how$well$does$caliop/$calipso$ …...how$well$does$caliop/$calipso$ detectaerosol$above$clouds?$...

1
How well does CALIOP/ CALIPSO detect aerosol above clouds? M. Kacenelenbogen 1 , J. Redemann 1 , P. B. Russell 2 , M. A. Vaughan 3 , A. H. Omar 3 , S. Burton 3 , R. R. Rogers 3 , R. A. Ferrare 3 , C. A. Hostetler 3 , J. W. Hair 3 1 Bay Area Environmental Research InsMtute, Sonoma, CA, USA; 2 NASA Ames Research Center, MoffeR Field, CA, USA; 3 NASA Langley Research Center, Hampton, VA, USA; m [email protected] Cloud-free aerosol column β 1064, Total att β 532, att β 532, Total att CALIOPCloud Aerosol LIdar with Orthogonal Polarization [1][2] Level 1 products Active downward pointing elastic lidar Flies at ~7km/s at an altitude of 705 km 90 m diameter foot print every 333m No daily global coverage (same region, 16 days) Measures directly aerosol extinction and S a , without ancillary aerosol measurements or assumptions on aerosol type [3] Systematic error on 532 nm extinction < 0.01 km 1 for typical aerosol loading [4] HSRL High Spectral Resolution Lidar[4] CALIOP AAC detection CALIOP shows 14% AAC CALIOP shows ~60% of the HSRL AAC Minimum detectable CALIOP backsca6er coefficient 532 nm at ~2.3km by night: 0.3 x 10 3 km 1 sr 1 for 80km av., 0.7 x 10 3 km 1 sr 1 for 20km av., 1.5 x 10 3 km 1 sr 1 for 5km av. Uppermost cloud below plane Point density Poor agreement in CALIOP and HSRL cloud horizontal extent Cloud AlMtudes do not agree perfectly Most outliers are single shot clouds (5km of horizontal extent) We must understand the “true” natural spaMaltemporal variability of aerosols and clouds … to select the right CALIOPHSRL correlaMon range Aerosol and cloud variability Each point matched up to single nearest point of opposite flight tracks (within 2.5 km) Turnaround 1 st HSRL overpass 2 nd HSRL overpass Aerosol: correlation coefficient between measurements of opposite tracks is satisfying for up to 1h apart; Cloud: correlation drops off much faster; clouds seem to form and/ or drift on the track much faster than aerosols We will be using HSRL to define the uppermost cloud below the airplane Turnaround - Study by Ray Rogers [HSRL team] - 2 nd HSRL overpass 1 st HSRL overpass Cloud fraction Aerosol AOD Aerosol Above Cloud (AAC) Majority of AOD below 0.1 above clouds Aerosol type mostly Urban and smoke [5] Most clouds when AAC are below 3km (PBL) CALIOP uncertainty sources (A)Temporal and spatial coincidence (5km-30mn) (B) Low Signal to Noise Ratio (SNR) leads to aerosol misclassification (wrong lidar ratio) lack of aerosol layer identification, especially for daytime measurements close to the ground [6] (C) Signal attenuated by clouds above airplane (cirrus) Retrieval errors propagate downward in the CALIPSO algorithm (AAC by night: R 2 =0.56/ 0.70 with/ without cirrus above airplane) (D) Aerosol-Cloud misclassification Cloud contamination in the algorithm (fixed in Version 3 but errors may persist) and/ or strong aerosol event (ex. smoke plumes with broken clouds) often misclassified as clouds (E) Tenuous aerosol under the detection threshold Absence of CALIOP retrieval corresponds mostly to very small HSRL AOD (mean 0.02) and int. backscatter coefficient (mostly 0.4 x 10 -3 ) Minimum CALIOP detection threshold for 80, 20 or 5km horizontal averaging (If feature less scattering -> more averaging needed -> less noise in SNR -> lower minimum CALIOP detectable backscatter coefficient) N=170 80 20 5km HSRL integrated backscaRer when no CALIOP retrieval (F) Underlying cloud adds noise by sunlight reflection (Day time only) CALIOP uncertainty sources AOD constrained between 00.23 Cloud constrained between 2.3 and 2.7 km No cirrus above airplane Cloud adds noise by day leading to slightly higher CALIOP AOD above clouds (for AOD>0.1) BeRer AOD agreement by night vs day (R 2 =0.70/ 0.29) CALIOP overesMmates AOD and Integrated S a (day and night obs.) No cirrus No cirrus Filter on HSRL “532_ext”>=0; AOD below plane >= 0 and No cloud below plane according to HSRL; No cirrus above plane according to CALIOP CALIOP shows 28% aerosol retrievals CALIOP shows ~60% of the HSRL aerosol retrievals Filter on CALIOP “ExMncMon_QC_Flag_532 =0,1,2,16 or 18; “ExMncMon_Coefficient_532” = [0 ; 1.25]; AOD below plane >= 0 ; No cloud below plane according to HSRL; No cirrus above plane according to CALIOP Better agreement by night vs day (R 2 =0.74/ 0.35) CALIOP overestimates AOD CALIOP detects 60% of HSRLdetected aerosol CALIOP detects 60% of HSRLdetected AAC CALIOP underesMmates AAC full verMcal extent CALIOP overesMmates AAC lidar raMo CALIOP mostly overesMmates AOD by day Conclusion [1] Winker et al., J. Atmos. Ocean. Tech., 2009. [2] Vaughan et al., J. Atmos. Ocean. Tech., 2009. [3] Hair et al., Appl. Optics, 2001. [4] Hair et al., Appl. Optics, 2008. [5] Burton et al., Atmos. Meas. Tech., 2012. [6] Kacenelenbogen et al., Atmos. Chem. Phys., 2011. Acknowledgements: We thank the HSRL and the CALIPSO team at NASA Langley. This research was supported through the NASA CALIPSO ST grant NNX10AN60G. ΔT (hr) ΔT (hr) % No cirrus

