how to promote nanotechnology research and innovation ... to... · how to promote nanotechnology...

26
1 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9 How to promote nanotechnology research and innovation collaboration and measure its success? Success factors and barriers for cross-sectoral innovation and criteria to assess research and innovation funding schemes Joint report on Action 6 and Action 9 of the INTERREG IVB NWE PROJECT “NANORA – Nano Regions Alliance” (May 2014)

Upload: others

Post on 12-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

1 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

How to promote nanotechnology research and innovation

collaboration and measure its success?

Success factors and barriers for cross-sectoral innovation and criteria to assess research and innovation funding schemes

Joint report on Action 6 and Action 9 of the INTERREG IVB NWE PROJECT “NANORA – Nano Regions Alliance” (May 2014)

Page 2: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

2 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Table of Contents

1. Introduction ..................................................................................................................................... 3

2. Success factors ................................................................................................................................ 5

2.1. Generation and selection of success factors ........................................................................... 5

2.2. Identified success factors ........................................................................................................ 5

2.3. Validation process ................................................................................................................... 6

2.4. Validation process results ....................................................................................................... 7

2.5. Insights for designing R&D support instruments for SMEs / research institutions ................. 9

3. Success indicators .......................................................................................................................... 11

3.1. Excellence Modules design approach: .................................................................................. 11

3.2. Approach to Indicator development ..................................................................................... 11

4. Case studies in North-Western Europe regions ............................................................................ 13

4.1. Ireland.................................................................................................................................... 13

4.2. United Kingdom ..................................................................................................................... 16

4.3. Belgium .................................................................................................................................. 18

4.4. Germany – Hessen ................................................................................................................. 18

4.5. Germany – Saarland .............................................................................................................. 19

5. Conclusion: .................................................................................................................................... 23

Page 3: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

3 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

1. Introduction This report was prepared within the framework of the European Nano Regions Alliance (NANORA)

Project, funded by the European Union through the INTERREG IVB NWE Programme

(http://www.nweurope.eu). The project aims at strengthening cooperation and networking between

European regions in the field of nanotechnology, thus supporting the industry, which is regarded as a

key enabling technology and innovation driver. NANORA unites participants from nanotechnology-

strong regions from Belgium, France, Germany, Great Britain, Ireland and the Netherlands

committed to supporting nanotechnology as a key enabling technology.

The NANORA Alliance will develop joint cross-regional business collaborations and supports for

companies using nanotechnology expertise in order

to develop more competitive products,

to open new market opportunities for SME by taking joint transnational actions for new target

markets and

to ensure outreach to policy level and long-term anchoring of the Alliance in the regions.

The project is based on the conviction that the European regions need to engage in concerted action

to be successful in the global competition for nano-enabled economic growth.

The set-up of so-called “excellence modules”, i.e. transnational support schemes for nanotechnology

players, is one of the key activities of the Alliance. The development of excellence modules will

primarily be based on already existing regional support schemes. In order to set up excellence

modules, fit to the needs of the target group (stakeholders from business and research, active in the

field of nanotechnology), it is important

a) to identify those success mechanisms in support schemes, which lead to successful cross-

sectoral innovation projects Chapter 1: “Success Factors”

b) to set up a robust indicator/criteria system for support schemes, in order to measure impact

and added-value of the excellence modules to be developed Chapter 2: “Success

indicators

This report will therefore

a) outline the conceptual framework for designing excellence modules: Success factors for cross-

sectoral innovation, which provides the starting point for developing excellence modules

b) develop a robust indicator framework for measuring the impact/success of the implemented

excellence modules in a second step (success indicators).

The report encompasses the following outputs:

WP 1 Action 6,: Derivation of applicable success mechanisms for cross-sectoral innovation

Output: 1.6.1. NANORA success factors for cross-sectoral innovation

Page 4: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

4 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

WP 2 Action 9,: Creation of success indicators/criteria for interlinked regional and national nano

support systems

Output: 2.2.1. Set of success criteria for nano-support systems with specific

attention to transnational need of nano-support schemes

Output 2.2.2.: List of 21 (3 per region) case examples in order to underline

success indicators. Please note that this report only contains a selection of the

most pertinent case examples.

Page 5: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

5 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

2. Success factors

2.1. Generation and selection of success factors

NANORA aimed at tapping the expertise of professionals involved in innovative initiatives and with

long-standing experience in the field of support to international business collaborations in key

enabling technologies.

Consequently, during the EuroNanoForum 2013 at Dublin, a public workshop entitled “Current and

Future Transnational Financial Support” was organized by the Collaborative Centre for Applied

Nanotechnology (CCAN) and NANORA to identify the success factors for international collaboration

with other organizations on nanotechnology research and innovation.

