M!iP'ial qlt.. it II'" ia 'M ;;ixtl. eter. TM fndIc. fJI tit. iMica&ed '" ... .-a,1.parameter il UIiped to tM WIut node. witlt 'M ............... at tM up aoc». n....in" upt oatp.t fJlaIJ ..... in tM ... is tM'" ...--.

Page 16: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

10 S£CTIOs 2. VSl.'VG THE AfODf.L

Table 2.2: Output List for Example Zonl' Mooel (T YPE 188)

Variable TypE' Dl'finitiOll t:nitlTEMPERATURE lamp Temperature (C)TEMPERATURE bllt Tt'mpE'raturt' (C)TEMPERATURE lmhp Tt'mpE'ratufl' (C)TEMPERATURE tral Tt'mpt'f.tu~ (C)Hl'MIDITY RATIO Zont' luvinl humidity ratio (kl/kllTEMPERATl'RE piA Tt'm)M'r.tu~ (C)POWER Nf't Itt'a' to boundary IUpA (kW)POWER Nt't Itt'a' to boundary ft'wr (kW)POWER Nt't ht'at t~ bouodary In (kW)TEMPERATURE TftIlpE'ratuft' of rm... (C)POWER Nt't hat loal from rm..a (kW)POWER Souree hl'at at lamp (kW)POWER Sou ret' Itt'at at blltt (kW)TnIPERATl'RE Tt'm)M'ratuft'of mrt (C)

Tablt' 2.3: Paranwtt'r Lilt for Examplt' ZoDt' Model (T'\'PE 188)

Sumbt'r1234s678

urn ccupantlTotal Heat LoN Per OcnputOcnput It'Illibl. frartioDNominal Equip t POMI'Equip ...... t -. FnctiollNomi.al LiptiDl PowrFractioll ....tiDi JIOWft to .....tNominal Li t 011' .t

It il import_t to ~...iw tbat tbe lip'i_. ,..., i. adj.,ted i. two way•. Fint. it is••ltiplit'd b)' tbe (poaaibly tillK'-varyill&) ........ liP'iDl pcII"f. tile tbird iap.t. Tbnit i. mullipl" It)' tlae Iractioa cleWraiaH ,... Flpre 1.2, "DC iutalltaaeou up walll4!aSpt'fatuft.J

2.3 PanitioD aDCl Floor Model

To dnaoutrate tM 10M 1IIOdel. a IDOCIeI for tM JlUtiw. aad loon ill Ilpre 1.$ i,MMed. Altlaoup ........ (or"') __Me caUclbe"M4. 'M i. r..,. 2.1will do. TIUI model_ploy. tlu_1IOCi8 witla , .c..~ " two cca4.etonof coadlKwce itA/I. Here '" is C, ,be lpftiIe ...... -Wh It. A. u4 , ..

JAct..u,•• _ 2.,.-C __ ........ ..,ry .. r 1.2. ". ..,. wi 1.1__ _, , ..., ........

Page 17: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2.3. PARTITlflN AND F..OaR MODEL

Tab~ 2.4: Input LiFt for Three Nod. Wall Mod.l (TY ~[ 189)

11

Variabl. TyPOWERPOWERTEMPERATURETEMPERATURETEMPERATURE

nitiODLeft Hat luxRilht Mat lUll

t.ft .arfac. "mperatu,.Midd~ temperatare•. ht .arfKe tem ature

Unitl(kW)(kW)(C)(C)C)

Tabw 2.5: Output Lilt for Th,.. Nod. Wall Modd (TYPE 189)

nitiOD nitat la ace temperatare ()

Middle t.mperature (e)Ri t larface tem atare (C)

tMrmal cOlldacti"ity, heat tranarer .urface ....a, and traa.miNion 1nl'h retpKtively. Tabl..2.4 - 2.6 .howl input, output, &ad parUMter Ii... for this moct.I. It is deaipat~ TYPEl89.Observe that TYPE 189 atC~tI U inp.', tile Hat laxes at enda or its lurfates aad calculntftlh. temJMOraturea or these larfacH. Since tM lOIle mode) don tM oppoeite, tM two mod.l, canbe intercollnect~ u .hown in Fipre 1.5.

Yip" 2.1: ,..,. ......

Page 18: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

12 SECTION 2. USING THE. MODEL

Tablt' 2.6: FarallK"ter List for Three Nodt! Wall Model (TYPE 189/

Numb.r Definition Unit.1 Left conductance (kWIC'2 Right coadudanc. (kW/C)3 Left thermal man (kW·a/c).. Middle thermal man (kW,s/C)~ RiSht thermal man (kW.a/C)

2.4 Simulation Definition

Uaing the zone and wall modell. thl' example probl.m can be lOIVl'd witb thl' HVACSIM+diap-am shown in Figure 2.2. AI can b. HeD. tbere are two instancea of the TYPE 188 zonemod.l. referrf'd to as kft and ",lal. Botb aft identical as deacriMd in the Ion. definition iii.to bto used. Howt'vt'r, parara.t.r valU" can be difl'erent. Th... rooms are connected through apartition represented "'itb TYPE 189th,...·node waD mod". Each zont' has a toor representedb)' the- aame- model. Th. "aliable definitions in this diacram ar.given in Tables 2.7·2.11.

F1p.. 2.2: BVACSDl+ .....

Note that the 10M ",ait_ ,Ie for tllia p ba • :1aIIe wall .......... ......".TUI liondar)' wall is d....ted ,.,w, nlOIII cui wall, I'OOID licle. f'Ipre 2.2 .... tlais10M model bei.. ued ,. both left aM rlPt _ by ,he Mb 01 caaaectiaa tHa tbJqJl,Wr "east" walJa. ne poaaetricallJ CIImId .....atM., tile eMt .... 01 tile left 10M

comm.nicati.. with tile .... w.u 01 tile rIP' .OM.....1eI i.. two di&reat 10M modeIa.

Page 19: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2.4. SlAlFI.ATlON DEFINITION

Table 2.1: Simulation Temperature Definition.

13

Vuiable Typeemperature

TemperatureTemperatureTemperatureTempe-ratureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTftnper.t ureTemperatureTemper.tureTemperatu.....Tftnper.tureTftnper.tureTemper.tureTemper.tureTftnperatureTemperatureTemperatureTemperat.reTem rat.re

Num r1234567891011121314IS16171819202122232425

nition nit.t lOne ast (

Left lOne luminaire bouainl (C)Left lOne tfllil (C)Left lOne lupply air (C)Left lOne room east w.Il. room lide (C)Left lOne plenum &ir (C)Putition. middle Docie (C)Ript lODe room east w.Il. room aide (C)Left lODe lamp (C)IU&ht If''''' b.Ilut (C)Ilicht lODe hamiDaire boaailll (C)Ript lODe tnll (C)Rieht lODe IUPply air (C)Ilicht ZODe pleDum air (e)RiehtlODelamp (C)Left lone room air (C)Ilicbt lODe room air (C)Left lone tIoor, room aiM (C)RiPt10M loar, IOOIIl .. (C)Left zonlf MaT (C)RiPt ......aT (C)Left zonetoor, middle aocIf! (C)Left zone Ioor, Jo.r .urface (C).....t .... 1001', lllidelle .ode (C)

t -.Ioar, lower ..rfate C

Page 20: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

14 SECTION 2. USING THE MODEL

Table 2.8: Simulation Heat Flux D«>finitiOili

Variable TYIM" Number D«>finition UnitsPower 1 Left ZODe K1us solar sain (kW)Power 2 Left zone lupply air, net (kW)Power 3 Left zone room eut wall, room side, net (kW)Power 4 Right zone room eut wall, room aide, net (IIW)Power S Left ZODe clan lOIar pin (IIW)Power 6 Risht zone Iupply air, net (IIW)Power 7 Left zone room air, net bs (11\\')Power 8 It!ft lone lamp, lOurce (kW)Power 9 Ri~ht zone room air, net lou (kW)Power 10 Right ZODe Junp, lOurce (kW)PO'A'l'r 11 Left zone ballast, source (kW)PO'A'l'r 12 Right zone ballast, source (IIW)PO'A'l'r 13 Left zone 800r, room side, net (kW)Power 14 Right zone floor, room side, net (kW)Power 15 Left zone floor. 1o'A'l'r aide, net (kW)Power 16 Right zone floor, 100000r aide, net (IIW)

Table 2.9: Simulation Normalited P~r Definitionl

Variable Typeontrol

ControlControlControlControlControl

Number123..56

De nition nitlt lone norm i occupucy . )

Left zone normaliRd equipment ulalC! (. )Left zone normalileCl lighting usage ( . )Right ZODe normaliaed occupancy (. )ailht zone normalileCl equipment.... (. )

• ht ZODe normalited Ii tin u

Table 2.10: Simulation Nau Flow MllitioDa

Varia NumberFlow 1Flow 2

Table 2.11: Sia"....i_ aumidity btio DeI.i\ioa.

Page 21: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2.4. 5IMUL.4.TION DEFI\"ITION

Tablp 2.12: Problem hlPU'S

Variable Type Number Valu..FLOW ] bndFLOW 2 bodTEMPERATURE 4 bndTEMPERATURE 13 bodCONTROL 1 0.0CONTROL 2 bodCONTROL 3 bodCONTROL 1 0.0CONTROL 5 bndCO~TROL 6 bodPOWER ] bndPOWER 5 bndPOWER 15 0.0POWER 16 0.0HUMIDITY RATIO ] bndHUMIDITY RATIO 3 bod

]5

one .'ith an east boundary "'all and one with a west boundary "'all. It should be clear that theformulation used here- wiD gin the lUIle thermodynamic Iftultl u the correct formulation. Onthe other hand, a more practical zone definition would haw at least two boundary Walliao moretlexible interconnections could be achieved.

The problem definition requires certain of the vanabln in Tablet 2.7-2.11 to be inputs.allowin~ all others to be calculated. In thil cue we specify the inputs u sbown in Tabl .. 2.12.Those with a given numerical value are held cODstant at that vallie. while tbOR marked "bnd"vary with time u gi\'eJ1 in the HVACSIM+ boundary file.

For this example. all boundary vaJH1I are to be held CODltut except tbe UptinK powercontrol for the left zone. Thil control is 0.0 until 8:00am. at which time it pi to 1.0 , retu",in~to 0.0 at 6:00pm. The li~htl remain off i. tbe ript 1000e, and all other lODe Ileat pins aremaintained at zero for both zonel. Recall tbat the ftOIIlinal lip'iq input power it specified asa parameter OD tbe~ model (See Table 2.3). In tbis example, this nomi.al poftI" itlpecifiedu 1.0 kW. altboap this it really too hCh for Ktual practice. Forexample, a room or ,be lizedefined in tile &OIle deI.itiaD tile wwld bw at ..-t 16 40W lam,. wWeIt woald require aboutnow allowiq 15% for baIlut diuipatioa.

Botb IOIIeI remve 0.2 kill or lapply air at 0.005 qJq abIoIate Itumidity. That to tbe leftlODe illupplied at I'r'C, while at tlte riPt it delivered at 2QOC.

Table 2.13 Ihowl the boudary val•• table, where at IuIt thne ..... are provi4Mcl after.tep cbu.. to lapport the cubic .pliae iaterpolatioD perfalmed by HVACSIM+.

To complete tile problem, the ltate variable 01 tile problem malt be Kiva initial val I.this cue. the state vuiablea are the temperat.... tM lampe, balJutl, I_Hire udtra.... iD each IOIM!; tile temperatures ~ tile wall and Ioor aodes; UHI tM hamidity 01 .achZODe. All temperatu... are ..-DIed to nut at 23.en-c, (7a-F), aad the two _e ....miditiesare UlUmed to Itart at 0.005 kc/kc.

