hu‐motor integrated hammering mechanism

Upload: echo-alex

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    1/19

    HumotorIntegratedHammeringMechanism

    TeamA

    KothaBharathKumarReddyED11B021

    PaboluSahithipriyaED11B025

    ShrutiPandeyED11B035

    DiyyalaChaitanyakumarED11B045

    SaneethSriramojuED11B053

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    2/19

    Appendix

    SINo Topic PageNo

    1) Problemstatement 3

    2) Motivation 35

    3) TargetSpecification 5

    4) Assumptions 6

    5) TargetCustomers 6

    6) Challengesanddifficulties 6

    7) Somepossiblesolutionsandtheir

    evaluation

    712

    8) Calculations 1315

    9)

    Constraints

    on

    design 15

    16

    10) Partsandmaterial 16

    11) Partsandfinaldimensions 1718

    12) CompleteCADmodel 18

    13) Scopeofimprovement 19

    14) Suggestionsandcritics 19

    15) References 19

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    3/19

    ProblemStatement:

    Todesignamechanismwhichcanreplacethetraditionalhammering

    mechanismto

    crush

    the

    stones,

    and

    to

    improve

    the

    efficiency

    of

    worker

    and

    reduceeffortwhilehammeringthestones.Alsomechanismisdesignedto

    integrateitwithHumotor(amechanismdevelopedtoutilizeworkerstimeand

    energyinanefficientway)

    Motivation:

    Themainmotivationistodevelopanalternativehammeringmechanismto

    reduceworkereffect.MechanismisdesignedtobeintegratedwithHumotorto

    furtherincrease

    the

    efficiency

    of

    the

    worker.

    Intraditionalways,aheavyweighthammerisusedtocrushthestones.

    Hammerheadhastobeliftedabovetheshoulderlevelandshouldbedroppedon

    thestonestocrushthestones.Liftingheavyweightsrepeatedlyisnotagoodidea

    inperspectiveofergonomics.Soifwecancomeupwithaway,sothatworker

    willberelaxedtolifttheweights,thenwecanreducemusclefatigue.

    Figure1:Atraditionalsledgehammer.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    4/19

    Imagesource:http://www.blackrocktools.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/3/1/3103_3

    lb._sledge_hammer_tekton_2_.jpg

    Figure2:Workerusingsledgehammer

    Humotorisamechanismwhichisdevelopedtoreducetheeffortof

    workerwhileliftingheavyloads.Insteadofliftingheavyloadsworkerhastodo

    pedalingmotiontolifttheheavyloadsusingHumotor.Soifwecanintegrate

    hammeringtoHumotorwecangreatlyreducehumaneffort.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    5/19

    Figure3:

    Schematic

    of

    Hu

    motor

    Thesolutionsalreadyexisting includecrushingplants.Generallytheseare

    heavydutystonecrushingplantsandcantbemovestonewplaces.Theseplants

    use a lot of electricity. Cost of these plants is too high and a normal building

    constructor cant afford to spend so much. So we want to design a mechanism

    which dont use electricity, cheap, not so heavy and uses human energy

    efficiently.

    TargetSpecifications:

    o Atleastasmuchproductivityaswithmanualhammering(eachhitinevery1.75sec)

    o Amomentumtransferof35KgN/mpereachhit.o Costbelow10,000/ INR.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    6/19

    o Longlifeofproduct.Assumptions:

    Wemadesomeassumptionsduringtheanalysisanddesignofmechanism

    whichsimplifies

    the

    process.

    Assumptions

    are

    mentions

    below.

    o Time of impact is same regardless of the mass of hammer head. Time ofimpactmayvaryfromhittohitbutbyassumingthatitisconstant,wejust

    needtoworryaboutmomentumtransfer.Whentimeofimpactissame,it

    isenoughtotransfersameamountoflinearmomentum.

    o Afterhittingtherock,hammerheadmomentarilycomestorest(i.e.,allthemomentumistransfertorock)

    o The momentum that needs to be transferred is calculated using a videowhich

    is

    taken

    while

    aworker

    is

    actually

    using

    hammer.

