http www.inrisk.ubc.ca process.php file=structural analysis warping torsion

Upload: customerx

Post on 14-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    1/15

    This document is part of the notes written by Terje Haukaas and posted at www.inrisk.ubc.ca.The notes are revised without notice and they are provided as is without warranty of any kind.

    You are encouraged to submit comments, suggestions, and questions to [email protected].

    It is unnecessary to print these notes because they will remain available online.

    Warping Torsion

    Inadditiontoshearstresses,somememberscarrytorquebyaxialstresses.Thisiscalled warping torsion. This happens when the cross-section wants towarp, i.e.,displaceaxially,butispreventedfromdoingsoduringtwistingofthebeam.Notallcross-sectionswarp,andeventhosethatwarpdonotcarrytorquebyaxialstressesunless they are axially restrained at some location(s) along the member. Cross-sections that do NOT warp include axisymmetric cross-sections and thin-walledcross-sectionswithstraightpartsthatintersectatonepointthecross-section,suchas X-shaped, T-shaped, and L-shaped cross-sections. For these cross-sections alltorque is carried by shear stresses, i.e., St. Venant torsion, regardless of theboundaryconditions.

    WarpingofI-sectionsAsapedagogicalintroductiontowarpingtorsion,considerabeamwithanI-section,such as awide-flange steel beam.When torsion is applied to the beam then theflanges of this cross-section experiences bending in the flange-planes. In otherwords, torsion induces bending about the strong axis of the flanges. When theflanges are fixed at some point, such as in a cantilevered beam with a fully

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    2/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 2

    clampedend,someofthetorqueiscarriedbyaxialstresses.Tounderstandthis,denotethebendingmomentandshearforceineachflangeby MandV,respectively,asshowninFigure1.

    Figure1:WarpingofI-section

    (zisthelocalaxisforbendingofflange,nottheglobalz-axisofthecross-section).

    Thetorquethatthecross-sectioncarriesbybendingintheflangesis:

    T = h !V

    (1)where h is the distance between the flanges and V is positive shear force inaccordancewiththedocumentonEuler-Bernoullibeamtheory.Thatdocumentalsoprovides the equilibrium equation that relates shear force to bending moment,whichyields:

    V =dM

    dx ! T = h " dM

    dx (2)

    Thebeamtheoryalsoprovidetherelationshipbetweenbendingmomentandflangedisplacement,w:

    M = EI! d2

    w

    dx2 " T = h !EI! d

    3

    w

    dx3 (3)

    where I is themoment of inertia of one flange about its local strong axis. Next,Figure1isreviewedtodeterminetherelationshipbetweenwand:

    w = !"#h

    2 $ T = !

    h2

    2#EI#

    d3"

    dx3 (4)

    which resulted in the differential equation for warping torsion of an I-section.However,thisequationisgenerallywritteninthisformat:

    T = !ECw "d

    3#

    dx3 (5)

    whichimpliesthat,forI-sections,thecross-sectionalconstantforwarpingis:

    Cw= I!

    h2

    2 (6)

    !

    z, w

    h!

    z, w

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    3/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 3

    whereitisreiteratedthatI is themomentof inertiaof one flangeabout its localstrongaxis.

    CompleteDifferentialEquationforTorsion

    As mentioned earlier, when warping is restrained the torque is carried by both

    shear stresses, i.e., St. Venant torsion and axial stresses, i.e., warping torsion.Specifically,thetorquefromshearandaxialstressesaresuperimposed,whichleadstothefollowingcompletedifferentialequationfortorsion:

    T = GJ!d"

    dx# EC

    w!

    d3"

    dx3 (7)

    Whenequilibriumwithdistributedtorquealongthebeam, mx,isincluded,i.e.,mx=dT/dx,thenthefulldifferentialequationreads

    ECw!

    d4"

    dx4#GJ!

    d2"

    dx2= m

    x (8)

    Solution

    ThecharacteristicequationtoobtainthehomogeneoussolutionforthedifferentialequationinEq.(8)reads