Appeadix A lives the complete HVACSIM+ IOH delaitioll and "mala&iall ....aitioll fU.

Page 22: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

16 SECTION 2. USING THE MODEL

Table 2.13: Problem Boundary Variable Variation

ml .. 5

0 .2 ] . .0]8000 0.2 0.2 ]7.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00521600 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00525200 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0005 0.00528800 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.(10528800 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 O.OOff32400 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00536000 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 O.DOS 0.00539600 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00554000 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 O.DOS 0.005

I 57600 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 000561200 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00564800 0.2 0.2 17.0 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00564800 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00568400 0.2 0.2 17.1J 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00572000 0.2 0.2 170 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00575600 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00586400 0.2 0.2 17.0 20.0 0.0 0.0 O.C 0.0 0.0 0.0 0.005 0.00590000 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00593600 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.00597200 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005100800 0.2 0.2 17.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005

for this problem.

2.6 Results

Reluhs (or the example problem are sbown in Fipres 2.3 • 2.4. Fipre 2.3 shows room air andmean radiant temperatures for botb zones. Initially, there is a decay from the initial conditionstoward the supply air temperatures in eacb lOIle. When the liPts come on, there ii a rapid risethat can be attributed to the musleu adiabatic surfaces in tbe room which come immediatelyto equilibrium with the liCbtinC radiant load. There is tben a Ioocer exponential rise u themassive elements app~h their equilibriL TIleIe proceaea are repeated ill revene when theliChts are turned oft'. As would be expected, the effect fA the lipts is stroDplt ill the room OIl

tbe left, but is also evident in the room OD the ript due &0 tranamisaion tluoap the partitiOD.The meaD radiant temperature on the left is _ &0 be about 2:r»C above room air tem­

perature. This is lOIDewhat hiper thu micht be expected in an actual room for two I'UIOIls.First. as noted previously, the inpat power is aboat 25~ &00 hiP. SecoDd, the room wallsand plenum walls and upper cbare are UI1Imed &0 be musJeu and adiabatic, meaaiIlC tbatthey immediately come &0equilibrium temperatUftl. A. actual room wt'Uld haw mus i. thesesurfaces and they would be coupled &0 adjaceDt rooms or the nutside. 10 tltat they may neverreach adiabatic equilibriu'D temperat1ll8.

Fipre 2.• shows heat luxes for the problem. The ICllid C1ITve shows the eoufCelaeat cain dueto liptinC (lamp plus ballut) in the left 1IOIle. The apperma.t duhed curve i. the cooliDC loadextracted by tbe air stream pauiDC tbroap the left IOH (room and plenum), while tbe lower

Page 23: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2.5. RESULTS 17

one is for the right zone. Again. there is a small but noticeable efl'ect of heat transfer throughthe partition.

It is interesting to note that cooling load in the left zone reaches 90% of the lighting heatgain within a. fraction of the first hour, and ~achel nearly 100% before the lights are turned011'. This is the reeponse one would expect in a lipt weight room, rather than the exampleroom which hu a 6.35 em (2.5 in.) concrete Ilab floor. The explanation is that the carpetspecified in the zone definition file lhields the concrete from radiation, rendering it inefl'ectivefor heat storage. This can be demonltrated by another simulation in which the zone floor slabsare moved to above the plenum where they are fully expOled to the plenum air.3 . Figures 2.5- 2.6 show these results. The effect of the alab mut, now better coupled to the air stream, ismuch more evident. In particular, Fi~re 2.6 Ihowl that the peak cooling load in the left zonereaches only about 90% before the lights are tn ...... oft'.

..D

--......,---'.._._.- .....-.. -.._.

ITIme (h)

Fipre 2.3: Temperatures: floor I1ab

Page 24: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

18 SECTION 2. USING THE MODEL

-1.1

0 .•

I:0.1

I o.a

IOJ

0.1

~., 0 • 10 "

......_--.

to

Time (h)

Figure 2.4: Heat: floor slab

e

I•t.•te.~_""~_""~-~~-""--

Fipre 2.&: Temperat..: dab above pleD1IDl

Page 25: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

2.5. RESULTS

0.8

I: 0.7

!I

0.1

-j -_.-.-~_.~_.

'.~------~-L.---=::-_

19

Tlme(h)

Figure 2.6: Heat: dab aboveplenam

Page 26: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Section 3

Defining the Zone

3.1 Overview

Thi- section shows how to set up the zone definition file for the General zone model. Followinga general discussion of the structure of this file, each piece of data is discussed and exampleinput data are shown. Often, the zone definition file for the example problem of Section 2.2 isreferenced. This complete file may be found in Appendix A. Along the way, variations neededto effect certain zone modifications are discussed.

3.2 The Zone Definition File

3.2.1 General Structure of the File

The General zone model reads all input data from a single file called zone188.dat. An exampleinput file for a simple room is given in Appendix A. Some important observations about thisfile are:

1. The information between r and ./ is commentary to make the input human-readable.These strings are stripped out of the input file by the program before the actual data isread.

2. The input is completely free-format. That is, where an hem appe..... 00 a lioe and whereline breaks occur are immaterial. Order is all that is important.

3. While some error chec:kinS is done, by modem software .tandards this checking is sparse.Some range checking is done, with error reports that attempt to pinpoint the error. Abo,item counts are dODe OIl data groups, which wiD live a meuace Ayiag that eomethin, iswrong with the previous poup. In lODle places, howewr, a millin, item or an extra pieceof data will not be trapped until lOme 'UblequeDt item is proteued. Detective wort issometimes required to identify the lOurce ofthese erron. Finally, there probably are yet-to­occur error events waiting to happen with u yet uatried input valu. or combinations. Thebest advice is to check a new zone definition file very c:arefuUy, both from the standpointof the input rules Kivea here, and physica1l1eDlIe.

4. The program allows the user to specify the number of itftlls in many data iDput poups,e.s., number of nodes and number of c:ondueton. The maximum allowed valuei for thesecounts is determined by anay climenlioDs in the Prosram, which are IIet at the time the

20

Page 27: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE ZONE DEFINITION FILE 21

program is compiled. These limits are ~ven in Appendix B. If larger problems must berun, the limits must be changed and the program recompiled.

For convenience of discussion the input can be divided into the foUowing broad groups ofdata, given in the required order in the file.

1. Arcuracy control information for the lIOlution process

2. Wave band definitions for radiative transfer

3. Nodal data, e.g., label, area. mus, radiative propertielO and initial temperatures.

4. View factor and other radiative transfer data.

5. Conductive/Convective data.

6. Lamp data.

7. HVACSIM+ interface information.

Each of these groups is discussed in the following subsections.

3.2.2 AccuraC)' Control

The program uses Ne,.·ton-RaphlOn iteration for salving tbe algebraac .ctuatios.A at each timestep. Speed and accuracy of salutioo can be controlled by .pecifyil\g ~ntrol variables. Thefirst control variable. TTOL, determiDes the degftt' of accuracy 01 the lOlution. The ~ondvariable. NRMAX, gives th .. f1':.JJmum number of iteratioDs aUcnuN to rt';u:b thf' specified )e\'el

of accuracy. Typical values are:

,- '.-ton-a~h.on eOD~rol. -,'-TTOL IMll -,0.000001 20

Setting a Ialler TTOL will sPftCllOlutioD. but accuracy wiD dimiDish. If TTOL i.. too I....the accuracy may Dot be sufficient for BVACSIM+ to calculate correct partial derivatiws forthe problem Jacobian matrix.

3.2.3 Wave Band Definitions

The model perfOrJDI r~ative emillioD and iD\erdlaap caJculaUou i. aD arbitrary ••mber 01abort wave aDd Ioag wave buds. Tile ..mber of .lIa buds aDd tMir limits ia aUCIOIlI isreq1lired iDput data. The first i&em it the Damber ol.laort .ave buds. MS,followed by MS+1poiDt. OD the wave1eagth acaJe. T~...ante it t'oUoM!d by a aiaaiIar clelcriptJoD 01 tH Jouawave buds. Typicll vllu. are:

/. non ••.,. Uab. (ala..).//. lIS 1ft lut ./

1 0.3 0.'/. lClDl ..... lla1u (a1cnu).'I. IlL 1ft lut .,

1 1.0 200.0

Page 28: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

22 SECTIO.'· 3. DEFINING THE ZONE

These bands cover the entire spectrum of interest in each ran~t".

Also note that surface pr~rties must be Ii"en I\Ion~ with th~ nodal data for ~a('h band,[See Section 3.2.4.) As a practical matter, spt'Ctral radiation propt'rtit's are ~ldom availablt'.10 a single band in each ran~e. as shown abo"... is almost always ulK"d.'

3.2.4 Nodal Data

This input group begins with N. the \atal number of nodes. which is followed by N sets of datafor each node. The node data conult of:

I. Node label (up to 6 characters)

2. Thermal mass (kW-srC) (0.0 for Ii&ht'wei«ht nodes)

3. Area (m 2 ) (0 for air aodes)

4. MS short wa\'e reftec:tances (1.0 for air nodes)

5. ML long wa\'e reftectances (1.0 for air nodes)

6. MS short wave transmittances (0.0 for O~Ul" nodes)

j. ML long ""a\,l' transmiUuces (0.0 for opaque nodes)

8. Initial temperature••sed as & .tarting guess for NR'loD-R.apblOn i-.ratioD lor muaJesanodes. This value i. not .sed lor aaaMiveaodft been. tHy pt their initial tmlperatureslrom HVACSUf+.

The example below shows the Dodal data iaput for varioas DocIe typn.

/- .. aod•• -/&

/enod.. .... v.a 1'-'• 1'-1. t-•• '-lw Ial'. T -//-_. ._. _.. _.-- - - -//- All' aode -/ra.a 0.0 0.0 1.0 1.0 0.0 0.0 24.0/- ....1•• Dad. -/bl.t 3.0 0.• 0.2 0.06 0.0 0.0 24.0/- ....1... DOd. -/cpt 0.0 IS.' 0.50 0.06 0.0 0.0 24.0/- Tl'auluc_t Dod. -/luI 0.0 2.'7 0.01 0.01 0.12 0.0 24.0

/- ..... ...1_t Iod.-/.-t 0.0 0.001 0.31 0.02 0.0 0.0 24.0

Note tltat tile easiest aaodeIiq tecUiq_ it \0 debe eepan&e aodes for ..cit lide 01iIIt.enalelemeats saclt • tile ,he acoutic .... A efldeat IOI.U. wiD Nnlt i'Rda ....&1are colI.pIed iato &Ii. 1MNte, Ht \WI it .UIc.Jt (H' _ iaapollible) to Mckte wUi

IBeca.. 01 aIIie... ClIrft1ll ...... aN III Ie ..a ............. aN .......

wilIlolel ....pilaUoa. See AfpeMis 8.

Page 29: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE: ZONE DEFINITION FILE 23

the a~u and v~w facton should be for the cOlllpoaitenode. Tr....lucent element. Iik.- thf' len.mUlt haw two surfac" to properly ~p,...nt IrulmislliOD. (s.. Sec. 3.2.5 below.).

A hctitioul node of nqlilible afta illOmetilDft ddDed to calculate meu radiut tempera·ture, It i. ima&infOd to halo.. tbe radiut proJ)ftties ma c10tbed humu, ud to be poaitionHi atthe center of the room.

3.2.5 Radiative Tran.rer Data

This data IrouP con,i,tl of v~w factor information, ud indication of tbe nodel that fN'eivetranlmitted radiation for each noo. with DOIlIftO trall,mittaace.