    We

    assumed

    that

    it

    isenoughifourmechanismgivesthismuchfinalmomentum.

    o Productivityrate isalsocalculatedfromavideo.Althoughproductionratemayvaryfromworkertoworker,weassumedittobeourtargetvalueand

    designedmechanismaccordingly.

    TargetCustomer:

    1. Constructionworkers.2. Mines3. Otherplaceswherestonesneedtobecrushed.

    We went and met workers in constructions sites of our institute (near

    SharavathihostelandSaraswathihostel).Fromoutinteractionwecametoknow

    that, it isveryhardtousesledgehammer for longtimes.Liftingthehammer to

    suchheightisadifficulttaskandtheysaidalternativemechanismwillbehelpful.

    Wetookavideowhileworkerisusingsledgehammertoanalyzethehammering

    process.

    ChallengesandDifficulties:

    o Liftingthehammerheadupto2metersheight.o Repetitivemotionofhammero Jerkproducedwhenhammerheadhitstherock.o Protectingworkerandcomponentsfromjerk.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    7/19

    o Minimizingtheenergylossesduetofrictionetc.o Longlifeofproduct.o Lowcost.

    Somepossible

    solutions

    and

    their

    evaluation:

    Weconsideredsomepossiblemechanismstotheproblem.Theyare listed

    below.

    Mechanism1:

    Figure4:Schematicofsolutionusingcams

    We considered using two cams and attaching hammer head to one cam

    usinginextensiblerope.Herewehaveproblemsoffriction.Surfacedamagemay

    occur because of the friction between two cams.And also cams may have very

    highinertia.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    8/19

    Mechanism2:

    Figure5:Schematicofsolutionusingfourbarmechanism

    Anothersolutionistousefourbarmechanismandattachinghammerhead

    tooneofthefourlinks.Butherewewillhavetheproblemofjerk.Linkinfourbar

    mechanism cant sustain thejerk produced when hammer head hits rock. As a

    resultlinkswillbedamagedeasilyandlifetimeofproductwillbeveryless.

    Mechanism3:In thismechanism,aroller is attached to a rotating link. One endof long

    stringis

    attached

    to

    afixed

    point

    and

    to

    the

    other

    end

    hammer

    head

    is

    attached.

    While rotating, roller which is attached to the link will lift the string and so

    hammer head rises. After some time hammer head reaches its maximum point

    and start to fall on to rock. Here the main problems is that, to create same

    momentumnecessarylinkhastorotatewithhighvelocityforsometimeandfor

    while lifting the hammer it need to move slowly so as to reduce human effort.

    Thoseveryhighvelocitiesareabigtroublewiththismechanism.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    9/19

    Figure6:Schematicofsolutionusingpulleysandrotatinglink.

    Mechanism4:

    Figure7:Aschematicusingpulleysandcams.

    Becauseofthefrictionbetweenpulleyandsemicircleshapedcam,when

    camrotateshammerheadwillraise.Andwewillhavefreefallwhencamleaves

    contactwithpulley.Eventhoughsolutionseemstobeworking,wemayface

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    10/19

    problemswhileimplementingthismechanism.Weneedaninterferencefit

    betweencamandpulley,becauseoftheneedofhighfrictionbetweenthese.So

    whenevercamstartstocomeintocontactwithpulley,theseinterferencewill

    causealotoftroubles.Andalsowhenhammerheadfallsonstones,jerk

    developedwill

    cause

    damage

    to

    the

    rope.

    Mechanism5:

    Figure8:Schematicusingpulley,rollersandlinks.

    Thisisanothermechanismusingcams.Rollerisusedtoeliminatefriction

    between

    cam

    and

    links.

    Mechanism

    is

    protected

    from

    jerk

    by

    the

    design

    of

    cam.