Based on the idea and experiences of NANORA, the workshop, coordinated and moderated by Victor

Acinas at CCAN, reviewed current transnational funding schemes; explored the political benefits and

obstacles inherent in such schemes; highlighted the benefit of such schemes for small member states

or regions; and concluded with a panel discussion to determine approaches that can be presented to

university, industry and government decision-makers so they can coordinate and influence the

support structures in their regions.

The speakers from different types of organizations across Europe with a strong involvement in

transnational funding programmes as a coordinator, advisor or participant provided their expertise

to around 80 public and private organizations’ delegates. Speakers were Lars Pleth Nielsen, Chairman

at the EUREKA E! –SURF and Head of the Tribology Centre at Danish Technological Institute; Mikko

Kaarela, Senior Consultant at SPINVERSE; Helmut Ennen, National Expert at ENIAC; Susan Anson,

Head of Business Development at KIT; and Sebastian Hummel from NANORA, deputy head of unit

“Bio, Green and Nanotechnology” at the Ministry of Economics, Transport, Urban and Regional

Development of the State of Hessen (Germany).

From their presentations success factors were extracted and articulated with each other. In order to

render them operational for further application they were cross-checked with recourse to a focused

literature review of strategic management articles.

2.2. Identified success factors

The list of factors identified through this process can be roughly divided into internal factors, i.e.,

factors that apply to preconditions within the companies or research institutes / RTOs entering into a

collaboration project, and external factors, i.e., factors that apply to preconditions in the

collaborating actors’ environment.

Internal factors

Page 6: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

6 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

The collaborating organisations...

Factor 1. ...have a clear in-house research strategy plan. Factor 2. ...have a clear in-house decision process to assess international collaboration

opportunities. Factor 3. ...have identified a commercially relevant problem. Factor 4. ...offer a research/technology capability for development. Factor 5. ... are well-prepared for a collaboration in terms of appropriate administrative

infrastructure, organizational culture and staff mindset. Factor 6. ...have previous experience and knowledge in international collaboration. Factor 7. ...have an established international network of trusted contacts to generate

collaboration opportunities or follow results from collaborations. Factor 8. ... understand (emerging) technology potential and (emerging) market needs. Factor 9. ...have a detailed understanding of in-house lack of resources, skills and knowledge. Factor 10. ... match each other’s needs and offerings. Factor 11. ... communicate with each other in an efficient manner. Factor 12. ...are leaders in the nanotechnology research infrastructure and expertise they

provide. Factor 13. ..together form value chains. Factor 14. ...exchange researchers for short or long stays (e.g., for technology transfer,

training…). Factor 15. The collaboration combines short, medium and long term gains for the involved

organisations. Factor 16. You can identify the appropriate contact persons in the partnering organisations to

form and manage the collaboration.

External factors

Factor 17. The existence of transnational initiatives and networks to support collaboration. Factor 18. The regional environment supports research and entrepreneurship activities. Factor 19. There are international R&D funding calls open to a wide number of nanotechnology

research and innovation topics (as opposed to calls focused on specific problems). Factor 20. Available R&D funding programmes have simple rules for participation and low

admin burden.

2.3. Validation process

The success factors were additionally processed into a questionnaire. All NANORA partners

presented the questionnaire to experts in their regions that belong to organisations outside the

NANORA consortium and have over 5 years of experience in international nanotechnology research

and innovation collaborative projects. These experts rated the factors’ degree of impact on the

success of international collaboration in nanotechnology research and innovation through a 5 point

Likert scale (from 0= low to 5= high). The figure below shows an extract of the questionnaire shown

Page 7: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

7 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

to the respondents.

The experts’ answers were used to develop a condensed priority list that will serve as a key guideline

for NANORA in shaping the transnational support offers elaborated within the project. NANORA will

aim at designing offers in a way that allows factors that are most relevant in achieving successful

international collaborative nanotech projects to be fostered.

2.4. Validation process results

By August 2014, a total of 65 answers were received from different types of organisations as shown

in the figure below.

To analyze the experts’ answers, the frequency, median, variance, total scores and average of each

response were calculated as well the Cronbach alpha for all the answers. However, the Cronbach

alpha should be used with caution as the factors represent causes of successful international

collaboration in nanotechlogy research and innovation. The figure below shows a summary of this

analysis.