The pqram emplo)" a method for Mtermiaial the v~w factor matrix tbat minimilft~ui~ input data. The UIWf inpuh at moet ODIy a(a-1 )/2 facton, ..41 the pfCJIfam cakulat"tbe ~maininl on" from ~iprocity and conservation. MoncJftr, only non,.ro fact«l nHd beliven. The input facton aft iaput _

from, to, F(/rom. to)

tripletl. p~eded by the couat of ncb tripletl.Calculation of vi...· facton i. often tedioul. and if tbe model il complex the tuk can be

formidable. The pfOlJ'am 410ft not lOIn this problem, but it makes it a little euier ill tbatrelatively few facton halo" to be liven. H~wr, evea this can be problematical, lince theOD.. lpecified are DOt completely arbitrary. Simply put, tlae Don~ raeton Dot liftn mUlt becalculatable from thOR that aft live. (5072].3

For example, below we defiae 2 i.put facton:

,- ~r of (fraa. to. 'Cfraa. to» triplet••,2,. fra. to • (frela. to) .,1.., 1.., 0.0304

lur cpt 1.0

Note that /Nm ud to are node labela _ delMd i. ta.e nodal ia,.t eecUoa.In order to calculate the r.n matrix tlae PhJIf&ID aIaoaeedl to know aIi. factor tba. will

be calc..&ted by COUft'Vat" i. tIKI! row. nil is.va _ N (r...~.m.) pain, wHft N ilthe .amber of problem .... F.. exuaple:

/'"" col to M detU'll1H4 It, CGUUYati_ ./Un 1up!up 1..,1ur 1..,cpt 1upI., fint1ft' fmtlD t1mna.,a na.,ap1.a p1.acc.a cc.a

'Two .,.rate FACT... Yr, IN ....... to'" .. "'.11.. "' ................ to 1Min,., to ,lie - (Sown).

Page 30: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

24 SECTIO.~ 3. DEFINING THE ZONE

Ruws for dKidinK which factorl are to be si\'l'n and wbich a~ to b. d.termined by censer­\'ation a~ presented in tbe Reie~nc.. (Sow89).

Some surfacel rna)' have nonzl'ro transmittancl'I, u in thl' nodal data 8foup, It il nKl'lsaryto spKify the surfacl' to wbich l'ach luch IUrfacl' tranlmill. Thil is indicated by IV (from, '0)pairs. For example:

/- RadiaDt transai••ion coupllDi .ec~or -/

flrb 0luplurlur In.pcpt 0flu 0fln 0hap 0n_a 0p1_a 0cc_a 0

Hl'~ we have lpecified tbat the two lid.. of the lens traDsmit to OIle &IIotber. Tbil is tbenormal aituatiOll. A 0 ia liven as tbe '0 noel. for nOll-tr..amiuinc aarfacl'l. Recall that tbetranlmittance values were liven alOIIC with Doelal data. (~ Sec:tioa 3.2.4.)

It aboald be ob..rved tbat wbeD the~ ia a trualuceDt material aucla u tbe above lena the~abould be a proper radiaDt environment on both sides. OtMrwiae. the tr.amitted eDel'lY wouldbe 100t and tbep would nOC be &II owrall eHrIY balua DB tile tyatem. Tlaus if a tr&llspa~nt

...indo.,,· is to be modftled, thft'e Ih<MI1d be 101M mod.. of the oatlide ndiaDt eavilODlDftt. Forsunple, theft could be a IiDate DocIe witll ....... ud lIftO rdec:tuce ud trUlmiUance.Tbis wouldallow UP'iDClbort waw racliatioll toeKape tllroap the wiDdow iD a fairly reaUsticmanDeI' wbile maiDtaimDI overall eDeI'IY baluce.3

S.2.8 Conductive/Conwdive Data

The conductive aDdcoawdiw ote 4efi.. tM way tb. Ma' truafer occurs betwwa the aodea.The uwr s.ppliel tbi. iDformatioa as a coot dumber 01c:c.d.cton, followed by data for eachconductor in the format below:

from 10 0 {j , •Here frtwn ud I. are tile auDeI d __ ,.mouIy"" .acIer.... data. Ot_ val..

are:0: COiletaat coefIIrint (kWrC)

I: Factor tbat coneIatioa Ibn~t ia to ...d1.... by if' ....... dinctioa of Hattrue ,"ene. TM diNctioli it frtltft - ••.

'ne "'__ caa if .

Page 31: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE ZONE DEFINITION FILE 25

Ii temperature d.p.ndt'nct' is to M ipored the input is quit. simpl.:Q = hcAtJ = 0.0'l = 0.0~ = 1.0

I Not.: Q indudtIJ 'IJ~ arm alon, with the ('onstant lar.or 01 th. film ('Mffici.nl.

For v.rtical f~ ('onvKtion (horizoDtal .unacft) it i. nKftIU)' to Ulum. a dirKtion ofhe&t flow from the from node to the 1onoo.. Tlte valu. of 6 is tb.n tb. multiplyinl fartor toM applied if tbt' artual din!(tion or h.at low is tM ftVUle. For uampJ., ander s..ady-statt>conditions on. would ..sume heat ftow up at the carp.t. ",prnPntini a favourable cODvectionIituatiOIl. Th.n th. input could M:

0.047t2e 0.333 0.0 0.5

w. h.v.. used • hi,h film coeflici.nt in caIcuJatiol Q, and a 6 of 0.5 to reduce this coefficientdurin, periods .'h..n t~lC' hC'at f1CWo' i. from th. air to thC' carpC't. Th. same I'ftult. would obtainif ...·e halved tbe coo:otant factor Q and used 6 of 2.0.

Spt'<'ifyiDI eerreet n.tural convection cadicleat parameters for room. i. difficult at best.Correlations sucb &I tbOM! livC'o in w ASHRAE Huadbo.Jk of FUDdamotal. [ASH89, Chapter3J Ii,-e coeflici.nt. that are lipificantly difr.....t (senerally lower) than ....ured in full-seal. tfttroom.... Deaip val....... also hiper than the theofttic:aI corftlatio••. Re«ntly, c:omparilOOIhetw~n ....ult. from th. LIGHTS propam and tat eell data improved conliderably whensimple conltant coefficients (baled on the work or Spitler [SPF9I]) were ued i. place of thewmperature correlatioDs. AU of this .aaala tbat until better Dataral CODvectioD COI'ftJatioalin rooms become available. it is probably bat to alf' conltant coeflidenta i. lODe models.

Bulk convection. i.e.• air Sowinl bet~ aodft. reqairea special couideration. This ilMaUle wben air lowl from t.... room to t .... pleum. the mC,Trwt~ \enD mould occar ill th..eneqy balance 011 tbe plenum air, bat tbe ...cpT".. term should rtOI occur in tbe lleat balunon room air. Thil ia modelled u a "ODe way c:oadac:tor" wit" a value of mCp i. a..pGlitiollia the cODduclute matrix; i.e•• tlaere il 110 reciprocal eDtry .. t"ere wwld be for a MJnDaIcoavec:tiveor coad.dive CODdllctor.

To i.dicate IUda a cOIldudor i. the i.put. t .... d.....t....... maat be IiYft Int, fallowedby a nqalift upltftam aocIe. T.... for room.to-plegum low~ would write:

1.00.0p1.a -~a 0.11311I 0.0

wlHft O.U.. it tIM air mall low rate ti_ tlte lpeciftC heat. A1Io acM 'bt a CGDpIeW airlow drnit will ,..It i. aD owraD eHIIY ....e. for lM lDCMIei. Tilia is IOIMIi.- deIirabIefor dIecki.. ,."..., Ht aot _tial. (Set aIIo &H ...... ia Sedioa 3.2.1. flow P........ Node hporta.)

1.2.7 Lamp Data

Lamp data ill ~. i.pat palIp cauilta 01 a apedlc:atlo. oIwlaic" .rf_ .."I t tM Jam,ud baIIut, t .... IpeCtnl cliatriba'_ 01' lamp, ud tile lamp panr ud up, ,,.t ......

•~ to P.... Oil. ,.....,. u•. or .

Page 32: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

26 SECTION 3. DEFINING THE ZONE

lunp wall temperature characteristic curves. Note that total nominal lamp power input andUpt output are parameter. or the HVACSIM+ TYPEl88 .ubroutine.

To indicate which node i. the lamp, N (noelt,lla,) pairs are liven, with node beinl a definednode label and Jlag beinl 1 for lunp and 0 otherwise. The same .cheme is used to Ipecify whichnode is the ballast. 1.lert' can be only one lunp node aud one ballut node, with mal. and art'aproperties representing a composite of all lamp. or ballast. in the lODe. Exampl. input is then:

/. Yec~or inc1icadDiwhich i. laap .urface -/

flrb 0a.p 0luI' 0cp~ 0hap 1blat 0!'a_a 0pl_a 0fbb 0Un 0cc_a 0

/- Yec~or iDdicatilll wIlle1l 11 ballut nrfac••,flrb 0lD'p 0luI' 0cpt 0l.-p 0"la~ 1fa_a 0p1_a 0Un 0Un 0cc_a 0

T. model ... t.lamp .pectral Utrilnllioa ia 'IMIIIort waw 1ftIt. to calnlate lalllilMMlloutput in Ndt IIaort .aft bud .peciled. T~. diatribltima it ..tend • a CCMla' AI, foIlowd·byAI (tntICle""A, ..,,.t) pain. TIM .ai"ai_win,., illDiaoal, ud for .....oa. oatpatW/aaicroa.IUIMIl. ne iaP'l1 for ltaadud cooiw~.. lacnIC8t "'pI ia:

/- .... l_t.,... .18Ul....tl_ ft ••••~--" -,

/- 10. of po~. _ u.. CVW'e -/

II/- •••e1taeda••'pat pain -,

o 0.aoeo 0.3011 IIe-4

Page 33: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE ZONE DEFINITION FILE 2;

.1000

.16000.1999

20.-4oo

3.2.8 HVACSIM+ Interface IDfonnation

Node reponen

Normal outputs of the TYPEI88 suhroutine IDchade OIIly:

• Internal mauive node temperatureal

• Extract air absolute humidity

• Extract air temperature (mipt not be the room air!)

• Heat fluxes at boundary nodes

Often other outputs are wanted, luch as room air temperature, meaD radiaDt temperature,ud heat fluxes at nodes not normally available outlide the zone model. To provide tbeseoutputs, the model pro\'ides a nDtlt rtporltr that allowl several quantities of pouible interest tobe Mported at oy node. The way dlis worb CaD best be leeD by example:

,- ru. n..DOD.,-loci. 10.

ra.a 21.., 1Itbt 1.n 1 -1

1Ir1t1Jl& iDunal 1104.. reponed -/0.0 ..

1t_ reponed at DocI. -,-1 -2-7-7

This plllCel into the TYPEI88 CMltp.' lilt tile vuiablea:

I. loom air aode lempenl.re

2. Net rate 01 heat removal from room air aocIe

3. Lamp node IOerce Hat

4. Ball.., aode IOeftle ....

&. T....pen&ue of tIM rMiaat ...

TIle lrat two i.... 01 tWa ia,.t t tM WRorJ 01 'Ile aode NpOrter, .Well ••oriIla.y crea&ecI bllode wtp.t to Now,die ... HIM ....., e.... tile _tp.' SO be let.p ia tile TYPEl88 ""pa' array i of....wri'" to a .... TIle writiq iaterval t_ UsDO JDeUiIll' liKe tile ..... will be lit .p • .u call. £aU node to be reponed iI iadlcatedby ita label, u4 ... a COIIat 01........ _.,.t i'-t foIIowM I., a lid 01... iacUc.ti.. tileipeCiftc items reqHIted.

