human computer interaction 1. overview and history of...

53
No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎 Computer Vison 2019

Upload: others

Post on 02-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

No.4

動きからの3次元復元

Structure from Motion and SLAM

担当教員:向川康博・田中賢一郎

Computer Vison 2019

Page 2: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Slide credits

• Special Thanks: Some slides are adopted from other instructors’ slides.

– Tomokazu Sato, former NAIST CV1 class

– James Tompkin, Brown CSCI 1430 Fall 2017

– Ioannis Gkioulekas, CMU 16-385 Spring 2018

– We also thank many other instructors for sharing their slides.

2

Page 3: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Today’s topics

3

• Reminder: calibration and stereo

• 2-view Structure from Motion (SfM)

• Multi-view SfM• Large-scale SfM

• visual SLAM

Page 4: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Direct Sparse Odometry

4

https://www.youtube.com/watch?v=C6-xwSOOdqQ

Page 5: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Recap: Calibration and Stereo

• Camera calibration

• Stereo

6

image 2image 1

𝑋

𝒙 = 𝑴𝑿

camera center

image plane

principal axis

𝒙 = 𝑴𝑿

known knownestimate

known known estimate

Solve Perspective n-Points (PnP) problem

Solve Triangulation problem

Page 6: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Structure(scene geometry)

Motion(camera geometry)

Measurements

Pose Estimation known estimate3D to 2D

correspondences

Triangulation estimate known2D to 2D

correspondences

Reconstruction estimate estimate2D to 2D

correspondences

Reconstruction(再構成)

Page 7: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

How do you reconstruct?

14

We don’t know both scene geometry and camera geometry

Page 8: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Reconstruction Problem

• Problems so far

• Can we jointly estimate M and X ?

15

𝒙 = 𝑴𝑿known estimateestimate

𝒙 = 𝑴𝑿known knownestimate

𝒙 = 𝑴𝑿known known estimate

Camera calibration Triangulation (Stereo)

Page 9: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

2-view SfM

Structure from Motion

16

Page 10: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Two-view SfM

1. Compute the Fundamental Matrix 𝑭 from

points correspondences

8-point algorithm

Image feature matching

Estimate 𝑭 from matched pairs

𝒑′⊺𝑭𝒑 = 0

Page 11: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Good feature point

• Mini-report:2– Which is the good feature point to find

corresponding point uniquely? What is the reason?

(1) corner

(2) edge

(3) flat

18

(1)

(2)

(3)

Page 12: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Good feature point

(1) corner

easy to find

(2) edge

difficult due to aperture problem(窓問題)

(3) flat

difficult because no clues

19

(1)

(2)

(3)

Page 13: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Aperture problem (窓問題)

• Human eyes interpret conveniently.

• Corresponding point cannot be uniquely determined.

20

ambiguity

barber-pole illusion

Page 14: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Interest operators

• Corner detectors to find small areas which are suitable as feature points

– Moravec corner detector (1980)

– Harris corner detector (1988)

– KLT(Kanade-Locus-Tomasi) corner detector(1991)

• Check whether small area contains edges in multiple directions

Bad feature points: corresponding point cannot be determined uniquely.

Good feature point

Page 15: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Harris corner detector

• Principal component analysis of gradient in small area

• Classification by Eigenvalues 𝜆1and 𝜆21. X and Y direction differentiation

𝑿 = Τ𝝏𝑰 𝝏𝒙 𝒀 = Τ𝝏𝑰 𝝏𝒚

2. Calculation of variance and covariance

𝐀 = 𝐗𝟐⨂𝐰 𝐁 = 𝐘𝟐⨂𝐰 𝐂 = 𝐗𝐘 ⨂𝐰

𝐰𝐮,𝐯 = 𝐞𝐱𝐩 − (𝐮𝟐 + 𝐯𝟐)/𝟐𝛔𝟐

3. Eigenvalues of the variance-covariance matrix

𝑴 =𝑨 𝑪𝑪 𝑩

𝝀𝟏, 𝝀𝟐

Principal component analysisof image gradient

Page 16: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Harris corner detector

• Eigenvalue-based classification

Flat

𝜆1and 𝜆2 are smalledge

𝜆1 ≫ 𝜆2

Corner𝜆1and 𝜆2 are large

edge

𝜆2≫

𝜆1

λ2

λ1

Page 17: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Image feature descriptor