Page 8: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

8 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Experts' rating from 1 (= low) to 5 (= high) of factors impact for successful

international collaboration in nanotechlogy research and innovation.1 2 3 4 5 Median Variance Total

Scores

Internal factors...have a clear in-house research strategy plan. 0.00% 11.11% 11.11% 38.89% 33.33% 4 0.941176 136

...have a clear in-house decision process to assess international collaboration

opportunities. 0.00% 8.57% 25.71% 40.00% 22.86% 4 0.810554 129

...have identified a commercially relevant problem. 4.17% 8.33% 41.67% 33.33% 8.33% 3 0.835539 77

...offer a research/technology that is capable of being developed. 0.00% 5.71% 22.86% 45.71% 22.86% 4 0.692042 132

... are well-prepared for a collaboration in terms of appropriate administrative infrastructure,

organizational culture and staff mindset. 0.00% 2.86% 37.14% 14.29% 42.86% 4 0.941176 136

...have previous experience and knowledge of international collaboration. 2.86% 8.57% 20.00% 25.71% 40.00% 4 1.231834 134

...have an established international network of trusted contacts to generate collaboration

opportunities or follow on from results of collaborations. 2.86% 8.57% 17.14% 40.00% 28.57% 4 1.066609 131

... understand (emerging) technology potential and (emerging) market needs. 0.00% 2.94% 17.65% 50.00% 26.47% 4 0.574839 133

...have a detailed understanding of in-house lack of resources, skills and knowledge. 0.00% 8.82% 35.29% 29.41% 23.53% 4 0.87787 122

... match each other’s needs and offerings. 0.00% 8.82% 26.47% 29.41% 32.35% 4 0.955005 128

... communicate with each other in an efficient manner. 0.00% 2.86% 25.71% 34.29% 34.29% 4 0.734429 137

...are leaders in the nanotechnology research infrastructure and expertise they provide. 5.71% 17.14% 31.43% 25.71% 17.14% 3 1.277682 113

...form supply chains together. 2.86% 14.29% 34.29% 37.14% 8.57% 3 0.875433 114

...exchange researchers for short or long stays (e.g., for technology transfer, training, etc.). 8.82% 20.59% 26.47% 32.35% 8.82% 3 1.258035 103

...identify the appropriate contact persons in the partnering organisations to form and

manage the collaboration. 0.00% 2.86% 25.71% 54.29% 14.29% 4 0.49827 130

…combine short, medium and long term gains in the collaboration for the involved

organisations. 0.00% 8.57% 40.00% 28.57% 20.00% 3.5 0.824394 123

External factorsThe existence of transnational initiatives and networks to support collaboration. 0.00% 12.50% 16.67% 54.17% 12.50% 4 0.733459 85

The regional environment supports research and entrepreneurship activities. 0.00% 11.43% 20.00% 42.86% 22.86% 4 0.869377 129

There are international R&D funding calls open to a wide number of nanotechnology

research and innovation topics (as opposed to calls focused on specific problems). 5.88% 5.88% 29.41% 35.29% 20.59% 4 1.147842 119

Available R&D funding programmes have simple rules for participation and low admin

burden. 0.00% 8.82% 17.65% 29.41% 41.18% 4 0.966024 134

Average 0.016579 0.089628 0.261193 0.360421 0.240697 3.775

Cronbach alpha 0.980875

Page 9: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

9 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Furthermore, the total scores of each factor were used to rank the factor’s impact on successful

international collaboration in nanotechnology research and innovation as shown in the figure below

with the external factors in bold.

2.5. Insights for designing R&D support instruments for SMEs / research institutions

Generally, many experts have provided and/or validated success factors referring to conditions in the

collaborating companies and research institutions that cannot be influenced directly by institutions

offering support programmes (e.g., research strategy plan, organizational culture, understanding of

market needs, etc.). For these success factors obviously a smart selection of collaboration partners is

imperative, i.e. support programme coordinators have to a) identify collaboration partners that are

individually well-prepared for an international technological cooperation and b) foster strategic

matching. This can be achieved, inter alia, by

1 ... communicate with each other in an efficient manner.

2 ...have a clear in-house research strategy plan.

3

... are well-prepared for a collaboration in terms of appropriate administrative infrastructure,

organizational culture and staff mindset.

4 ...have previous experience and knowledge of international collaboration.

5

Available R&D funding programmes have simple rules for participation and low admin

burden.

6 ... understand (emerging) technology potential and (emerging) market needs.

7 ...offer a research/technology that is capable of being developed.

8

...have an established international network of trusted contacts to generate collaboration opportunities

or follow on from results of collaborations.

9

...identify the appropriate contact persons in the partnering organisations to form and manage the

collaboration.

10 ...have a clear in-house decision process to assess international collaboration opportunities.

11 The regional environment supports research and entrepreneurship activities.

12 ... match each other’s needs and offerings.