·la ,. die TYPE ill ' loa , .. die 1M, 1ft...........................

Page 34: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

28 SECTION 3. DEfiNING THE ZONE

In general, the format for the node reporter is structured u follows:fil~.namr p€rioo n_noounod~ n_itfm~ i'cm.cOflr i'tnl.codt ...nodt n_i'fm" i'cm.t'oor i'~m.l'odt .. ,nodf n_i'tm" i'tm..coo,. i'tm-rod, ...

Item.rode is an integer betw~n I and 8 that determines what kind of information is reported.Ifentered without sign, the value is reported in English unitl, but if entered &I a negative integflr,it is reported in 51 unitl. Allowed item-rodes and meaninll an:

1. Node temperature (Flc)

2. Net rate of enerK.v loss (+) or gain (.) at node due to radiative. conductive. convectiveheat tranafers (Btu/hlkW)

3. Total radi05it)' from th.. node (all bands) (Btu/h.ft·2IkW/m·2)

4. Total irradiation to the node (all bands) (Btu/h·ft·2\kW/m·2)

~. Total net radiation from the node (all bands) (Btu/b·rt·2Ik\\'/m·2;

6. Heat transfer rate from node to to-node (Btu/hlkW)

i. Source (+) or sink (.) ..ner~ rate at node (Btu/hlkW)

8. l1nbalance at node (Btu/hlkW). Thil i. Iwm 7 minus Item 2. For a mault"51 node. anonzero value represent. unbalance due to numerical solution tolerance. For mauin aodee,it represent. tbe rate of rele~ ol.tored ene'l)' (-) or rate of gain in .tored eH'I)' (+)storase (plus DumenCalerror); divwOD by the node thermal mualivel the rate of cbuleof node temperature.

Obse"le that severa) dift'..ren~ kind. of node heat lax can be ftqueatecl. While each of thesemay be neecled at various times, hem-codea 2, 6, ud 7 are the molt commOldy Ufd. If tHr.g no' a bulk low conductor bet'ften the JOH extract air DOCIe (e. I., t"e pleDum air nod..) andthe .upply air node, itml..tode 2 requested at the ••pply air aode can be tiled to report 100"

cooling Ioad.a Altematfty. room coolilll 10M caD be reported by ftquealUlI i\em.cocIe 6 at theIUPP'" air with room air u the 'O._f. Item.code 7 i••ted to~ imp"- Ileat IOUrce ata node. In the example .how, it lives lamp ud ball..t power for~inl p.rpoees. It couldabo be used to output tbe rate of lOlar, eqaipmeat, &ad occuput _.ble Ileat lain at variousnodes in the model. (See also HRt Gain Diatributioll.)

The node reporter cu be ued to write i.lonuatioll to Ilea allO. Howoevw, bee.ale TYPEI88d UDder coatrol of tile HVACSna+ execulift_ .,.c:"roaiaatiaB is 4lilink . n. C1lrnlll i_pie­mnlatioa writes tile prrf1io.. val.. upoa lIae Int call ia a HW time Rep. TWa .... plOftll tobe ... t.... • tiafadorJ. &ad ... ill .- rKClID.......'

TIaere cu be at IDOIt two IIOde reponen. ud ..h Call req'" .p to 2G items r.... \'&I'iounodes. Up to 5 icema cu be ,.....aed at .., Ii.......illa a Ii.... aodenpoiWr.

If DO additioDaI outputa are requind. p" 0 for tile ..mber of IIodee reported.

'If~ edrad Iir to • ..., .. ~Ildor .......... lie. Wute .................. ..--I....."., i......... ' .............

'To do til. aImdI,. it _W .. IIft'eIIUJ to MN ...,11 .............. UMI i........ to pot ......t......... wria.iJl....

Page 35: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE ZONE DEFINITION FILE 29

Description .trins

After the node reporter there ia a deiCriptive atrin« for the zone definition. Thill is used for thetypar.dat filt>. and il also dillplay~ upon the fint instantiation in an HVACSIM+ run.

Fixed Count.

Both HVACSn.f+ itself and itl ~enerator p~ram Ia~~n~ui~ count. of Dumbeor of param­eters. inputs. outputl. etc. Some o( this information. e.I., numbf'r of parameters. does notchange as the zone definition chanles aad the~fo~ could haw been hard· coded in the pf<JIfam.However. aince tome of the counts aft affected by tbe lOne definition it aeem~ ~t to placeall auch data in the zone definition file. This data. which follow. tbe zone description atrin«. iaalll'G" 'Ia€ 141m, and appear... follO'lo'a:

,. D.-iee D.p&r n.aayed.'6 8 4

Here n.misc i. the number of ioputs to TYPEl88 that an always the same. resardleaa ofthe model .tructure. Appt'ariol lint in tbe input lilt. thew five input. are the control lipal&for occupant, equipmeat, and liptins power. solar heat sain. ud extract humidity ratio. Theother two counta are Il-pu, the Dumber of paruneten....d n....vecl. the Dumber 01itemlaawdbetween calls to TYPEl88. Some of thew item_ an! .Ied only by tbe hiJd..l,per propam.

Mauive Noel..

Next in the input romes the internal Dodft with lipilc_t thermal m.... The input iI acount &ivins the numbf'r o( luch aodes. followed by a list 01 u m&llY aode labels. The orderil arbitrary. and "'ill "labUsh the order in wbicll the coneapoadi.C temperature. occur in tileTYPEl88 input lilt ... well.. ia it. output lia'. AI dilusaed i. Seetio. 2.2, theM tempt'fatulftfollow the Iupply air laumidity input 10 TYPEl88, ud~ at 'h~ Vft)' beciRDinS of its outputJi.t. AD example il .how. below:

I. II..... : .....1' of ...19. D/Oda:e'..I. lode 1...18 -,1.., n.t 1*P true

I~t: I,.. IiOdfi nIl" h~ mual beIJlOli With tHrift...... >0.0, u .peaW ID stCllOD IBo• ..taryNodes

Ak the .....". 80dea tHie iii' 01bolladar)' BOdes faDawi. '_AllIe "fie. Far exaaaple,

/. lotIII4arr..... IIlCl eac1..lac ...rae.... nppl, &11' ....• U_ in ori.. of Tlftl. iapU lln ../

I. lI.boaDd: ..... of ~U'J ....:.,,,. Iod. 1...18 -/AP.- ..eft' fm

Page 36: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

30 SECTION 3. DEFINING THE ZONE

Normally. boundary nodes are thoee that must communicate with other parts of the simu­lation. The most obvious examples are walls and floors. Additionally, supply air streams aretreated as a boundary nodes. For each o( these nod" there will be a temperature input toTYPEl8S. immediately following the internal musive node tempt'raturea in the input list. Inthe output list there ",jIJ be a beat flux (or ('&Ch. immediately followins the t ..mperature of theextract air.

Air Flow Path.

Air flow through tbe zone i. specified in terms of input flo",•• ntract flowi. and bulk flo".;conductors. There can be IIt'veral of each of thell'. allowing all normal configurationa, auch asreturn plenum. atatic plenum. heat ft"movalluminairea, and 10 on.

The first input in this group i. the number of air flow rates in the TYPEI88 input list. It isimportant to Dote tbat this i. no' nt'crUGril" tJae num/)('r 0/ ...",,1, IIi,. "rtrlm8, but rather theflow fates that are to be used to calculate bulk flow conducton. Tbe' example room hu onlyone. which il the m06t common lituation. The input is then:

/. nit -/1

There can be IIt'vl'raJ bulk ftow conducton that are bu.cl 011 each input air flow fate. Theinput gives the total number of bulk flow conductors, foUowt'd by &I maay triplet. of thl' form:

Here inpuL/'oll.'.ifldfz indicates the input air flow rate upon which the bulk lIowconductOfbetw~ dou.·n.frcflm.nodf and IlJUfrecm.node is baaed.

FigufH 3.1 and 3.2 .how several example flow path. ia zones. Cue (a) in FilUfe 3.1 .howsthe .tandard return pleuum aituatioa .. used in tH example problem. Tht' corlftpondinK inputi.:

/- Dalf ./3/- Balt triplet. ./!'a.a .up•• lpl.& !'a.a 1.up.• pl.. 1

Siuct' there is but one iDput low nte, all or the low iDdices are 1, aad all tlane blllk 110­coadudan will ba\'e the same vahae at aU ti....

Cue (b) in F'tpre 3.1 "OWl tile air-retarD laminaire aitutioa, ia which the air i. lOatedthroap the hamiDaire lamp ca\'ity Wen utnctioa thro.... tile plnam. Ia dais CIIIt the modelm••t law aD additional air lOde ftPNaelltilll lile Jamp cavity .ur, Ic.a. TIae illpat is:

/- ulf ./

"/- ult uipl~. -/nt-& 8ap.a 1le•• n..& 1pl.. le.. 1Ap.a ,1.& 1

Page 37: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. THE ZONE DEFINITION FILE

Uf ==~: : IV

. -­. ..- - ......----==~':: .....-..........

~-= .. -::~ _ ......

..._-§L1., ~-.-.,__-I __- -..

Fipre 3.1: Zooe Air Flow Patha

31

In both or these cues we have included the optional retarD tOftductor between the extrartioanode (i.e., the plenum air) and the .apply air poillt. TIli. makes a dOled circllit fA bulk lowconductora, Bivins an overall model heat baJaace. However, oKtly the same resalts are obtainedif tbis conductor is omitted, aince the only node hot balance in wbich this conductor appearsis tbe npply air node which i. normaUy a boundary ud tberet'ore or knOW'll temperatare.

Cue (c) in FilUre 3.1 sbows tbe air·oooIed laminite ututioll, i. whicb the air is routedthroup a coolinl jacket Oft the IUaUaaire boulinl before extractioD throap the plenam. Themodel is exactl)' tbe urne u cue (b) except tile additioaal air IlOcIe repf'ftellts afti'. airtemperature ia the coolinS jacket. However, ia thil cue we omit the optional retarD condudor,10 tbe input il:

,- nalf -,3,* Dalf 1:rlpleU -/na.& up.& 1lc.& na... 1pl.& lc.. 1

c.. (d) ia Ylpre 3.2 MOWI tlte limple cue 01 Italic ,.lIm wit.., tM op\ioDaI manconductor. The input i. obviall•.

C... (e) ad (f) allow toalpmioa. tbt allow aacHltalatioa or awitclaiq Gfnpply udreturn air path.. Sdlemea like ,.... ow .......... for I'lti.. better •• 01 .'net.ralme- for beat ... (CoIl91). Ibr example, I. (e) 1M _va air c:oUl be ..ted WoaPtile p....m dari. morai.. IlourI fa nic~ coaII......... low. Durias ,Iae afteraClOll, _1leDcooIinlloid. are approeelUa. tJteir llUiJfta., 'M air it nikW SO roaaa atradioa (... dueledtlaroap the pleau••pace) 10 , ..Mat ....... ,Ite plea....nctval ...... (_ducliaS 'Ile

Page 38: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

32 SECTION 3. DEFINING THE ZONE

.-LJ..--

1:1:. =~.-::~..... ... -- ..... --.......................