    !4 "GJ

    ECw

    #!2= 0 (9)

    The roots are 0, 0, (GJ/ECw), and (GJ/ECw). Accordingly, the homogeneoussolutionis

    !(x) = C1"e

    GJ ECw "

    x+ C

    2"e

    # GJ ECwx+C

    3"x + C

    4 (10)

    whichguidestheselectionofshapefunctionsifanexactstiffnessmatrixwithbothSt.Venantandwarpingtorsionissought.Anotherwayofexpressingthesolutionis:

    !(x) = C1 "sinh GJ ECw "x( )+C2 "cosh GJ ECw "x( )+C3 "x +C4 (11)

    where the coefficients, Ci, in Eq. (10) are different from those in Eq. (11). Forexample,thehomogeneoussolutionforacantileveredbeamthatisfullyfixedat x=0andsubjectedtoatorque,To,atx=Lhasthesolution

    !(x) =1

    GJ ECw

    "T

    o

    GJ"

    tanh GJ ECw"L( ) " cosh GJ ECw "x( )#1$% &'

    #sinhGJ EC

    w "x

    ( )+ GJ EC

    w "x

    (

    )

    **

    +

    ,

    -- (12)

    FromthissolutionthetorquecarriedbySt.Venanttorsioniscomputedby:

    TSt.V.

    (x) =GJ!d"

    dx (13)

    andthetorquecarriedbywarpingtorsioniscomputedby:

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    4/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 4

    Twarping(x) = !ECw "d

    3#

    dx3 (14)

    whereTSt.V.(x)+Twarping(x)=Toforall0

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    5/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 5

    thesedocuments.Althoughthisisashortcoming,thepresentedtheoryissufficientfor many practical applications. This is because many thick-walled cross-sectiontypes are difficult to fully restrain axially. In contrast, it is easier to imagineconnection designs for thin-walled cross-sections that provide sufficient axialrestrainttodeveloptorqueduetoaxialstresses.

    Figure2:Beamaxissystemandcorrespondingdisplacements.

    Kinematics

    Theobjective inthissection istoestablish arelationshipbetweenaxialstrain,x,

    andaxialdisplacement, u.Forthispurpose,letthecoordinate sfollowthecentrelineofthecontourofthecross-sectionandlet hdenotethedistancefromthecentreofrotation(ysc,zsc)tothetangentofthecoordinatelines,asshowninFigure2.They-z-axes originate in the centroid of the cross-section, while the shear centrecoordinatesyscandzscarepresentlyunknown.Analogoustotheomissionofsheardeformation in Euler-Bernoulli beam theory, the shear the shear strain xs isneglected in the combined theory of warping torsion and bending. In turn, thisprecludes shear stresses, but as in the beam theory they are recovered later byequilibrium. Furthermore, the shear stresses from St. Venant torsion aresuperimposed so that the total shear strain xs is equal to that from St. Venanttorsion.Moreprecisely,xsisequaltotheshearstrainatr=0fromSt.Venanttheory,

    i.e.,atthemid-planeofthecross-sectionprofile.Inpassingitisnotedthataccordingto the St. Venant theory the shear strain at r=0 for open cross-sections is zero.Furthermore,asafundamentalkinematicspostulationit isassumedthatthecross-sectionretainsitsshape.Thisimpliesthats=s=0andthatthedisplacementinthes-directionis:

    !v = !v "cos(#)+w "sin(#)+$"h (19)

    T, !

    y, v

    z, w

    s, !v

    h

    r

    x, u

    Shear centre / centre of twist (ysc,zsc)

    Centroid (0, 0)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    6/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 6

    wherevandwarethedisplacementsofthecross-sectionandistheanglebetweenthes-axisandthey-axes.ThecontributionstoEq.(19)areillustratedinFigure3.

    Figure3:Contributionstothedisplacementalongthe s-axis.