13 …combine short, medium and long term gains in the collaboration for the involved organisations.

14 ...have a detailed understanding of in-house lack of resources, skills and knowledge.

15

There are international R&D funding calls open to a wide number of nanotechnology

research and innovation topics (as opposed to calls focused on specific problems).

16 ...form supply chains together.

17 ...are leaders in the nanotechnology research infrastructure and expertise they provide.

18 ...exchange researchers for short or long stays (e.g., for technology transfer, training, etc.).

19 The existence of transnational initiatives and networks to support collaboration.

20 ...have identified a commercially relevant problem.

Ranking of the factors' impact for successful international collaboration in

nanotechnology research and innovation.

Note: external factors in bold

Page 10: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

10 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Including a survey querying the presence of relevant success factors in the partners in the

required application papers necessary for participating in the support programme (in case of high

numbers of applications); or

Including a preliminary talk with potential collaboration partners querying the presence of

relevant success factors in the application process (in case of low numbers of applications); and

Organizing a professional matching process based on databases focused on specific technological

competences/expertise, such as TINCA elaborated by NANORA, and thus securing a good match

of technology needs and offerings.

Page 11: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

11 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

3. Success indicators The focus of this chapter lies on developing a robust “indicator” system for measuring impact and

success of the transnational support schemes, “excellence modules”, to be developed and

implemented within the framework of NANORA.

In order to understand the logic of the indicator development, it is important to again shortly outline

the approach to the design of the excellence modules:

3.1. Excellence Modules design approach:

As outlined above, the design of the excellence modules will be based on existing regional support

schemes. Those regional support schemes are support and/or funding measures dedicated to

supporting businesses and/or research institutions who are active in the field of nanotechnology and

related fields. This covers purely financial funding (e.g. credit lines) as well as business support

measures, such as e.g. networking/matchmaking or technology transfer programmes.

For the design of excellence modules, such existing support schemes will be either

a) “interlinked”, which means that existing regional support schemes from different regions are

combined, (i.e. partners from two different regions cooperate, but each partner receives funding

from his own region) or they will

b) constitute a new purely transnational support offer, where however the design is still based on

existing support schemes.

Therefore the approach to measuring impact and success of the excellence modules will be primarily

based on those indicators, which were designed for measuring success and impact of the regional

support schemes already in place.

3.2. Approach to Indicator development

For defining those indicators, which were apt for measuring impact and success of the excellence

modules to be developed and piloted, a questionnaire was sent to all partners, asking them for those

indicators, which were most relevant for existing regional funding schemes of their region.

Furthermore, the NANORA project indicators – as listed in the application form – were taken into

consideration.

This input by all partners was then “condensed”. In this exercise, the focus was put on:

a) Clarity: Combining those indicators under a “common umbrella”, which had a strong overlap, but

only different wordings or similar;

b) Relevance: Choosing only those indicators which were most suited to measuring impact of a

transnational cooperation to be supported by one of the 4 excellence modules;

Page 12: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

12 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

c) Measurability: Choosing those indicators only, for which a data source was easily available.

The focus was put on result and output indicators only. Furthermore, since the excellence module

primarily intend to support either business cooperation, technology transfer (research – business) or

research cooperation, the list of indicators was divided into those indicators focusing on science and

technology outputs and those, relating to industry-related outputs:

Selected indicators by category Measurement

Unit

Data source

Science and technology outputs

Number of licenses Number European Patent Office

Number of patents Number European Patent Office

Number of articles in scientific journals Number Own declaration

Number of start-ups and spin-off created Number Regional/national statistical

offices

Number of developed certifiable systems Number

Number of dissemination publications (website,

newspapers, blogs…)

Number Own declaration

Industry-related

Number of companies involved in the scheme interlinking

regional and transnational funds

Number Own declaration

Level of industry cash and benefits in kind contributions Value in € Own declaration of

participants

Number of participating SMEs Number Own declaration

Number of new jobs Number Regional/national statistical

offices

Increase in R&D investment Percentage Regional/national statistical

offices

Increase in employee qualification Percentage Regional/national statistical

offices

Increased sales volume from new products Percentage Regional/national statistical

offices

Number of new products Number Regional/national statistical

offices

Trained people transferred to industry Number Regional/national statistical

offices

Page 13: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

13 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

4. Case studies in North-Western Europe regions The case examples underline how different support measures to nanotechnology companies,

networks, and projects fostered the achievement of good results in terms of the success indicators,

such as patents, licenses, publications, new products, and the like, by building on or bringing about

key success factors identified as relevant, such as a good match of complementary competences,

good communication between collaborating partners, a supportive political environment, and the

like.