~"'"

U ==::.....-.... .... ....-.. ..... ------Figure 3.2: Zone Air Flow Paths (concluded)

concrete of the floor slab above) doean't contribute to the peak cooling load.' In both of thesecases "'e need two flow ratea as inputs to tbe model. In cue (e) tbe fint low rate representsthe supply air to the room; it is used to calculate tbe bulk flow conductor between the supplyand room air nodea. The seeond is the low rate extracted throup the plenum; it is used tocalculate the conductance between the room air and the plenum air node. The input is:

/- nalt -/2/- nalt triplet. -/ra..& .up.& 1pl.& Z'a_& 2

Cue (f) is a similar idea except it is the supply air that is switched. The iDput would be:

,/- wI -/2/- nalt triplet. -/za-& np.& 1,l_a np_& 2za-& pl.& 2

In cues (e) and (f) the HVACSIM+ TYPEI88 would lIaft '.. (opply ..... tow rate,luppl)'humidity) pain in the i.put list, immediahly after ,Iae bed lap.' lte8II. TIletlowJIHIex iaclex.into this n.t to compute ,he bulk low c:oadudUlc:el accanU.. to ,Iae above ecM1De. AIeo, ,_supply air oodes should be defiDed .. boaDdary aodes. (See aIIolJolladary Nodes.)

'or~_ &lie pin•• IIkIIelII Uft .. lie a!aIlt.

Page 39: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.2. TilE ZONE DEFINITION FILE 33

Note that the zone modei itself merely U8~. these flows. It does not deal at all with massbalance. If the simulation needs the mass flow rate leaving the zone it must be calculatedelsewhere.

Output Flow Temperature

Other parts of the simulation often need the temperature of the extract air stream or streams.Because the air flow paths through the zooe vary u dilCuaecl under Air Flow Paths, the par­ticular node which siVei this temperature must be identified in the zone model definition. Thisis done by giving the number of extract flows followed by a Ust of node labels. In the cue of areturn plenum there is & IinsJe extract stream and the input is:

'-Dof: luaber of TYPEl88 output flo•••,1,- 104. lab.1I for t.-per.tur.. of output flo•••,pl••

This input introduces ODE' temperature in the TYPE188 output list immediately after thezone leaving humidity derivative output. See allO Air Node List.

Beat Gain Distribution

Zone heat gains are determined from a combination of TYPEl88 inputs and parameters uexplained in St'ction 2.2. However, the nodes at which thil heat pin is "deposited" is specifiedin the zone definition file. For each node in the model, a fraction of lO1ar, occupant lensible, andequipment sensible beat gain is specified. Naturally, the lum of theee fractions should equal 1.0for each heat gain component. Lighting heat gain Is not iDcluded here bec:aUIIe its distributiOllis calculated by the model. for the example problem the input mipt be as .hoWD below:

/. Dod. .olar occ;upant equiplMllt -/n..a 0.0 0.& 0.5pl.a 0.0 0.0 0.0la..a 0.0 0.0 0.0lMlp 0.0 0.0 0.0

'l.~ 0.0 0.0 0.0lIIhl 0.0 0.0 0.01Der 0.0422 0.0211 0.0211cpt 0.2242 0.1121 0.112111n 0.0 0.0 0.0ea, 0.0 0.0 0.0ac:~r 0.1122 0.0110 0.0110rwr 0.1211 0.0141 0.0&11nwr 0.1411 0.0738 0.0731rnr 0.1211 0.0141 0.0&11naft 0.1471 0.0738 0.0711,.., 0.0 0.0 0.0pnp 0.0 0.0 0.0pap 0.0 0.0 0.0

Page 40: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

34

pnvptru.lahplnlllup.aflrran

0.00.00.00.00.00.00.0

0.00.00.00.00.00.00.0

0.00.00.00.00.00.00.0

SECTION 3. DEFINING THE ZONE

The fractions are based on judgement IUId somewhat arbitrary. For the example, it is assumedthat 50% of occupant and equipment sensible heat «ain «08 directly into room air; this is theassumed convective fraction.ll The remainder is distributed to room surfaces in proportion toarea. All of the solar is distributed to room surfaces in proportion to area.

Air Node Lilt

. Ideally, the model should provide for a separate humidity balance on every node in the airflow circuit. At the present it does not; a lingle hamiditJl differential equation calculate. a .ingleenract humidity. All input air streams are imagined to mix for calculation of the derivative. Theair mass is derived from the composite air thermal mass, calculated as the sum of all designatedair node thermal masses. However, since the URI' may wish to iplor air thermal mass in theheat balance (Le., assume instlUltaneous air enefIY balance), this sum may be zero. To avoidthis problem, the air thermal mass for humidity calculation is assumed to be 30.0 (W.s/oC) ifthe sum is less thai, 1....6. This is the thermal mus of a small office (about 20 m3 ).

The input for this data is as follows:

/. lUMber of air Dode. ./3

/. Air Dode 1abell (u.ed to detenaiDe air ... for hUlliditJ diff eq)./r1I_a pl_a la_a

Thill concludes the zone definition.

3.3 General TYPE188 I/O Lists

Section 2.2 showed a Silec.iftc: example or the TYPEI88 input and output liat. The ~aI cueis .hown in Tables 3.1 and 3.2.

'la priaciple it tIIottId be po.illle to debe a .ode rep....tiaa • .-nt, coaYeCtiftl)' ... rMtiUiftly COlIp5edwitll ol"er aodet. TIIea aU _ .... eqlliplHllt lieu pia co.w be 4IepoIi&ed at to _e. nil woUI ....t istile aaodeI calnluial r"'iuiu ..d m..ec:tift porUG... ra&1ler t .... llawiltl to _._ tMa.

Page 41: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

3.3. GENERAL Tl'PEl88 I/O LISTS

T~ble 3.1: General TYPEl88 Input List

Number Dftcriptioo Unit.Fixed Inputs

1 Normalised occupant bot pin (-)2 Normalised equipment heat sain (-)3 Normalised liptinS beat sain H4 Solar heat pin (kW)5 Extract air humidity ratio (kg/kg-dry-air)

Air Stfllams6 - Supply air temperature (C)7 Supply air humidity ratio (q/ks-dry-air).: .

4+2·nif Supply air temperature (C)5+2·nif Supply air bumidity ratio (kS/ks-dry-air)

Temperatures of Intemal Mus Nodes6+2·nif' Muaive node temperature (C)

5+ 2*nif'+lUDus Muaive node temperature (C)Temperatures of'Boundary Nodes

6+2·nif+IUDUI Boundary node temperature (C). .

5+2*nif+IUIlUl +n-bound Bouadary DOCIe temperature (ClDefinitions

nif Number of air low iDputaDOf' Number extract air IUeuDa

n..bouDd Number of'bouadary Dod.IUDUS l\Jumber 01 iD&eraai mUlive Dod..

35

Page 42: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

36 SECflON 3. DEFINING THE ZONE

Table 3.2: General TYPEl88 Output lilt

Number Description UnitsDerivatives of Internal MUlive ~-.d"

1 Muaive node temperatuff derivuive (C/I):

D-IIlaS5 Mauive node temperature derivative (C/I)Extract Air Humidity

1 + D-IIlUi Extract air hamidity ratio derivative (lts/lts·dry-Air!a)Temperatures of Extratt .~ir Stffama

2 + D-IIlUi Extract air temperatuff (C):

1 + n..mus + nOf Extract air temperatuff (C)Net Heat Gain at Boundary Nodes

2 + n..mus + nof Boundary aode temperature (C)

.1 + n..mus + nof + n_bound BeJandar)' node temperature (C)

Additional Outputl2 + D..mUS + Dof+ a_boaad Node val. (C or kW)

. .1 + n.DlUS + oaf + D.bound +uvan Node wahle (C or kW)

DelO.t...1nof Number extract .r Itraml

D_bouad Nunber 01bootlU)' ...ILIIlUi NUDher 01latera" ....we .odes~arl Nunber oI..witiaul CNt...tI ..

Page 43: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

References

(ASH89) ASHRAE. H.,MlI»ot "I F,,,wlGmtn'aJ.. Am. Soc. of Heatilal, Ilef'ripratinl and Air­conditioninl EnpDeer1, 1989.

(ClaM) D. R. Cluk. HVACSIM+ builcliDlly.tem and eq.ipment simulation procram (refer­enc~ muua! and uaer'lpiM). TechDical Report NBSIR 84·2996, NatioDa11nltitute ofStandardl ud Technoloo, <ADter for Builcliq TedaaoJocy, Gaitherabul'l, MD20899.Januuy 1985.

(C-0091) J. P. Connifl'. Stratepes for redUCiDI peak air CODditiODiDlload. by asiDI heat ltor.in the buildiq Itncture. ASHRAE 7NnMt"ionI.97(Pt. 1), 1991.

[Kea88) S. A. Klein ud et aI. TRNSYS- a tr&D"'t .ystem aimulat_ prop.... TechnicalftPOrt. Solu EneII)' Laboratory, University 01Wiacoalia, Wadi_, WI, 1988.

[5072] E. F. Sowell and P. F. O'Brin. Elicieat CClIDp.t&tioa 01radiuat...wrdaup cantil­uratiOR fKtan withill tlte oclol.re. J..rMl 01 BHI nwu/tr, ASME Tna,.., 95<:,19;2.

(Sowi2] E. F. SoftIl. Enl'ironmmtel IW~'_ /fir Fhtort«nt Cc1Iint S....... PIlD a_I,U. CaliJoraia. Loa ADplet, 1m.

[Sow89] E. F Sowell. LIGHTS pide. Tedlaical repart, Califonia State Ullivenity,FaJIertoa, Dept. of ee-,. Sdetlce. FaDertc.. CA 12134, N........ 1_. NSFGnat "5)1·811-4174.

[5'1'91] J. D. Spitln, C. O. , ...... aM D. Eo FiIMr......... eaaWdiw .... truIfer iabUdi.. witll lup vntilative low rMeI. ASBRAE n..-a...., I7(Pt. I). 1.1.

IT",I] S. J. n.4o. ne NIST ....ti.. aM BVACiII~ ...Wit,. ASBUE JfIW'Ml,33(4), April 1.1.

Page 44: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Appendix A

Example Problem Zone Definition

A.l The Example Zone

Fipre 1.3 .how. the zone definition and node delipation•. Geometry and other pertinent dataare .hown in Table A.I. Thi. data i.from the Lilhtinl/HVAC Interaction Test Cell at the U.S.National lnati'ute of Standard. and TechnolOl)' (NIST)[Tre9I]. The ceometric data wu takenfrom conltructica drawinp for Lhe &eat cell. Thermal mUleS are baled on physical dimensionsaDd handbook density and heat capacity data. Radiatioa properties are ettimatecl.

A.2 Zone Deflnition File

/. a..ral nACSIlI+ aoa. -.041.1 .//. 4 .... i •• DOdeI ./

/. 51 Daita »t/. 23 JUJ 1..1 ./

/. Idwvel r. Sow.ll .//.'cr,llc L.aa. c.lli11 ~i11 recura .//. 4 I.., finane -//- ~ ./

/. Ienoa-Ilplaa. proc:.. coatrol. -,/-.,. 8aK ~ri.. -,0.000001 20

/.~ .a....... l1a1~ (alc:nu)-//- _ lit laft -/

1 0.1 0.'/ea..c ......... lildu (alcnM).'/. 111 lit bit -/

1 0.1 100.0/........./

25/.... ... ... ~.. r-l. t-.. ~-I. ,-//-- - - - -- - --I/. .... ,1_ .. 1tIIp cadt, air ...../~. 0.0 0.0 1.0 1.0 0.0 0.0 21.....