- SIFT -

• Features that are invariant to changes in scale and rotation of the image

• Intensity gradient histogram– Rotate coordinate axis in gradient direction (invariant to rotational

change)

– Normalize the vector sum (to reduce the influence of lighting changes)

0 2p

Image gradient Angle histogram

Detect peak position(gradient direction)

Page 18: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Image feature descriptor

- SIFT -

• Accumulate while overlapping gradient information around key points with Gaussian function

• Histogram in 8 directions every 4 × 4 = 16 blocks

– 128 dimensional feature vector

Keypoint description

Keypoint

Gradient direction

Gaussian

Page 19: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Two-view SfM

1. Compute the Fundamental Matrix 𝑭 from

points correspondences

8-point algorithm

Image feature matching

Estimate 𝑭 from matched pairs

𝒑′⊺𝑭𝒑 = 0

Page 20: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

RANSAC (RANdom SAmpling Consensus)

28

Eliminating outliers (外れ値).

1. Randomly sample two points from given points

2. Count inliers for the line that passesselected two points.

3. Repeat 1 and 2 for given number of iterations.

4. Select the line that maximize the number of inliers.

line fitting example 2

4

1 2

Page 21: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

• Randomly sampled 8 points

8-point algorithm

29

Do the remaining points agree?

Page 22: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Two-view SfM

2. Compute the camera matrices 𝑴 from the

Fundamental matrix

𝑴 = 𝑰|𝟎 and 𝑴′ = 𝒆𝒙 𝑭|𝒆′

1. Compute the Fundamental Matrix 𝑭 from

points correspondences

8-point algorithm

Page 23: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Estimation of camera pose from pairs of feature points

33

Even if we do not know 3Dpositions of feature points, we canestimate camera’s rotation 𝐑 andtranslation direction 𝐭 by epipolarconstraint from multiple 2Dpositions of corresponding featurepairs.

It should be noted that, we cannot recover the scale of 𝐭 (actual distance between 𝑐0 and 𝑐1).

𝑴 = 𝑰|𝟎 and 𝑴′ = 𝒆𝒙 𝑭|𝒆′

東武ワールドスクエア

Page 24: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Unknown real size

• Miniature effect

34https://ameblo.jp/9999999999999999999/entry-10332221773.html

Page 25: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Front/back ambiguity• Find the configuration where the

points is in front of both cameras

35

Page 26: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Two-view SfM

2. Compute the camera matrices 𝑴 from the

Fundamental matrix

𝑴 = 𝑰|𝟎 and 𝑴′ = 𝒆𝒙 𝑭|𝒆′

1. Compute the Fundamental Matrix 𝑭 from

points correspondences

8-point algorithm

3. For each point correspondence, compute the point 𝑿 in

3D space

Triangulate with 𝒙 = 𝑴𝑿 and 𝒙′ = 𝑴′𝑿

Page 27: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Structure from motion ambiguity

• If we scale the entire scene by some factor 𝑘 and, at the same time, scale the camera matrices by the factor of 1/𝑘, the projections of the scene points in the image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

𝒙 = 𝑴𝑿 =1

𝑘𝑴 𝑘𝑿

Page 28: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Structure from motion ambiguity

• If we scale the entire scene by some factor 𝑘 and, at the same time, scale the camera matrices by the factor of 1/𝑘, the projections of the scene points in the image remain exactly the same

• More generally: if we transform the scene using a transformation 𝑸 and apply the inverse transformation to the camera matrices, then the images do not change

𝒙 = 𝑴𝑿 = 𝑴𝑸−𝟏 𝑸𝑿

Page 29: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Reconstruction ambiguity

39

Calibrated cameras(similarity projection ambiguity)

Uncalibrated cameras(projective projection ambiguity)

Page 30: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Multi-view SfM

40

Page 31: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Projective structure from motion

• Given: 𝑚 images of 𝑛 fixed 3D points

• 𝒙𝒊𝒋 = 𝑴𝒊𝑿𝒋, 𝑖 = 1,… ,𝑚, 𝑗 = (1,… , 𝑛)