4.1. Ireland The Collaborative Centre for Applied Nanotechnology (CCAN) case

The Irish government has invested heavily,

approximately €282 million Between 2001

and 2009, in the infrastructure and personnel

necessary for nanotechnology research and

commercialisation.1 To help industry leverage

on these investments, the Collaborative

Centre for Applied Nanotechnology (CCAN)

was established in April 2010 with a mission

to generate value for Irish industry from the

country’s existing nanotechnology expertise.

CCAN is designed and continuously developed

based on studies (e.g. 1 and 2) and

experiences from previous initiatives like the

US National Nanotechnology Initiative3 where

a fundamental criterion for generating

economic impact from nanotechnology is

successful collaboration between multi-

disciplinary expertise providers.

Figure 1: Map of CCAN members (2013)

Following this idea, the Industry CCAN Steering Board designed and implemented a centre model to

leverage and combine the existing research expertise already in place across the country. The CCAN

model links companies and research teams and funds collaborative projects to generate solutions

based on industry-defined needs. Collaborative projects are meant to develop technologies to the

1 Ireland's Nanotechnology Commercialisation Framework 2010-2014, published by Forfas, August 2014, link

here. 2 High-Level Expert Group Report on Key Enabling Technologies, published by European Commission, (2010)

link here 3 Collaboration Key on Nanotech:, Dr. Mihail Roco, a senior advisor at the National Science Foundation of the

US and founding chair of the US National Nanotechnology Initiative established in 1999 in an Interview with

The Korea Herald, 2012.

Page 14: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

14 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

point where they can graduate into product development projects outside of CCAN. In this way

companies, and the economy, should get faster and more productive outcomes from

nanotechnology research and innovation than had previously been the case.

CCAN focuses on activities that fall into two broad categories (1) locating expertise and (2)

developing solutions. Typically CCAN follows the following sequence in dealing with companies.

1) Determine companies technology requirements.

2) Enable links among companies and research teams.

3) Develop collaborative projects with CCAN funding.

4) Finding funding for projects that are not eligible for CCAN funding and supporting

commercialization activities.

Irish companies are already seeing significant business benefits arising from CCAN research activities

including new export sales, new product lines, first-in-corporation process capabilities, distribution

deals, increased R&D funding and deeper customer engagements. Figure 2 below shows the relative

occurrence of various impacts, benefits and outcomes directly attributable to CCAN activities.

Figure 2: The relative distribution of a sample of some Impacts and Outcomes directly

attributable to CCAN activities. Numbers correspond to occurrenc es of the event, except for New

R&D Jobs and Researchers in Residence which are actual headcounts.

The current CCAN model is working extremely well and is delivering benefit to the State, the

companies and the supporting research providers. CCAN's structures and systems means are well

positioned to offer a distinct and valuable service in the emerging national RD&I landscape which will

help enhance industry impact of all research providers in the system. The CCAN model demands a

significant amount of goodwill from the research community due to the deliberately agile and

flexible nature of the project structures and funding. However in return CCAN’s research partners are

already seeing industry engagement, initially funded by CCAN, transition into further and larger

engagements with EU, national and regional funded programmes and industry-funded projects.

Page 15: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

15 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

The SIRNANO project case Radiopaque marker bands are critical to

medical devices and implants to be traced

visually within the body. As medical devices, in

particular catheters, move to smaller and

smaller diameters it is desirable for the medical

device companies to replace the gold and

platinum marker because the they can be very

expensive and hard to apply to complex

miniaturized shapes.

To address this industry need, the SIRNANO

project brought together Medtronic, CRANN

and Innovative Polymer Compounds Ltd. (IPC)

in Kilbeggan expertise to develop radiopaque

coatings and polymer composites for use as a

radiopaque marker bands on medical devices.

The following proprietary technologies and

expertise areas from the partners were

combined:

Figure 3: X-ray image comparing gold, SIRNANO

polymer and polymer marker bands in catheters

1) Materials characterisation – thermal, mechanical and imaging (CRANN)

2) Incorporation of various nano-additives (both commercially available and niche materials)

using commercial viable and cost effective melt processing techniques (CRANN & IPC)

3) Medical Device design and manufacturing (Medtronic)

4) Pilot scale polymer compounding technologies (IPC)

Together the SIRNANO team developed new radiopaque polymer formulations, which were tested by

Medtronic in Galway and in the US and delivered all the radiopacity performance and other physical

properties required. The know-how and IP developed was licensed to IPC. The new product line is

generating new export sales with international device manufacturers and the project has secured for

IPC ongoing R&D interactions with Medtronic’s R&D group in Galway.