'IEtEO' ti~ . ~iEILl•••01 FILMED

Page 45: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

40 APPENDIX A. EXAMPLE PROBLEM ZONE DEFINITION

Table A.l: ZoDe Geometry

Item Value UnitlFloor-to-ceiliq beipt 2.44 (m)Eut/West wallleDetb 3.70 (m)Nortb/South walilenetb 4.27 (m)Plenum heipt 2.44 (m)Luminaires .. (Dumber)Lamps per lumiDaire .. (number)Total lamp lurface area 2.33 (m')Total lamp mall 1.9 (kW-IJ°C)LumiDaire width 0.61 (m)Luminaire leDetb 1.22 (m)Luminaire lenl thickneu 0.32 (em)Total ballast lurface area 0.35 (m')Total ballast mall 3.8 (kW-IJoC)Luminaire houlinllUrface area 4.37 (m')Totalluminaire mall 13.7 (kW-.JoC)Acoultic tile ceiliDI thickDeu 1.27 (em)Trull Surface area 9.29 (m')Trull mall 214.48 (lEW-./oC)

Table A.2: Radialioa plOpel1iel

11 ace

•CarpetsLam. IaouIDI. pleaamLam. IloulDi. luideBaUutLampLam. leuAcoutic tile1'rua;d.......iant DOde

o.O.SO0.800.700.200.100.•0.800.100.37

o.0.050.060.050.060.060.060.050.050.02

traa..0

0.00.00.00.00.00.00.00.00.0

Page 46: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.2. ZONE DEFINITION FILE 41

0.00.0

1.0 1.0 0.0 0.0 23.88891.0 1.0 0.0 0.0 23.8881

I. LuaiDalr. Dod•••/1.., 1.89805 2.334&8 0.1 0.05 0.0blat 3.71612 0.36117 0.2 0.05 0.0I.bl 0.0 4.36545 0.7 0.05 0.0188r 0.0 2.972tO 0.05 0.05 0.12~p 13.eeeo 4.36545 0.80 0.05 0.01881 0.0 2.172tO 0.05 0.06 0.92

0.0 23.88890.0 23.88890.0 23.11890.0 23.88890.0 23.88890.0 23.....

cpt 0.0 15.8028 0.50 0.06 0.0 0.0 23.eeat

/- floor alab Dod.. •• ..a 1. 1D IYlCSIII+ ./flrr 0.0 0.0 1.0 1.0 0.0 0.0 23.8889flrb 0.0 16.8028 0.50 0.05 0.0 0.0 23.8889

/. acouatic cei11nc Dod.a */actp 0.0 12.129t 0.80 0.05 0.0 0.0actr 0.0 12.129t 0.80 0.05 0.0 0.0

/* 1ooii wall DOd. •• .... 18 1D IYlCSI... -/rewr 0.0 1.0302 0.10 0.05 0.0 0.0rawr 0.0 10.-tO& 0.10 0.06 O.G 0.0rwwr 0.0 1.0302 0.10 0.05 0.0 0.0rnwr 0.0 10.40& 0.10 0.06 0.0 0.0

/. Plena wall -- .... 18 b IVlCSI... -,,.., 0.0 2.8224 0.10 0.05 '.0 0.0..., 0.0 3.2518 0.10 0.05 0.0 0.0,.., 0.0 2.8224 0.10 0.05 0.0 0.0..., 0.0 3.2518 0.10 0.0& 0.0 0.0

23.888923.8889

23.118923....23.118923....

23 ...23 ...23 ...23."

/. traa. node --- ./~ 214.4101 '.2101 0.10 0.05 0.0 0.0 21.11I8

/. cool1D5 coil 1".111I air .... -/.up.a 0.0 0.0 1.0 1.0 0.0 0.0 23.....

/- .... ladtat lode ./

0.0 0.001 0.37 0.02 0.0 0.0 21.....

/.I- n.. Factor Data,-/• ..-..r of I.J./(I.J) tr.,l-*-.,..

./.,

./

Page 47: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

42

/. I J 'U .J) .,lur cpt 0.4ecpt actr 0.25993cpt ran O.lSlOHcpt mvr O.lSlOHrevr actr 0.21463revr Inar 0.04973revr ran 0.17111ran actr 0.232Mran lur 0.033Hravr mvr 0.11015nnrr actr 0.214e3nnrr lur 0.04973nnrr mvr 0.17111bap lup 0.0872131lup bel 0.32988tlrb actp 0.4826flrb pap 0.058897flrb pavp 0.068664flrbpwvp 0.068897flrb pnvp 0.068664flrbtZ'WI 0.02934lahpaetp 0.072labp pap 0.03labp pavp 0.031IIbp pwvp 0.031IIbp pnvp 0.03blat flrb 0••bla' 1IIhp 0.15bla' pnp 0.030bla' p811p 0.030blat pnp 0.030blat JIIlIip 0.030pap actp 0.314'16pevp p81Ip 0.01181,.., pap 0.02011',.., ..lip 0.0I1N,.., actp 0.1117",.., pnp O.OTtIlpnp JlUP O.OTtIlpap ac~ 0.314'7&pap JlUP 0.0I1NJlUP act, 0.311711

an Ktr 0.1883&an 1D8r 0.02N6an nwr 0.011an ran 0.124

APPENDIX A. EXAMPLE PROBLEM ZONE DEFINITION

Page 48: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.2. ZONE DEFINITION FILE 43

IIrt nwrIIrt nu.r

0.0980.124

/. The JJF .ector .//. row col d.t. bJ co....n&doll ./!'a_a !'a_&

pl_& pl_&la_a la_ahap lablblat tl'U8lahl lahllur mwrcpt rewrflrb labpactp t~

actr nwrr.wr nwrran nwrnwr cptnwr rewr,.., t~

pa., tl'U8pnp tl'U8pwp tl'U8t~ tl'U8labp tl'U811lal lahlsup_a aup_&flrr tlnan cpt

/. la41ut traua1aalO1l coapl1B& _ector -/na..a 0p1_& 0la..& 01111p 0blat 01IIbl 01Hr lu1tlrr 0flrb 0actp 0actr 0nft' 0rnr 0IftI' 0mwr 0,.., 0

Page 49: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

44 APPENDIX A. EXAMPLE PROBLEM ZONE DEFINITION

pawp 0pnp 0pDwp 0t~ 0labp 0lul lnaraup._ 0cpt 0art 0,- CoDductlOD/coDwectlaa data -/

/- ... of CoDCIuctora -/27

/- f~ to alph_ beta ... .e1t_ -/

/- CoDyectlon. Surface. to _ir -/rewr !WI._ 0.022122 0.333 0.0 1.0r.wr

!WI__

0.02541' 0.333 0.0 1.0rwwr !WI._ 0.022122 0.333 0.0 1.0rnwr

!WI__

0.02541' 0.333 0.0 1.0

_ctr!WI__

0.014'" 0.333 0.0 2.0:~ .. !WI._ 0.0030M1 0.333 0.0 2.0~. n-- 0.047921 0.333 0.0 0.6

pewppl__

0.001112 0.333 0.0 1.0p•.,

p1__0.007114 0.333 0.0 1.0

pnp pL- 0.001112 0.333 0.0 1.0pD., pl._ 0.007184 0.333 0.0 1.0

flrb pl._ 0.01'" 0.333 0.0 2.0_ctp pl._ 0.03nl0 0.333 0.0 0.1

1Mp pl._ 0.013241 0.333 0.0 0.1blat pl._ 0.0010&1 0.333 0.0 0.1tl"U pl._ 0.00M3I 0.333 0.0 1.0

1JIbl la.,- 0.0010I1 0•• 0.0 2.0lui la.,a O.OOtOll 0•• 0.0 0.11.., la.,a 0.007119 0.21 0.0 1.0

/- c.dacti_ lui. _11. -/f1ft cpt 0.072917 0.0 0.0 1.0

actp actr 0.0IH24 0.0 0.0 1.0lui 1aR 0.1'" 0.0 0.0 1.01JIbl Wap 1~.210111 0.0 0.0 1.0

Page 50: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.2. ZONE DEFINITION FILE 45

blet lIIbp 0.&27241 0.0 0.0 1.0

/- Bulk conyectioD b.t•••n air nod•••• alpba owerwrittee bJ TYPE188 -/pl.a ·ra.a 0.113181 0.0 0.0 1.0.up•• -,1_. 0.113181 0.0 0.0 1.0 /. to clo•• the IJlt.. -/ra-a -IUp_. 0.113t8t 0.0 0.0 1.0

ra-a 0,l.a 0la.a 0lap 1blat 0Jabl 0WI' 0flIT 0flrb 0act, 0actr 0rHr 0rln 0nnrr 0I'Dn 0..., 0pa., 0,.., 0pa., 0tna 0lIIbp 0luI 0lup.a 0cpt 0III't 0

/- 'ector bdicatb& .lela 11 bal1ut avtac:. -,

ra-a 0p1_& 0la.& 0I.., 0b11t 11IIbl 0luI' 01m 0flrb 0actp 0actr 0rewr 0

Page 51: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

46 APPENDIX A. EXAMPLE PROBLEM ZONE DEf'lNITIO.'i

r ••r 0nnrr 0nwr 0p."P 0pl"P 0pwwp 0pD"P 0trua 0labp 0lui 0lup_a 0cpt 0an 0

/. L.-p 1_1_... cl11U1butloD n .•an 1eqtb .//. 10. of po1Dti OIl th. cun. -/

39

lSe-4ootoe-41Oe-45Oe-4...-4lOh-4t"-4225e-4tlOe-4.....o

.3011.3290.3390.37ot.4001.4310.4410.1410.lil0.&121.1110.17500 ....

oSe-4toe-43oe-4toe-4ll1e-41Oe-4llOe-422Ie-41"-4Ih-4o

/ •••••ienctb. output p.irl ./o 0 .3080 0

.3179 1&e-4 .3110

.3291 Se-4 .3319

.3110 loe-4 .3111

.3710 lSe-" .4000

.4019 toe-4 .4100

.4311 19Se-4 .44Ot

.47&0 "-4 .&200

.5411 llOe-4.55Ot

.5730 11..-4 .&131

.5830 llOe-4 .1000

.8250 110.-4 . tIOO

.1000 2Oe-4 .1100

/- ...., re1.~h. powr aacl 1.1..... output ClIn_ ./

/- rna r1& 2.1 of lIS ~u1a Ieport -//- 10. of pom. -/I- »-1

/- Vall r.., (I) ..1 Q Ie1 a.- -//-

-27TTI255.UM281.1111211."7272.2222277.1111283.U3I.....

0."0.1100.110O.ITO0.1100.8100._0.T2t

0.•0.041O.OMO.OItO.t.0.1.