Upload: others

Post on 05-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: How$well$does$CALIOP/$CALIPSO$ …...How$well$does$CALIOP/$CALIPSO$ detectaerosol$above$clouds?$ M.$Kacenelenbogen1,$J.$Redemann1,$P.$B.$Russell2,$M.$A.$Vaughan3,$A.$H.$Omar3,S.$Burton

How  well  does  CALIOP/  CALIPSO  detect  aerosol  above  clouds?  

M.  Kacenelenbogen1,  J.  Redemann1,  P.  B.  Russell2,  M.  A.  Vaughan3,  A.  H.  Omar3,  S.  Burton3,  R.  R.  Rogers3,  R.  A.  Ferrare3,  C.  A.  Hostetler3,  J.  W.  Hair3

1Bay  Area  Environmental  Research  InsMtute,  Sonoma,  CA,  USA;    2NASA  Ames  Research  Center,  MoffeR  Field,  CA,  USA;  3NASA  Langley  Research  Center,  Hampton,  VA,  USA;  [email protected]

Cloud-free aerosol column

β1064, Totalatt

β532,⊥att

β532,Totalatt

CALIOPCloud Aerosol LIdar with Orthogonal Polarization [1][2]

Level  1  products  

•  Active downward pointing elastic lidar •  Flies at ~7km/s at an altitude of 705 km •  90 m diameter foot print every 333m •  No daily global coverage (same region, 16 days)

• Measures directly aerosol extinction and Sa, without ancillary aerosol measurements or assumptions on aerosol type [3] • Systematic error on 532 nm extinction < 0.01 km−1 for typical aerosol loading [4]

HSRL High Spectral Resolution Lidar[4]

CALIOP AAC detection  CALIOP shows 14% AAC

 CALIOP shows ~60% of the HSRL AAC

Minimum  detectable  CALIOP  backsca6er  coefficient  532  nm  at  ~2.3km  by  night:  0.3  x  10-­‐3  km-­‐1  sr  -­‐1  for  80-­‐km  av.,  0.7  x  10-­‐3  km-­‐1  sr  -­‐1  for  20-­‐km  av.,  1.5  x  10-­‐3  km-­‐1  sr  -­‐1  for  5-­‐km  av.  