• Problem: estimate 𝑚 projection matrices 𝑴𝒊 and

𝑛 3D points 𝑿𝒋 from the 𝑚𝑛 correspondences 𝒙𝒊𝒋

𝒙𝟏𝒋

𝒙𝟐𝒋

𝒙𝟑𝒋

𝑿𝒋

𝑴𝟏

𝑴𝟐

𝑴𝟑

Page 32: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Sequential SfM

Multi-view, ordered images

43

Page 33: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

2. Compute the camera matrices 𝑀 from the

Fundamental matrix

𝑴 = 𝑰|𝟎 and 𝑴′ = 𝒆𝒙 𝑭|𝒆′

1. Compute the Fundamental Matrix F from

points correspondences

8-point algorithm

3. For each point correspondence, compute the point 𝑿 in

3D space

Triangulate with 𝒙 = 𝑴𝑿 and 𝒙′ = 𝑴′𝑿

Initialization

• Initialize by 2-view SfM

Page 34: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

45

Image 1 Image 2

If we know camera poses for a pair of image 1 and 2, we can continue to estimate camera poses and 3-D structure for new input by repeating ‘mapping’ and ‘localization’.

Idea for sequential SfM

Initial guess

mapping

localization

Page 35: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Problem of accumulative errorsby chaining relative poses

46

Image 1Image 2

Image 3

1% scale error 1% scale error 1% scale error

Image 4

If relative camera poses are estimated with +1% biased scale error for each pair, the scale error at 100 frame will be 1.01100 = 2.70 = 270%.*This kind of effect is called as scale drift.

Image 100

Page 36: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error

x1j

x2j

x3j

P1

P2P3

P1Xj

P2XjP3Xj

𝐸 𝑴,𝑿 =

𝑖=1

𝑚

𝑗=1

𝑛

𝐷 𝒙𝑖𝑗 ,𝑴𝑖𝑿𝑗2

𝑋𝑗

Page 37: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Large-scale SfM

Multi-view, non-ordered images

48

Page 38: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Photo Tourism

Page 39: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Page 40: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Feature description

Describe features using SIFT [Lowe, IJCV 2004]

Page 41: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Feature matching

Refine matching using RANSAC to estimate fundamental

matrix between each pair

Page 42: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Incremental structure from motion

Page 43: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Final reconstruction

Page 44: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎
Page 45: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

visual SLAM

Simultaneous Localization and Mapping

59

Page 46: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Relationship between SfM and v-SLAM

SfM v-SLAM

SfM v-SLAM

Input Images (non-ordered is OK) Video

Real-time Not necessary Required

Output Batch Successive

Available information for estimation

All frames Data acquired before the target frame

Recovery from failure Easier Not easy

Feature tracking Not easy (for non-successive image input)

Easier

Accumulation of errors Smaller Bigger / Faster

Offline, high accuracy Real-time, successive output

60

Page 47: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

61

Image 1 Image 2

If we know camera poses for a pair of image 1 and 2, we can continue to estimate camera poses and 3-D structure for new input by repeating ‘mapping’ and ‘localization’.

Idea for sequential SfM

Initial guess

mapping

localization

Page 48: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

62

Basic pipeline of sequential visual SLAM

Iterative process

Feature point tracking

Estimation of 3D points

Addition and deletion of feature points

Camera pose initialization by Two-view SfM

Camera pose estimation

(option) Local / Global bundle adjustment

Page 49: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Local bundle adjustment is asynchronously processed forminimizing accumulation of errors using selected key-frames in order not to prevent real-time processing.

Parallel Tracking and Mapping

Initialization by two-view SfM

Feature point tracking

Camera pose estimation

Bundle adjustment for selected key-frames

+Addition of map points

Tracking thread Mapping thread

Selection of key-frames

63

Page 50: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Reduction of accumulation errors / re-start from tracking failure

Loop closing, re-localization

Basic flow1. Find similar image of current input from already observed images2. Find corresponding points between current and selected images. 3. Optimize data using bundle adjustment / Estimate camera pose.

True camera path

Estimated camera path

64

Page 51: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

LSD-SLAM: Large Scale Direct Monocular SLAM

https://www.youtube.com/watch?v=GnuQzP3gty4 66

Page 52: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Final report

• Explain the reason of these strange views

74

Page 53: Human Computer Interaction 1. overview and history of HCIomilab.naist.jp/class/CV/2019/2019-CV-No4-SfM.pdf · No.4 動きからの3次元復元 Structure from Motion and SLAM 担当教員:向川康博・田中賢一郎

Inconsistent?

• Physically consistent

• Humans interpret conveniently.

– 90 degree, rectangle, parallel,...

– Estimation of skewed shape

75

𝒙 = 𝑴𝑿

𝒙 = 𝑴𝑸−𝟏𝑸𝑿

𝑸𝑿