0."0.110

Page 52: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.2. ZONE DEFINITION FILE 47

2M.4444 0.712 0.4e8300.0000 0.132 0.114306.SS&e 0.935 0.811301.3333 0."2 0.100311.1111 1.000 0.956313 ..... O.tH 0."13US-Hl7 0." 0."1322.2222 O.IM 0.100327.7771 0.791 0.712333.3333 O.eM 0....3e8.3333 0.000 0.00033333.33 -'66.0 -'56.0

-/20

-:Z7771 1.0 1.0265.56H 1.0 1.0211.1111 1.0 1.02M.HlT 1.0 1.0272.2222 1.0 1.0277.7771 1.0 1.0213.3333 1.0 1.02....... 1.0 1.0214.4444 1.0 1.0300.0000 1.0 1.0306.H5I 1.0 1.0301.3333 1.0 1.0311.1111 1.0 1.0313..... 1.0 1.031.....7 1.0 1.0322.2222 1.0 1.0327.7771 1.0 1.0333.3313 1.0 1.0

".3333 1.0 1.033333.33 1.0 1.0

/- lode I'.,etnen -,,- 10. of report.. -,

2/- ru.... 1Ir1cUIIlMGYIal ... npon.. -'

od 0.01 I/- till••• u1~.. ~ • fll.. .....·c --' '00 -.11 ... ~ 1acl of- .pdanaieat1oe wiG clalca1a~loa laCanlal. ~ .. c. do 1....- racpaaned la~,"1al -.11. c.elltl pl'lMiaI d elM calca1aU. polaU.-,

10. i~ npon_ a' .... -,-13 -I -2-72 -1-7

Page 53: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

4S APPENDIX A. EXAMPLE PROBLEM ZONE DEFlNl1 ION

-1 -2-1

,* Thi. on•••~. up additional zon. yuiabl•• to ,... ba~k for TYPE188 output*/t» Fil. n... Vri tiftl in~."al loct•• r.ported -/

none 0.0 "/-Joct. 10. it.. r.ported a~ nocl. -/

ra_a 2 -1-2laap 1 -7b18~ 1 -7

IIrt 1 -1/* BYACSI". TYPEl88.f inurfac. definition -/

,- Ducr1ptlon .triDe (10 char au on a ••parat. UD.) -/LIGHTS-buecS aOD. aocIel-- 25 DOd••• " ....in. art

/- n__l.c: Juab.r of ai.c.l1aaeoue input. to TYPEl" (alwa,. 5):*/5/- n_par: Juaber 01 TYPEl88 par...t.r. (alwa,••)-/8/* D_.and: lluaber of TT'PIl" .a.ed wal1&••(al.a,. 4) -,4

t» lIudYe nocS.. in order of TYPEl11 1Dput U.t:. Include enrJ DocIe .ith..... sreatv than ain. recopl.ecS .....*/

/. DJIaI.: luab.r of ....1•• DOd..:-,

"I. loct. label. */l.-p blat lJabp tru

/- IouDcSary DOd••. InclueS. -e101iDC nrfac..... npplJ air BOde••- Lilt in order of TT'PII88 1DpDt 11.t.-/

I- D_bollDd: ...... of 1NIaDcIU'J ....:./3/. Iod. label. .//.np.a flIT Ilrl» I'MII' I'ftI' ftR I'MI' ,.., pnp ,.., '''VA''P.'Ap.a I'WI' flIT

I. df: ..... of nn III iJqMat flon (.M to .~ ... fl_ t". CODdIact&llc" -/t

,. wf • of .... n. t". c."~aac.. -- ...~.ep ./3

Page 54: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

O.S0.00.00.00.00.0

0.02110.1121

0.00.0

0.0910O.OMI0.07.O.OMt0.07.

0.00.00.00.00.00.00.00.00.00.0

.4.2. ZONE DEFINITION FILE

,* nalt triplets: {downstr...-nod. upstr...-nod. input-flow-index} -,

pl_& l'1I_a 11'11_& .up_. 1aup_& pl_. 1

I-DOt: luaber ot TTPEI88 output tlo•• *11,* 104. label. for t.-peratur.. of output flo•• -,p1_&

,- Diatributioll of occupant. equipIMDt. &Del .olar. SIISIBLE heat lain.-''* Docie aolar occupant equ1..-' -,

1'11_& 0.0 0.5p1_& 0.0 0.0la_a 0.0 0.0laap 0.0 0.0blat 0.0 0.0~l 0.0 0.0lD.r 0.0422 0.0211cpt 0.2242 0.1121flrb 0.0 0.0&ctp 0.0 0.0&ctr 0.1822 0.0910retrr 0.1281 0.0141ratrr 0.1478 0.0731rwwr 0.121t 0.0141ntrr 0.147e 0.0731,.., 0.0 0.0pawp 0.0 0.0,.., 0.0 0.0pewp 0.0 0.0trua 0.0 0.0~ 0.0 0.0lasl 0.0 0.0.up_& 0.0 0.0flrr 0.0 0.0~ 0.0 0.0,- t.ber of air DOdu -/

3,- Air DOda 1abella (used to 4et..ua. air .... for ~'1~ dlft eq)-'ftI_& ,1__ 1a.-,- Tbat'. all foltal -,

49

Page 55: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

SO APPENDIX A. EXAMPLE PROBLEM ZONE DEFINITION

A.3 Simulation Definition

SUPERBLOCK 1BLOCK 1

U1IT 1U1IT 2UlIT 3

UlIT "UlIT 6

TYPEla9 - THREE lODE ZOIE VALLTYPEl88 - LIGHTS-b...d zen. aod.l-- 26 nod•• , ~ .assi••TYPEl88 - LIGHTS-baaed zon. aodel-- 26 nod•• , " .... i ••TYPE189 - THREE lODE ZOIE VALLTYPEl89 - THREE lODE ZOIE VALL

U1IT 1 TYPE 189TIUlEE lODE ZOIE WALL

1

2

IIPUTS:POWERPOWERTEllPERATURETEllPEUTURETEMPEUTURE

OUTPUTS:TEMPERATURETIIIPER.lTURETEMPEUTURE

PAIWtETERS:ooסס0.10

ooסס0.10

284.200OOסס.10

284.200

3 - LEFT BEAT FLUl" - lIGHT BElT FLUX5 - LEFT SURFACE TEllPEUTURE7 - RIDDLE TEllPEUnJR.E8 - lIGHT SUR.FACI TEllPERlTURE

6 - LEFT SURFACE TEllPEUTURE7 - RIDDLE TEIIPERlTURE8 - lIGHT SUIlFACE TEllPElUTURE

LEFT COlDUCTlICE (IV/C)IICIIT COlDUCl'lICE (IV/C)LIlT TIIEIUW. IIlSS (IV-SiC)IIIDDLI TIIIIIW. lUIS (IV-SIC)lIGHT TIIEIUW. II&SS (IV-SIC)

UlIT 2 TTPI 188. LIGHTS-baaed zon. mclel-- 25 DOde., " ..dTe, .n

1 11PUTS:COITIDLCOITROLCOITIOLPOIDIlUllIDITT unonov_IDrn unoTIIIPIIllTUUtIIIPIIllTUII

1 - Frac~iGQ of DOai.al~ of oc~.2 - FracUGQ of _iDal .i...~ power3 - fncdon of _luI power ~o lip~.

1 - Solar laiD ~broqb 11...2 - Zon. leubi 1a-.14i'y ratioI - Supply air flow I1 - 1I1a14hJ ratio of Apply air flow It - 1.., T..,...~1II'.

1 - b1.' T""'.~1II'e

Page 56: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.3. SlAlULATlON DEFJNJTION ~l

2

3

OUTPUTS:TEMPEIl&TURETEMPEIl&TURETEMPERATURETEMPEUTUREHUJlIDITY IUTIOTDlPEUTUREPOWERPOWERPOWERTEMPERATUREPOWERPOWERPOWERTEMPERATURE

PA!WIETDS:3.00000

0.131900O.SOOOOO

1.000001.000001.00000

0.16000050000.0

2 - labp T..,.ra~ur.

3 - trus T..,.r.~ur.

4 - T..,.ra~ve of bo\m4uJ '1lp_a6 - T.-peratve of boudUJ rWl'

18 - T..,..~ve of bouMary Un

9 - 1.., T..,.ra~ur.

1 - b1.t T..,.,..~ar.

2 - labp T..,.,..~_e

3 - trus T..,.,.a~ar.

2 - ZoD. 1".1D& Ia_ellt, raUoe - p1_a r..,..uar.2 I.t t ~o bowI4u:y .up_a3 - I.t t to boUDclUJ reft

13 - I.t h••t ~o bouDelUJ flnIe - T..,..a~ua of ra-a7 - I.t ....t 10.. tra. ~.at - Sourc. b••~ .~ 1..

11 - Sourc. h••~ at b1.t20 - T..,..tu. of Et

loaiul Of Dccapaa~. (-)Total Beat Per DccupuIt (1EV/per..>OCCUPyt lble b~l011 (-)loa1Dal !qU1..-t 10M!' (lEV)EquiJllHDt Seu1ble rn~iOll (->1ca1Dal Ltpt1Jll ,.. (W)rrac~lOA 11&"1It& .... ~o b&11ut (-)1oa1Dal L1P~ oatpd 0.->

UlIT 3 TYPE leaLIGHTS-bu. zon. aoclel-- 25 noel... 4 ...i ••• .-c

1 llPUTS:COII1'IOLCOITIOLCOI1'IOLPOVIIIRIItDm unoPLDVIRIItDln unoTIIIPDlTUII1'IIIPIIATUIITDRIlTUIETllftlA1'UII

4 - rncU. of _i..) INIber of~& - rnal_ of _iN) .11 ., ......• - rnal_ of ~ea1 ... w 1~& - SoIU' pia~ 11--4 - ZOM 1--_ 1IIIa141~ &'alo2 - S1IpplJ au flw 13 - 1a141~, ratlo of RIIPl' aU f. 1

1& - I., r.,...-.10 - bld r .-r.11 - 1IIIIp r .....12 - UUI r .....

Page 57: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

52

2

3

OUTPUTS:TEllPDATUUTlllPlUnJUTlllPlUTUUTEllPEUTUU_IDITY UTIOTIIIP!"lnJl!PCNDPOVDPCNDTIIIPEU'l'VIEPOVDPOVD

'DVDTlllPEUTUIlE

PAIIIIITIIS :3.00000

0.1311000.5GOOOO

1.000001.000001.00000

0.1&000050000.0

APPENDIX A. EXAMPLE PROBLEM ZONE DEFINITION

13 • r..,...~u. of bcnaDdu'J au,••I . r..,...,u. of IMnIDdarJ revl' - r..,..a'u. of bouadU'J fln

16 • 1... T..,...,ur.10 • ~lat T..,...,u.11 • lIIIap t..,.ratun12 • tJrU T..,..a'u... • ZeIee 1, \.1111 la-.1d1tJ raUo

It • pl.. T..,...,ur.I • I.t lant to 'bcMadU'J HP.at • let Mat to U'J 1'....