The successful delivery of a nano-enabled solution for medical devices in SIRNANO was enabled by a

multi-disciplinary and flexible project team, involving multiple organisations that formed a supply

chain driven by the requirements of the industrial end-user.

Page 16: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

16 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

4.2. United Kingdom The new university spin-out company Lancaster Cryogenics Limited case The Lancaster Low Temperature Physics group at Lancaster University has established an outstanding

reputation for its fundamental research on the properties of quantum fluids at the lowest attainable

temperatures.

Quantum fluids play a crucial role in condensed matter physics, a branch of physics that deals with

the physical properties of condensed phases of matter using physical laws such as the laws of

quantum mechanics, electromagnetism and statistical mechanics. To achieve the temperatures

necessary for their research, the group has been building its own cryogenic equipment, as

requirements have gone far beyond commercial alternatives.

Lancaster has a suite of the best dilution refrigerators in the world, developed and constructed on

site, with minimum temperatures around 2 millikelvin (mK), nearly 10 times colder than their nearest

rivals. Their 1.75mK machine is the coldest dilution refrigerator ever made and is used for pre-cooling

a second stage that takes superfluids into the microkelvin regime, colder than anywhere else. UK

industry has a majority share of dilution refrigerator (DR) manufacture, with complete research-

ready machines costing in the region of £1m, and leads research in this field. The Ultralow

Temperature Physics Group has provided heat exchangers and complete refrigerator units to

government laboratories and universities around the world. The first modern DR produced was

designed by Science and Technology’s Professor George Pickett, Fellow of the Royal Society, and the

group’s designs have influenced the commercial manufacturers of dilution refrigerators both directly

and indirectly. Their advice is frequently sought by established researchers, those with little low

temperature experience and all sectors using dilution refrigerators, on account of their experience,

the time consuming nature of the work and a growing trend to move from many groups to fewer,

smaller groups, and outsource expertise.

In November 2011, to manage this increasing demand for consultancy and take advantage of the

growing market for cooling nanoscience devices for emerging quantum technologies, members of

the group Professor Pickett, Dr Richard Haley, Dr Viktor Tsepelin, Mr Alan Stokes and Mr Martin

Ward, liaised with University Intellectual Property Manager, Dr Gavin Smith, and created a new spin-

out company, Lancaster Cryogenics Limited. Lancaster Cryogenics Limited specialisms include all

aspects of cryogenics, the provision of ultralow temperatures (millikelvin and below) and a variety of

sensitive measurement techniques (low noise, low excitation, and small signal).

The company offers a range of expertise and skills, from expert opinion and design consultancy,

through to the manufacture and testing of bespoke components. Clients to date have included an

international government atomic energy department, national and international research institutes,

and commercial cryogenics and DR companies.

Page 17: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

17 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

“[In 2011-2012] The university was granted 5 UK, European or US patents, 2 more than 2010-2011,

filed applications for 10 patents, which was an increase of 4 from 2010-2011 and licensed 2 and

incorporated 1 company in 2011-2012 as a result of commercialisation activity in the Faculty of

Science and Technology.” Dr Gavin Smith, Intellectual Property Manager, Lancaster University.

Page 18: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

18 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

4.3. Belgium The Nanotech project case in Belgium The synthesis of well-known and reproducible nanopowders is a challenge that the Wallonia wanted

to manage.

The aims of the Walloon NANOTECH project were to:

- Develop the use of nanopowders in Wallonia

- Increase productions and sales of nanopowders obtained by plasma process

- Stimulate the construction and the sale of equipment dedicated to the synthesis of

nanopowders by plasma

The partnership included 10 companies (centres of research, SME, universities,…):

- Institut Von Karman

- Open Engineering

- Aseptic Technologies

- Sirris

- Technord Automation

- IRA

- Magotteaux International

- Diarotech

- General Metal Alloys

- UCL

- Nanopole.

The NANOTECH team has acquired a better knowledge of the plasmas and plasma torch process, has

designed and developed a prototype dedicated to the synthesis of SiC and ZrO2 nanopowders but

also a pilot for metallic nanopowders by plasma. The team has also developed expertise on the risk

management associated with production and handling of nanopowders. A start-up employing 2

persons has been created. Some publications were disseminated and a patent has been deposed.

The successful delivery of the pilot units allows Wallonia to be a main actor in the nanoworld.

4.4. Germany – Hessen The humus production facility case The support scheme NanoHe (“Nanotechnologie im Dienste der regionalen Wirtschaftsentwicklung in

Hessen”, i.e., “Nanotechnology at the service of regional economic development”), an element of the

ERDF Regional Programmes of Innovative Actions (PRAI), was active in Hessen from January 2006 to

December 2008. The objective was to support SMEs and secure regional competitiveness by taking

up nanotechnology innovations. In addition, the programme aimed at securing and creating jobs and

retaining regional prosperity.