    Giventhepreviousassumptionstherelevantkinematicsequationsare !

    x= u

    ,x

    (20)

    !xs = !v,x + u,s = !xsSt.V. (21)whereitisreemphasizedthat !

    xs

    StV= 0 foropencross-sections.SubstitutionofEq.

    (19)intoEq.(21)yields

    !dv

    dx"cos(#)+

    dw

    dx"sin(#)+

    d$

    dx"h +

    du

    ds= %

    xs

    St.V. (22)

    Next,therelationshipsbetweenthedifferentials ds,dy,anddzareestablished.WithreferencetoFigure3theyare:

    dy

    ds= !cos(")

    dz

    ds= sin(")

    (23)

    SubstitutionofEq.(23)intoEq.(22)yields

    dv

    dx!

    dy

    ds+

    dw

    dx!

    dz

    ds+

    d"

    dx!h +

    du

    ds= #xs

    St.V. (24)

    Solvingforduyields

    du = !dv

    dx"dy!

    dw

    dx"dz !

    d#

    dx"h ! $xs

    St.V.%&'

    ()*"ds (25)

    Itisdesirabletoexpress !xs

    St.V. intermsofd/dxsothatthelattercanbepulledoutsidetheparenthesis.ThisisachievedbyutilizingequationsfromthetheoryofSt.

    w

    -v

    !

    s

    (ysc,zsc) !v "cos(#)

    !

    w!sin(")

    h

    !"h

    ds

    dy

    dz

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    7/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 7

    Venanttorsion.Foropencross-sections!xs

    St.V. vanishes,butingeneralmateriallawyields

    !xs

    St.V.=

    "xs

    St.V.

    G (26)

    and !xsSt

    .

    V.

    = d" dr where is Prandtls stress function, which is cross-sectiondependent.Forthin-walledcross-sectionswithonecellagoodstressfunctionis

    !(s,r) = K "1

    2+

    r

    t

    #$%

    &'( (27)

    Asaresult,theshearstressis

    !xs

    St.V.="

    ,r=

    K

    t (28)

    Toexpressthestressintermsofd/dxitisfirstnotedthat

    T =GJd!

    dx (29)

    andthatthetorque,T,canberelatedtothestressbythestress-resultantequation

    T = 2 ! "dAA

    # (30)

    ForthestressfunctioninEq.(27)theintegralevaluates

    T = 2 !K!Am (31)

    Finally,Eqs.(31)and(29)substitutedintoEq.(28)yieldsthedesiredexpression: !

    xs

    St.V.=

    K

    t=

    T

    t"2 "Am

    =

    GJ

    2 " t"Am

    "

    d#

    dx (32)

    SubstitutionintoEq.(25)yields

    du = !dv

    dx"dy !

    dw

    dx"dz !

    d#

    dx" h !

    J

    2 " t"Am

    $%&

    '()"ds (33)

    Integrationyields

    u(y,z)=

    u!

    dv

    dx"y!

    dw

    dx"z!

    d#

    dx"$

    (34)whereuis theintegrationconstant,whichrepresentsauniformaxialdisplacementofthecross-sectionandhasbeendefinedas:

    ! " h #J

    2 $ t$Am

    %&'

    ()*ds+ (35)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    8/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 8

    Itisreemphasizedthatthisexpressionisvalidforcross-sectionswithonecell.Foropencross-sectionstheshearstraininthemid-planeofthecross-sectionprofileiszero,whichimpliesthat

    ! " hds# (36)

    Finally,combiningEq.(20)withEq.(34)yieldsthefinalkinematicsequation:

    !x=

    du

    dx"d2v

    dx2#y"

    d2w

    dx2#z "

    d2$

    dx2#% (37)

    MaterialLaw

    Hookeslawprovidestherelationshipbetweenaxialstressandaxialstrain:

    !x= E"#

    x (38)

    SectionIntegration

    Integrationofaxialstressoverthecross-sectionyieldstheaxialforce:

    N = !xdA

    A

    " (39)

    Integrationofaxialstressmultipliedbydistancefromthecentroidyieldsbendingmoment:

    Mz = ! "x #ydAA

    $ (40)

    Integrationofaxialstressmultipliedbydistancefromthecentroidyieldsbendingmoment:

    My = ! "x #z dAA$ (41)

    Integrationofaxialstressmultipliedbythepreviouslydefinedquantityisdefinedasthebi-moment:

    B ! " #x

    $%dAA

    & (42)

    Equilibrium

    Distributedaxial loadalongthebeamis relatedtotheaxialforcebythefollowingequilibriumequation:

    qx= !

    dN

    dx (43)

    Distributedloadinz-direction,whichisassumedtoactthroughtheshearcentreoritwillcontributetomx,isrelatedtotheshearforcebythefollowingequilibriumequation:

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    9/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 9

    qz = !

    dVz

    dx (44)

    Equilibrium also provides the relationship between shear force and bendingmoment:

    Vz =

    dMy

    dx (45)

    Thecorrespondingequilibriumequationsintheotherdirectionare:

    qy =

    dVy

    dx (46)

    and

    Vy =

    dMz

    dx (47)

    Finally,equilibriumfordistributedtorquealongthebeamyields:

    mx= !

    dT

    dx

    (48)

    DifferentialEquations

    SubstitutionofthekinematicsequationinEq.(37)intothemateriallawinEq.(38)yields:

    !x = E"du

    dx#E"

    d2v

    dx2"y #E"

    d2w

    dx2"z #E"

    d2$

    dx2"% (49)

    Substitution of Eq. (49) into the section integration Eqs. (39) to (42) yields thefollowingsetofequations:

    N

    Mz

    My

    B

    !

    "

    ##

    $

    ##

    %

    &

    ##

    '

    ##

    = E(

    dAA

    ) * ydAA

    ) * zdAA

    ) * +dAA

    )

    * ydAA

    ) y2 dAA

    ) y (z dAA

    ) y (+dAA

    )

    * zdAA

    ) y (z dAA

    ) z2 dAA

    ) z (+dAA

    )

    * +dAA)

    y (+dAA)

    z (+dAA)

    +2 dAA)

    ,

    -

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    /

    0

    1111111111

    du

    dx

    d2w

    dx2

    d2v

    dx2

    d22

    dx2

    !

    "

    #####

    $

    ###

    ##

    %

    &

    #####

    '

    ###

    ##

    (50)

    where symmetry is observed. Under certain condition described shortly, theequationsbecomedecoupledandreducesto:

    N = EA !du

    dx (51)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    10/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 10

    My = EIyd

    2w

    dx2 (52)

    Mz = EIzd

    2v

    dx2 (53)

    B = !ECw

    d2"

    dx2 (54)

    where the diagonal components of the matrix in Eq. (50) have been named asfollows:

    A = dAA

    ! (55)

    Iz = y2dA

    A

    ! (56)

    Iy = z2 dA

    A! (57)

    Cw= !2 dA

    A

    " (58)

    For the system of equations in Eq. (50) to be decoupled, the six off-diagonalelements of the coefficient matrix must be zero. These six conditions form animportantpartofthecross-sectionanalysis.Infact,theydeterminethefollowingsixunknownsofthecross-section:

    1. yo=y-coordinateofthecentroid

    2. zo=z-coordinateofthecentroid3. o=orientationoftheprincipalaxes4. C

    =normalizingconstantforthe-diagram

    5. ysc=y-coordinateoftheshearcentre6. zsc=z-coordinateoftheshearcentre

    Specifically,thecoordinatesofthecentroidofthecross-sectionaredeterminedbythetwoequations:

    y dAA

    ! = z dAA

    ! = 0 (59)

    Theorientationoftheprincipalaxesaredeterminedbythecondition: y !z dA

    A

    " = 0 (60)

    Thenormalizationofthe-diagramiscarriedouttosatisfythecondition:

    ! dAA

    " = 0 (61)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    11/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 11