14 • I., ...., to U'J fll'l'17 • t..,...tv. 01 ., • let Ma' loa. f..- ft.a

10 • Soarc....., a~ 1...12 • Sourc. ".a, at blat21 . T..,...,ur. of -'

IIoa1Jaal ..... Of Dcc.puu (.)Total 3ed Lou hi' DcCtlpDt (MIl,....)Dccuput nle ina1. (-)IIoalaa1 , .... (MI)-.utpMDt __title rncU. (.)lOII1Dal L~btI .... (MI)Print. 11&M1ItI pow.- ~ Hllut (-)"'Nl Lipt odpIt (~)

UItT.. TYPE 1_'II1II .. ZOII bLL

1

2

,aumas:0.I01OOO

13 - LIlT IUT rim11 - Demo lilT ....II - WI __a ~~22 - DIK& iW=___21 - Demo __.,...~

II - LIrr .-Fa ,....~

22-a-.a~..­

2I-D_".~

LIft • 11 LCIUaI (DIe)

Page 58: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.3. SIMULATION l>E.·INITION 53

0.803000470.700"1.500470.700

lIGHT COIDUCTUCI (IV/C)un TIIIIIW. II&SS (IV-SIC)IIIDDLI TJIIIJW. JIASS (...-S/C)lIGHT TIIIIW. IIlSS (IV-SiC)

UlIT 6 TYPI litTBUI 10DI zaI VALL

1

2

3

IIPUTS:PCNDPOIIIITlllPllUTUU1'IIIPIUTUUTllPllUTUU

OUTPUTS:TIIIPDlTUIITlllPEUTUIITDlPD&1UU

.AIIIIITIIS:0.I0300O0.I0300O470.700"1.100470.700

14 - LIFT lilT fLUl18 - UGIT II&T rLIJll' - LIFT suar&CI ~1'UII24 - IIIDDLE ~1UII26 - IIGIT suar&CI TDlPD&TUII

It - LIFT SUU&CI 1IIIPIU'l'UII24 - IIIDDLI TIIIPIIltuU25 - UGlY SUUlCE ~'I'UU

un calDUCTO'CI (II/C)UGIT CUIDUCIUCI (IV/C)un tIIIIW. lI&SS (IV-SIC)IIIDGU 1'IIIIII&L lASS (IV-SIC)UGlY TIIIIW. lASS (n-S/C)

W~lal 'arlule 'al..:

PUN 1 -) 0.11HOO (qI.)PUN 2 -) O.UMOO (qI.)~,.. 1 -) 21." (C)~". 2 -) 23." (C)TDRU,.. 3 -) 21." (C)t-.u,.. 4 -) 11.0000 (C)t-.u". 5 -) 21." (C)._==,.. ·-) 21." (C)i_==~ T -) 21." (C)~.,. ·-)

.... (C).....,.. ·-) 21." (C)~,.. 10 -) 21." (C).....,.. 11 -) 21." (C),....,.. 12 -) 21." (C).....,.. 13 -) ••0000 (C)~". t4 -) 21." (C)......,. 11 -) 21._ (C),...,. 11 -) 21._ (C)

Page 59: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

TIItPDl'I'UUTIItPDl'I'UUTIItPDl'I'UUTIIIPDA'I'UUTIItPDl'I'UUTlllPERATURETlllPllUTURETIIIPIIlTURETIIIPIIlTURECDITIOLCDITIOLCDInDLCOITIOLCDITIOLCDIITIOLPOVIIPOVDPOVDPOVDPOVDPOVDPOVDPGVIIPOVIIPCNIlPCJIIDPCJIIDPOIIIIPCIIDPCIID......uITT uno8IDITT unoIIIIIDIn uno8IDIn uno

17 -)18 -)19 -)20 -)21 -)22 -)23 -:>24 -:>26 -:>

1 -)2 -:>3 -)4 -)5 -)·-)1 -)2 -)3 -)4 -)5 -)·-)7 -)1 -:>·-)

10 -)11 -)12 -)13 -)14 -)15 .)11 -)

1 -)2 -)I -)4 -)

APPENDIX A. EXAMPLE PROBLEM ZONE DEJ:'rNITION

23.8811 ec)23.8819 ec)23.8811 ec)23...1. ec)23.881' (C)23..... (C)23.881' (C)23..... (e)23..... (e)

O. (.)o. (-)o. (-)o. (-)o. (-)o. (-)o. (ltV)o. (ltV)0'. (d)o. (ltV)o. (ltV)o. (ltV)O. (ltV)O. (ltV)o. (ltV)O. (ltV)O. (Jdf)O. (ltV)O. (Jdf)

O. (M"o. (ltV)o. (IdI)

o.1OOOOGI-02(IrI!IrI)o.10000G1-G1(IrIIJrI)o.1OOOOGI-02(IrI!IrI)o.10000G1-G1(1r11Jr1)

1 ITCILI- O.1~-OI

I'IQL8 O.~-GI

....OCX12 nIIZI CIPTI. 0 ICAI CIPTI. 0

----------------------------------------------------...... 12

Page 60: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

A.3. SIMULATION DEFINITION

1'DPD1TUU 4TERPUATUU 13COITIOL 3COITIOL ICOITIOL 2COITUL 5PaVEl 1POVD &IIUIIIDln uno 1IIUIIIDln uno 3

ne follovlDl are ~b. report" yarlabl.. :

SUPEIUILOCI 1novnovTlllPElUTUUtaPllATUUtaPllATUUtaPllATUU'l'lllPDATUUTIIIPIIA'IUUTIIIPIIA'IUUTlllPlUTUIIITIIIPIIA'IUUTlllPlUTUIITIIIPIU'IUUTIIIPIU'IUU...-aATUU...-aATUII...-aA1'RI~1'UII

~1'RI

~1'UII...PCRD............JIOID.........

IIPORTIIG IITDYlL eo. ooסס121234&

II

1011121314

•151.IT2021I

•2•T••1t'

1112

Page 61: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Appendix B

Program Implementation andLimits

B.l About the Implementation

B.l.l Where Thin., Are

Moat of the General lOne model il implemeDt.ed u a pollp of fllnctiClllI wriuen in the C pro­puominl lUlU•. The-e functionl ue stored in the foIlowilll filea:

cbf_b.ccla~a1n.c

clJD_c.cecho.cnaluate.cfactiD.clenbDcl.cb81lJhta.cjol.cjOl.eaiDy.eart.eDent.cDft'it•. cI~.e

.,UM.eItripe_.CtIIOcl.etrUlfw.cd11.eYCOlld.c

AddiUaaallYt tile WIowiag inclUc ....... reqUed:

Page 62: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

ar. ABOUT THE IMPLEMENTATION

liahtnr.hhar2.haacro•. hnvrlt•. h

Currently, these files are in the directory:

57

In this same directory there are IIeveralother source files indirectly related to the zone model.These are:

Dulld_'tJPu.c: --- luilda the tJPu.dat frapent for tbe &o..e 8Odel.ptJpu.c --- Patche. the ne. fT....t into tba tJPu .4.t fU.fix.c --- 'lx••• Suno. bUClookup. e --- Support. TYPlllO

The C functions are invoked by an HVACSIM+ FORTRAN subroutine called TYPEl88. Itis stored in:

which is in the directory:

In the same directory .. the TYPE188 nbroutine there 1ft avera! other files indirectlyrelated to the lODe model:

llUeflle4 --- ''llake'' file for aead. u~ule hald,,,.117. f --- Out.ida avf.ca __I (air fila \& rM1atioll)t".I89. f --- Thr.. aocIa .all ...1t".llO.f --- Tabl. loobp ad uriab1. Dreier iJatwpol"lODt".,..t --- ....1 al1 ...1tJPdt. t --- lull " " to ,~ .al1 __18..alll.da' --- tlll. ax-pl.... W1II1tl_ fi1.

TIle miIc:eIIaaeoa. nbf'OlltiMi TYPEl17, TYPE1., TYPE98, ud TYPEtt are ItralPt­forward BVACSIY+ compoaeat. tlat an IDIDetlmel ueI8l ia b.ndiBc COlD.......... napof TYPEI89... heeD cI....trUed i. tlte example problem ill ,IU. IDUW. TYPEIB is ..a1\enlate wall model, bllt widlwt IDUI. TYPEt9 is ~ "awJ1lO1le," i.e., .. CClIIlpoaeDt to pIKebet_ two w.u compaa_ta witl Iaeai ..41 tempen&ue ia,.u ... oulp.glib 'M _e; it iIIOIDetimes .aefaJ for "be belaaviou or waD .....

TIte TYPEl90 ••broati.. is .. aD....' tlta call be .... to ...-ate &1......,...tvuiabl. i. ~ Iim11latioa, u u aItera&he to tH boudarJ lie. It ped'orma variable orderiaterpola.tioll. witl tbe .... reM rn- 'M lap.' lie. Val.. CUl be tpedled to repeat In acycle. See tIae tJpellO.f lie for ...ia~.A 'JIIical ......ned by ',pe11O ia la:

Page 63: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

Aft...r compilation. the ex('Cutabt..., called las/d, i! placed in th ... directory: /home/atlu/ers/bin

B.l.2 Compilation and LinDle

To compile and link the ZODe model wj·.b HVACSIM+ 10 to the hi directory and execute:

I Bake ·f Nakefile4 debua (re~urD)

This createl &It executable 61e ea1led held which il the HVACSIM+ propam lioHd ~ 'ththe zooe model and rela~ (uoctionl mentioned above. Makefile4 caa be exunined to see thedetail •.

B.1.S Revi.ins typar.dal

Because th ... JlYACSIM+ interface is determined b)' the zone definition file (zonel88.dat) itis nKes.ar)· to update the HVACSIM+ typar.dat 6le when there are any ,t",clurol claanlesin the zone definition. Structural chaal" mealll thote that would chance the Dumber aadmeaninl. of the TYPEl~ inputl ud Olltput.l. Mere chanles to descriptive data luch AI areuor conductances or mUi (other thall from DODRro to RIO or nn wr..) do not chance typar.dat.

The provid\'d propam hiIcLtrpar, fOllnd in the same dir«tory AI the C eOllfce code, maybt' uaed to update typar.dat. To execute thi' pfOCram from th@ U directory type:

where o.lJn is a chosen output file nune to coatai. the new TYPEl88 typar.dat frwgment. Topatch thil frapnent ioto the tYP.f.dat file, _Ie the ",par procram:

I .. '.oarce/pt.JPu typal'.ot aeftJPu.ot eNt..f. 1.. <retVD>

Then, after a vilual check of tbe new file, replace 'lle akI witla tM DeW:

The HVACSUJ+ pDfl'ator progam Itt will DOW rdect tile new TYPEl88 i.terrace)

B.l.4 U.iDI the Model with BVACSIM+

Tlle /aMi created u iD Section 8.1.2 it uecl i. ,lie IIGI"IIlal HVACSIW+ ........ R~wr,.poIlthe fint caD to tJae TYPE188 CClIDpoHIlt model it will expect to IIIcl -.188.dat in tbe IUDf

cUrectory. U tllia file caDaot be food, tile PJ'CIIfUl wiD abort witla .. enor ....... If foDad,1ODe188.dat will be nacl ad 'M iaformatioa tIaerela will be Mand i. lateral data atrutllmfor ue OR all ,.blequeat calla.

Tiaere caD be u ..., i..taa~ 01 TYPEl88 u ....... ia a lim....... Boweftr, lilac:.tJaere il but ODe [email protected] lie, aU 01tbe .._ wiD laa.. ideatkal feat_, .....0lIl, in tbeparameter val... A Ie.......... iadica_ ... iattutiat_; after tile tnt JutaatiadoD,the title Itrial clelCribed bt Sectioe 3.2.8 is diap1aJed.

Page 64: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

B.2. PROGRAM LIMITS

B.2 Program limits

Note.:

59

1. To chaale any of thew limit., locate it in the C header file, wt it to the new value, andre-make HVACSIM+.

2. As CUI be seen, the multip" bud featu~ within short aad lonl wave "piths is disabledby the settinp of MSt and MLl. '1hi. uws considerable IMmory, &lid it is unlikely thatmultiband &IIalylii will be or mu('h interest.

3. Anaya are not wildly over dimensioMd. In fact. the settiap are de- to the size of theexample problem beraule it is probably aboat u detailed u one would waat for typicalul&le.

4. It is believed that all dimension limits are checked at input to avoid exceedinl arraybounds. Rowever, it would be prudent to cherk inputs .pinst Table B.1 if larpr problemsare formulated.

I ............... "..,...........11'".. ..............

Page 65: onebuilding.orgonebuilding.org/historical/HVACSIM+/HVACSIM...A.bstract n.scribed herein is • seneral thermal model 01 a buildins &one 01' room implemented &II a module lor the HVACSIM+

60

Table·O.l: Pf'OI1'am LimitlItemNodHMualesll nodes (unkno temperatures)COD\OKtion and conductif\o cooductonLamp lpectral curve pointlShort ...a\~ bandsLonS wa~ bandsInput view factorsNode file writersPoints in lamp temperature curvetNode ,....ues reportedTotal items reported

PfOIr&m ConltantN.5IZENTlNIClNXYIMSIULlKNOWN.FACTOasMAX.WRITEIlSNMAX.5PLMALVARSMALJlEPORT