Page 19: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

19 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

In the case at hand project support of 2,937,150.70 EUR (375,000 EUR of which were ERDF funds)

was provided over 15 months to a company producing an innovative new type of humus granulate.

The granulate, an inorganic composite material consisting of a cross-linked high-performance

polymer with absorbent properties (polyacrylates) with finely ground volcanic rock and silicate

embedded in its cross-linked structure, is an innovative product protected by patent law. It is suitable

for horticulture and landscaping, agriculture and forestry and helps combat desertification.

Such a product did not yet exist in the market at that time. The product’s novelty and uniqueness

meant that there was no distortion of competition involved in supporting the company and that

Hessen as a technology location would be significantly strengthened. Before the project support,

humus production had taken place in a pilot plant with a capacity of 1 metric t/day. The operating

licence granted for the pilot plant prohibited the manufacturing of products for sale; only operation

for product optimization was allowed. The project support made the financing of a new production

facility with a yearly capacity of 25,000 metric tonnes possible. The new facility enabled both large-

scale production testing and market entry.

The federal state of Hessen, besides financing the new production facility, supported the marketing

of the humus project in many ways. The humus company participated in delegation trips to the

Middle East and had the opportunity to present its products at the Hessen booth at the

Nanosolutions trade fair. In addition, it was mentioned in different brochures and newsletters

published by Hessen-Nanotech, a platform coordinating the activities of the Hessian Ministry of

Economics for the funding of materials technology and nanotechnology enterprises.

The support of NanoHE secured the successful transfer from development to production as well as

successful market entry, which otherwise would have been endangered. The company was able to

start operating its production facility successfully. The market launch of the humus product was

successful and customers were attracted. Apart from that, contacts with worldwide customers,

which promised more orders for the coming years, were established. The project supported the

company first of all. However, the economic growth that occurred also strengthened Hessen as a

technology location as well as secured existing and created new jobs.

This success story shows that it pays off to not only invest in development projects but also to help

young and innovative companies build up their own production facilities. Often, as in this case, public

funds made available for research purposes are not intended for use in building up industrial

production. However, large-scale market entry is not possible without industrial production. This is

especially important in the nanotechnology field because adjustments to the manufacturing process

(upscaling) are often necessary when production facilities are enlarged.

4.5. Germany – Saarland

Page 20: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

20 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

The German Nanotechnology Association The German Nanotechnology Association was established to give a home and a voice to the people

operating in the nanotechnology field. We want to bridge existing gaps and give individuals and SMEs

a voice in the ministerial committees and authorities that advice on nanotechnology, its uses, risks

and funding.

Operating as an independent organization, the German Nanotechnology Association represents the

interests of its members. Our most important aim is to create an elite circle, that connects decision-

makers, businessmen, scientists and politicians, pursues joint project, educates people, defines

research and ultimately ensures that the industrial revolution that is depend on nanotechnology is

successful.

Our key aims at a glance:

• We bring scientists and business people together with the media and political decision-makers

through our communication system.

• We create a strong network for our members.

• We are the most important competence centre for nanotechnology in Germany.

• We are the leading authority for evaluation and consultation on all aspects of nanotechnology

and are recognized as such by the relevant public interest groups.

• We are engaged in open dialogue with players from politics, business and society and

participate proactively in the debates on the opportunities and risks of nanotechnology.

• We provide comprehensive, factual information on the current and potential application of

nanotechnology.

• We promote the training and development of specialists in order to secure innovation skills in

Germany as well as jobs on an ongoing and sustainable basis.

PRINCIP AL OFFICE

German Nanotechnology Association (Deutscher Verband Nanotechnologie e. V.)

Science Park 1

D-66123 Saarbrücken

Germany

Phone: (+)49 – 681 68 57 364

Fax: (+)49 – 681 68 57 795

Page 21: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

21 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

E-Mail: [email protected]

Web: www.dv-nano.de

Contact Person: Dr. Ralph Nonninger (President)

EXAM PLES FO R SUCCE SS I ND IC ATO RS :

• “German Nanoday”: Possibility for networking.