    Thefollowingequationsaresatisfiedifthe-diagramisestablishedwithrespecttotheshearcentre,whichimpliesthattheshearcentrecoordinatesaredeterminedbytheseequations:

    y !" dAA

    # = z !" dAA

    # = 0 (62)

    Adding equilibriumwith external forces yields the finaldifferential equations foraxialdeformationandbending

    qx = !EA "d2uo

    dx2

    (63)

    qz = EIyd

    4wD

    dx4

    (64)

    qy = EIzd

    4vD

    dx

    4 (65)

    The derivation of the differential equation that combines St. Venant torsion andwarpingtorsionstartswiththedefinitionofthestressresultant:

    T = !xs " t"hdAA

    # = qs "hdsA

    # = qs d$A

    # = qs "$[ ]% & $dqsA

    # (66)

    whereqsistheshearflowandtheboundaryterm[ qs]fromintegrationbypartsiszero.Becauseshearstrainsareomittedfromthewarpingtheoryitisnecessarytoemploy equilibrium to recover the shear flow. With reference to Figure 4,equilibriumyields:

    d!x "ds " t+ d#xs "dx " t= 0 $ d!

    x

    dx" t+ d

    #xs

    ds" t= 0 $ dqs

    ds= % d

    !x

    dx" t (67)

    Figure4:Equilibriumtorecovershearstresses.

    !x+ d!

    x

    !x

    dx

    ds

    !xs+ d!

    xs

    !xs

    x

    s

    t

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    12/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 12

    SubstitutionofEq.(67)intoEq.(66)yields:

    T = ! "dqsA

    # = " $d%x

    dx$ t ds

    A

    # = " $d%x

    dxdA

    A

    # =d

    dx" $%x dA

    A

    # =dB

    dx (68)

    Adding the torque carried by shear stresses, i.e.,T=GJ(d/dx) and employing Eq.

    (54)yields:

    T = GJ!d"

    dx# EC

    w

    d3"

    dx3 (69)

    Adding equilibrium with distributed torque from Eq. (48) yields the completedifferentialequationforSt.Venanttorsionandwarpingtorsion:

    mx= EC

    w

    d4!

    dx4"GJ#

    d2!

    dx2 (70)

    ThesolutiontothisdifferentialequationwaspresentedinEq.(10).

    Final-diagram

    Eqs.(61)and(62)providetheconditionsthatthefinal -diagrammustsatisfy.Inparticular,thefinal-diagrammustbenormalizedanditmustbedrawnaboutthepoint(ysc,zsc),i.e.,theshearcentreofthecross-section.Inordertoarriveatthefinaldiagram,atrialdiagramisfirstdrawn.Thereafter,thetrialdiagramismodifiedtoobtainthefinalone.Forthispurposeitisusefultoestablishanexpressionthatrelatesthe-diagramdrawnaboutanarbitrarypointQtoanotherdiagramdrawnabout another pointSC.Sincethe-values consist of accumulateddouble sectorareas it is of interest to study a generic infinitesimal contribution. To this end,Figure5identifiesbygray-shadingthe-diagramcontributionsforaninfinitesimal

    lengthdsofthecross-section.Thedoubleareaofthesector thatoriginatesin(ysc,zsc)is

    d!sc = dy " z #zsc( )# dz " y# ysc( ) (71)

    Thedoubleareaofthesectorthatoriginatesin(yQ,zQ)is

    d!Q = dy " z #zQ( )# dz " y# yQ( ) (72)

    Thedifferencebetweenthetwo-diagramcontributionsinFigure5is

    d!sc " d!Q = ysc " yQ( ) #dz " zsc "zQ( ) #dy (73)

    Integrationofinfinitesimalcontributionsyieldtheexpressionforthedifferencein-diagrams:

    !sc "!Q = ysc " yQ( ) #z " zsc "zQ( ) #y +C (74)

    whereCistheintegrationconstant.Rearrangingandrenamingsctoyields:

    ! =!Q + ysc " yQ( ) #z " zsc "zQ( ) #y+C (75)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    13/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 13

    whichistheexpressionforthefinal-diagramonceC,ysc,andzscareknown.