    Whenhammerheadmakescontactwithstone,therewontbeanycontact

    betweenrollerandcam.Alsothecenterofrotationofhammerheadiscenterof

    percussionaboutwhichtherewontbeanynetmomentortorque.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    11/19

    Belowprosandconsofmechanismsconsideredabovearetabulated.

    Mechanism Pros Cons

    Mechanism1

    Easyto

    design

    Jerkwontaffectcamsand

    otherparts

    Surfacefailure

    Frictionatsurface

    Difficulttofabricatecams

    Mechanism2 Veryaccuraterepeated

    movement

    Welldeveloped

    mathematical

    solutions

    Easytofabricate

    Cantaccommodatejerk

    developed

    Lesslife

    time.

    Mechanism3 Easytofabricate

    Lowcost

    Partscanbereplacedeasily

    Difficulttogetenoughimpact

    Ropemightneedtobechanged

    frequently.

    Mechanism4

    Easyto

    manufacture.

    Highproductivitycanbe

    obtained.

    Difficultto

    generate

    friction

    betweenpulleyandcam

    Failureofropeduetoimpact

    Mechanism5 Uniformliftofhammerhead.

    Verylessfriction

    Jerkswont

    affect

    the

    system

    Difficulttomanufacture

    Table1:Comparingadvantagesanddisadvantagesofdifferentmechanisms

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    12/19

    Intheabovemodels,firstfourarehavingsomeproblemswhichcause

    troublestofunctioningofmechanism.Eventhoughfifthmechanismseemstobe

    workingwell,itisverydifficulttomanufacturesuchacam.Butwehave

    advantageofconstantliftofhammerheadwiththiscam.Wedecidetochange

    theshape

    of

    cam,

    so

    that

    manufacturing

    will

    be

    easy,

    at

    the

    cost

    of

    constant

    force

    toliftthehammerhead.

    Figure9:Initialdesignofcam Figure10:Redesignedcam

    Herewecomparedthesetwocamsintermsoffunctionality.

    Initiallydesignedcam Redesignedcam

    Difficulttomanufacture Comparativelyeasytomanufacture

    Almostconstantforcesareinvolved

    whileliftingthehammerhead

    Varyingforcesareinvolvedwhilelifting

    thehammerhead

    Nonconvexshapedperimeter Convexshapedperimeter

    Table2:Comparingfunctionalitiesoftwocams

    Fortheabovereasonswedecidedtogowiththeredesigncameventhough

    forcesinvolvedarenotconstantthroughoutthemechanism.

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    13/19

    Calculations:

    Tocalculateimpulseneededtobreakthestonewevisitedaconstructionsite,

    wherewe

    took

    the

    video

    of

    the

    worker

    working

    with

    the

    hammer.

    From

    the

    video

    wecalculatedImpulse,Numberofhitspersecond,Angularvelocityandrelevant

    parameters.

    Hammerarmlength=90cms

    Timetakenforeachhit=1.75seconds

    Angularvelocity=7.85rad/seconds

    Impulse

    calculated

    =

    32.325

    kg

    m/sec

    Assume

    the

    link

    1(1

    )

    makes

    an

    equal

    angle

    on

    both

    sides

    of

    the

    horizontal

    axis

    LettheHeightthroughwhichitmovesbe

    Sofromthefigure

    sin

    21

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    14/19

    Impulsemomentumtheorem

    Energyconservationprinciple

    2 2

    Fromaboveequationsweget

    19.6

    Tosetthevaluesofmass,lengthsangleaCcodewithconsiderationslike

    o Torqueshouldbeuniformandtorquevariationshouldbeminimum(

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    15/19

    Mass(M) Height(H) Length(l1) Angle(rad) Torque(Nm) Torque

    variation

    13 0.414 0.607 0.348 77.357 4.64

    14.2 0.347 0.373 0.483 51.99 5.95

    15.1

    0.307 0.453 0.3454 67.1 3.9617.2 0.236 0.518 0.23 87.37 2.30

    Highlightedvaluesarethesetofselectedvalues.

    Aslink1andlink2aretworigidpartsofalink,when1rotatesthelink2alsorotatesbysameangle.