Uppermost cloud below plane

Point  density  

 Poor  agreement  in  CALIOP  and  HSRL  cloud  horizontal  extent  

 Cloud  AlMtudes  do  not  agree  perfectly  

 Most  outliers  are  single  shot  clouds  (5km  of  horizontal  extent)  

We  must  understand  the  “true”  natural  spaMal-­‐temporal  variability  of  aerosols  and  clouds  …  to  select  the  right  CALIOP-­‐HSRL  correlaMon  range  

Aerosol and cloud variability

Each point matched up to single nearest point of opposite flight tracks (within 2.5 km)

Turnarou

nd  

1st HSRL overpass

2nd H

SRL

over

pass

 Aerosol: correlation coefficient between measurements of opposite tracks is satisfying for up to 1h apart;

 Cloud: correlation drops off much faster; clouds seem to form and/ or drift on the track much faster than aerosols

We will be using HSRL to define the uppermost cloud below the airplane

Turnarou

nd  

- Study by Ray Rogers [HSRL team] -

2nd H

SRL

over

pass

1st HSRL overpass

Cloud fraction

Aerosol AOD

Aerosol Above Cloud (AAC)

 Majority  of  AOD  below  0.1  above  clouds   Aerosol  type  mostly  Urban  and  smoke  [5]   Most  clouds  when  AAC  are  below  3km  (PBL)  

CALIOP uncertainty sources (A) Temporal and spatial coincidence (5km-30mn)

(B) Low Signal to Noise Ratio (SNR) leads to • aerosol misclassification (wrong lidar ratio) • lack of aerosol layer identification, especially for daytime measurements close to the ground [6]

(C) Signal attenuated by clouds above airplane (cirrus) Retrieval errors propagate downward in the CALIPSO algorithm (AAC by night: R2=0.56/ 0.70 with/ without cirrus above airplane)

(D) Aerosol-Cloud misclassification Cloud contamination in the algorithm (fixed in Version 3 but errors may persist) and/ or strong aerosol event (ex. smoke plumes with broken clouds) often misclassified as clouds

(E) Tenuous aerosol under the detection threshold Absence of CALIOP retrieval corresponds mostly to very small HSRL AOD (mean 0.02) and int. backscatter coefficient (mostly 0.4 x 10-3)

Minimum CALIOP detection threshold for 80, 20 or 5km horizontal averaging (If feature less scattering -> more averaging needed -> less noise in SNR -> lower minimum CALIOP detectable backscatter coefficient)

N=170  80   20   5km  

HSRL  integrated  backscaRer  when  no  CALIOP  retrieval  

(F) Underlying cloud adds noise by sunlight reflection (Day time only)

CALIOP uncertainty sources

• AOD  constrained  between  0-­‐0.23  • Cloud  constrained  between  2.3  and  2.7  km  • No  cirrus  above  airplane  

Cloud  adds  noise  by  day  leading  to  slightly  higher  CALIOP  AOD  above  clouds  (for  AOD>0.1)  

 BeRer  AOD  agreement  by  night  vs  day  (R2=0.70/  0.29)  

 CALIOP  overesMmates  AOD  and  Integrated  Sa    (day  and  night  obs.)  

No  cirrus  No  cirrus  

Filter  on  HSRL  “532_ext”>=0;  AOD  below  plane  >=  0  and  No  cloud  below  plane  according  to  HSRL;  No  cirrus  above  plane  according  to  CALIOP  

 CALIOP shows 28% aerosol retrievals  CALIOP shows ~60% of the HSRL aerosol retrievals

Filter  on  CALIOP  “ExMncMon_QC_Flag_532  =0,1,2,16  or  18;  “ExMncMon_Coefficient_532”  =  [0  ;  1.25];  AOD  below  plane  >=  0  ;  No  cloud  below  plane  according  to  HSRL;  No  cirrus  above  plane  according  to  CALIOP  

 Better agreement by night vs day (R2=0.74/ 0.35)

 CALIOP overestimates AOD

•  CALIOP  detects  60%  of  HSRL-­‐detected  aerosol  •  CALIOP  detects  60%  of  HSRL-­‐detected  AAC  •  CALIOP  underesMmates  AAC  full  verMcal  extent  •  CALIOP  overesMmates  AAC  lidar  raMo  

•  CALIOP  mostly  overesMmates  AOD  by  day  

Conclusion

[1] Winker et al., J. Atmos. Ocean. Tech., 2009.

[2] Vaughan et al., J. Atmos. Ocean. Tech., 2009.

[3] Hair et al., Appl. Optics, 2001.

[4] Hair et al., Appl. Optics, 2008.

[5] Burton et al., Atmos. Meas. Tech., 2012.

[6] Kacenelenbogen et al., Atmos. Chem. Phys., 2011.

Acknowledgements: We thank the HSRL and the CALIPSO team at NASA Langley.

This research was supported through the NASA CALIPSO ST grant NNX10AN60G.

ΔT  (hr)  

ΔT  (hr)  

%  

No  cirrus