    Figure5:Relationshipbetweentwo-diagrams.

    The integration constant, C, normalizes the -diagram and is determined byrequiringtheintegralofthe-diagraminEq.(75)tobezeroaccordingtoEq.(61):

    !dAA"

    = !Q dAA"

    + CdAA"

    = 0 # C= $

    !Q dA

    A

    "

    A

    (76)

    wheretermscancelintheintegrationbecause yandzoriginateatthecentroidofthe cross-section. The shear centre coordinates ysc and zsc are determined byrequiringtheintegralsinEq.(62)ofthe-diagraminEq.(75)tovanish:

    y !"dAA

    # = y !"Q dAA

    # $ zsc $zQ( ) ! y2dA

    A

    # = 0 % zsc = zQ +y !"Q dA

    A

    #Iz

    (77)

    z !"dAA#=

    z !"Q dA

    A#+

    ysc $ yQ

    ( ) ! z2

    dAA#

    = 0

    %ysc

    =

    yQ $

    z !"Q dAA

    #Iy (78)

    where terms cancel in the integration becausey andz are principal axes of thecross-section. In summary, the following procedure is suggested for thedeterminationofC,ysc,zsc,andultimatelythe-diagram:

    1. Selectanarbitrarypoint,Q,inthecross-section

    (ysc,zsc)

    (yQ,zQ) ds

    dz

    dy

    (y,z)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    14/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 14

    2. DrawthetrialQ-diagramaboutQ,i.e.,gathercontributionsaccordingtoEq.(35)alongcross-sectionpartsbyaclockwiseradarsweepabout Q,whileensuring that theQ-diagram is continuous (contributions that are madeclockwise are positive, while those that are made by a counter-clockwisesweeptoensurecontinuousdiagramarenegative)

    3. DetermineCbyEq.(76)4. DetermineyscbyEq.(77)5. DeterminezscbyEq.(78)6. Determinefinal-diagrambyEq.(75)

    Thereafter,thecross-sectionalconstantforwarpingtorsion,Cw,iscomputedbyEq.(58)andthestressesaredeterminedaccordingtothefollowingequations.

    Stresses

    Analogous totheEuler-Bernoulli beamtheory,axialstressesare obtainedbyfirstcombiningkinematics fromEq. (37)withmaterial law fromEq. (38),followedbysubstitutionof thefulldifferentialequationswithoutexternalequilibrium,i.e.,Eqs.(51)to(54),whichyields:

    !x =N

    A"Mz

    Iz#y+

    My

    Iy#z +

    B

    Cw#$ (79)

    Itisobservedthattheomegadiagramshowsthedistributionofaxialstressesinthecross-section due to torsion when warping is restrained. The shear flow isrecoveredbyequilibrium,whichwaspresentedinEq.(67):

    qs = t!"xs = t!d"xs0

    s

    # = $ t!d%x

    dxds

    0

    s

    #

    = $ t!dN

    dx!1

    A$dMz

    dx!1

    Iz!y+

    dMy

    dx!1

    Iy!z +

    dB

    dx!1

    Cw!&'

    ()

    *+,dA

    0

    s

    #

    = $dN

    dx!1

    A!As +

    Vy

    Iz!Sy $

    Vz

    Iy!Sz $

    dB

    dx!1

    Cw!S&

    (80)

    wherethefollowingdefinitionsaremade:

    As= dA

    0

    s

    ! = t ds0

    s

    ! (81)

    Sy = ydA0

    s

    ! = t"yds0

    s

    ! (82)

    Sz= zdA

    0

    s

    ! = t"z ds0

    s

    ! (83)

  • 7/27/2019 Http Www.inrisk.ubc.CA Process.php File=STRUCTURAL ANALYSIS Warping Torsion

    15/15

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Warping Torsion Page 15

    S! = !dA0

    s

    " = t#!ds0

    s

    " (84)