    Timetakentodropthehammerhead

    2

    Thisturnsouttobe0.25seconds.So,ittakes1.750.25secondstomovethe

    hammerup.Matchingtheangletotheriseofthehammerwecangetbase

    dimensionsofcam,angularaccelerationandtorque.

    ConstraintsonDesign:

    1) Ifmassofthehammerisincreased,thenwedontneedtoliftittothesame

    height

    to

    create

    same

    impulse,

    so

    we

    can

    have

    smaller

    link

    lengths.

    Butatthesametime,wewillbehavingproblemsforfeedingtherockin

    andalsoinputtorqueincreases.

    2)Ifweincreasethelengthofthelink1,wedontneedtoturnittoomuch

    aboutpivottoraiseittothesameheight,butatthesametimeweneedto

    applymoretorquetorotatethemass.Linklengthandtorquearelinearly

    related.

    3)Ifwechangethepivotposition,alltheassemblywillgetaffected.

    Hammermay

    not

    rise

    to

    the

    complete

    height

    required

    or

    it

    may

    rise

    more

    thanrequired,somecomponentsmaygetstuckwhilemoving.Soweneed

    exactpositionforpivotforgoodimpulsegeneration.

    4)Rotationangleatpivotisalsoveryimportant.Ifitistoolarge,camsize

    willincreasedramaticallyandtherewillbealotoftorquevariationswhile

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    16/19

    rotatingcam.Ifitistoosmall,weneedtohavelargelinksthusby

    increasingtorques.

    5)Iflengthofsecondlink(onewhichisincontactwithcam)ismore,we

    willneedlargercamandifitistoosmalllargerforceswillbegeneratedat

    camand

    link

    contact

    which

    damages

    components.

    6)Ifcambaseradiusistoosmall,pressureanglewillbehigh,whichcauses

    morestressatcambearingcontact.Ifitistoolargewewillneedalotof

    materialwhichincreasesthecostofassembly.Alsoifwehavelargemass,

    wewillneedtoputinmoreenergytostartorstopthemechanism(Itacts

    likeflywheel)

    MassVs.

    Torque

    variation

    *dissameas

    PartsandMaterials:

    PART MATERIAL

    Cam Ductilecastiron

    Links Hotrolledplaincarbonsteel

    Supportshafts

    Ductile

    cast

    iron

    Hammerhead Mediumcarbonsteel

    CamsupportandLinksupport Ductilecastiron

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    17/19

    PartsandfinalDimensions:

    CAM LINKS

    CAMSUPPORT

    LINK

    SUPPORT

    LINK

    SUPPORTSHAFT

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    18/19

    BASE CAMSUPPORTSHAFTHAMMERHEAD

    CompleteCADmodeloftheMechanism(IncludingFeedingmechanism):

  • 8/12/2019 Humotor Integrated Hammering Mechanism

    19/19

    SCOPEOFIMPROVEMENT:

    o DesignofCam:Improveddesignofcamtomaketheforcesinvolvedinliftingthehammerheadconstant

    oProductivity:

    Productivity

    can

    be

    increased

    by

    increasing

    the

    size

    of

    product

    sothatitcanaccommodatemorenumberofcamsandhammerheadsto

    increasethenumberofstonescrushingataninstant

    o FeedingMechanism:Implementingthefeedingmechanism(AsshowninCADmodel)

    SUGGESTIONSANDCRITICS:

    o Multipleuseofproductwithmodificationindesignbyreplacinghammerwithaxeforwoodcutting.

    o Manufacturingcouldhavebeendoneinbetterway.o AttachmentofCamtoshaftcouldhavebeendonethroughakeyrather

    thanwelding.

    o IntegrationwithHumotorandincorporatingfeedingmechanism.

    REFERENCES:

    1. https://www.youtube.com/watch?v=gD6d4hyLNNs2. MachineDesignbyRobertL.Norton3. http://www.efunda.com/materials/alloys/alloy_home/steels_properties.cf

    m