• Working groups

- WG Communication

- WG Mobility

- WG Energy

• “Nanotechnologie aktuell”, Association Magazine: Members can present their research results

and products

Figure 1: NANOTECHNOLOGIE AKTUELL, AUSGABE 6 2013, ISSN 1866-4997

Page 22: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

22 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Offices in Germany and Europe, grouping of competences

FIGURE 2: OFFICES IN GERMANY

FIGURE 3: OFFICES IN EUROPE

Page 23: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

23 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

5. Conclusion:

In order to set up efficient transnational research and development partnerships in the field of

nanotechnology (but also for other stakeholders active in the field of KET), the following success

factors have been identified, with the external factors in bold.

Concerning related insights for designing R&D support instruments for SMEs/research institutions, it

can be stated, that many success factors referring to conditions in the collaborating companies and

research institutions that cannot be influenced directly by institutions offering support programmes

(e.g., research strategy plan, organizational culture, understanding of market needs, etc.). For these

success factors obviously a smart selection of collaboration partners is imperative, i.e. support

programme coordinators have to a) identify collaboration partners that are individually well-

prepared for an international technological cooperation and b) foster strategic matching. This can be

achieved, inter alia, by

Including a survey querying the presence of relevant success factors in the partners in the

required application papers necessary for participating in the support programme (in case of high

numbers of applications); or

1 ... communicate with each other in an efficient manner. 2 ...have a clear in-house research strategy plan.

3 ... are well-prepared for a collaboration in terms of appropriate administrative infrastructure, organizational culture and staff mindset.

4 ...have previous experience and knowledge of international collaboration.

5 Available R&D funding programmes have simple rules for participation and low admin burden.

6 ... understand (emerging) technology potential and (emerging) market needs. 7 ...offer a research/technology that is capable of being developed.

8 ...have an established international network of trusted contacts to generate collaboration opportunities or follow on from results of collaborations.

9 ...identify the appropriate contact persons in the partnering organisations to form and manage the collaboration.

10 ...have a clear in-house decision process to assess international collaboration opportunities. 11 The regional environment supports research and entrepreneurship activities. 12 ... match each other’s needs and offerings. 13 …combine short, medium and long term gains in the collaboration for the involved organisations. 14 ...have a detailed understanding of in-house lack of resources, skills and knowledge.

15 There are international R&D funding calls open to a wide number of nanotechnology research and innovation topics (as opposed to calls focused on specific problems).

16 ...form supply chains together. 17 ...are leaders in the nanotechnology research infrastructure and expertise they provide. 18 ...exchange researchers for short or long stays (e.g., for technology transfer, training, etc.). 19 The existence of transnational initiatives and networks to support collaboration. 20 ...have identified a commercially relevant problem.

Ranking of the factors' impact for successful international collaboration in

nanotechnology research and innovation.

Note: external factors in bold

Page 24: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

24 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Including a preliminary talk with potential collaboration partners querying the presence of

relevant success factors in the application process (in case of low numbers of applications); and

Organizing a professional matching process based on databases focused on specific technological

competences/expertise, such as TINCA elaborated by NANORA, and thus securing a good match

of technology needs and offerings.

Regarding the success indicators, which will then also be used for evaluating the performance of the

NANORA Excellence Modules to be set up, the focus was put on result and output indicators only.

Furthermore, since the excellence module primarily intend to support either business cooperation,

technology transfer (research – business) or research cooperation, the list of indicators was divided

into those indicators focusing on science and technology outputs and those, relating to industry-

related outputs:

Page 25: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

25 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9

Selected indicators by category Measurement

Unit

Data source

Science and technology outputs

Number of licenses Number European Patent Office

Number of patents Number European Patent Office

Number of articles in scientific journals Number Own declaration

Number of start-ups and spin-off created Number Regional/national statistical

offices

Number of developed certifiable systems Number

Number of dissemination publications (website,

newspapers, blogs…)

Number Own declaration

Industry-related

Number of companies involved in the scheme interlinking

regional and transnational funds

Number Own declaration

Level of industry cash and benefits in kind contributions Value in € Own declaration of

participants

Number of participating SMEs Number Own declaration

Number of new jobs Number Regional/national statistical

offices

Increase in R&D investment Percentage Regional/national statistical

offices

Increase in employee qualification Percentage Regional/national statistical

offices

Increased sales volume from new products Percentage Regional/national statistical

offices

Number of new products Number Regional/national statistical

offices

Trained people transferred to industry Number Regional/national statistical

offices

These pre-considerations on success factors for international collaboration, success indicators for measuring performance of support schemes as well as the experience of project partners (which has also been reflected as part of the case studies) will form the foundation for the implementation of NANORA Excellence Modules.

Page 26: How to promote nanotechnology research and innovation ... to... · How to promote nanotechnology research and innovation ... develop a robust indicator framework for measuring the

26 How to promote transnational cooperation in NanoTechnology – NANORA Report A6/A9