how to make corner models for bipolar transistors€¦ · ibci ideal b-c saturation current vef...

18
How to make corner models for bipolar transistors Simone Locci, K.-W. Pieper, E. Gondro IFAG ATV PTP TD EDA DCM ([email protected])

Upload: others

Post on 26-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

How to make corner models for bipolar transistors

Simone Locci, K.-W. Pieper, E. Gondro

IFAG ATV PTP TD EDA DCM

([email protected])

Page 2: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

23.10.2012 Page 2 Copyright © Infineon Technologies 2011. All rights reserved.

Outline

Introduction

Problem setup and solution

Corners for bipolars

Conclusion

Page 3: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

23.10.2012 Page 3 Copyright © Infineon Technologies 2011. All rights reserved.

Introduction

To accurately develop a circuit, designers rely on several simulation options: nominal models, Monte Carlo and corners.

A nominal model is obtained by modeling the measurements done on a set of devices of a golden wafer.

Monte Carlo statistical parameters like standard deviations and correlations are extracted from the fab data considering the device specifications.

Corner models are used by designers to quickly simulate specific situations, like a worst case scenario.

For several Infineon technologies, we use PCM spec limits (from DC measurements) to define the corners: this means that they must correctly reproduce the edges of the process window.

For MOS devices, we borrow the concept of “fast” and “slow” corners from the CMOS world. For bipolars, we can define a high Ic corner and a low Ic corner.

Beta

Page 4: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Introduction (1)

ISAT depends on more

than one model parameters

VT depends on just one

model parameter (vth0)

23.10.2012 Page 4

Isat

Vth

Page 5: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Testbench

23.10.2012 Page 5

Page 6: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Problem setup (1)

We can approximate the variation of the PCM parameters (∆p) as linear combinations of the model parameters (∆m).

23.10.2012

)(

)(

)(

LSLRON

USLISAT

LSLVTL

Δp

0

0

vth

Δm

j

iji

m

pS

,

pmS FAST SLOW

VTlin LSL USL

VTsat LSL USL

Isat USL LSL

Ron LSL USL

Mosfet corners (n-type)

USL = Upper spec limit (biggest value) LSL = Lower spec limit (smallest value)

High Ic Low Ic

Beta USL LSL

IC USL LSL

VEA LSL USL

BJT corners (npn)

Page 6

VCESAT LSL USL

Page 7: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Problem setup (2)

23.10.2012

Good corners should meet the following conditions:

1. They should be as near as possible to the USL and LSL

2. They should lie outside the spec limits, so that simulations can be more pessimistic than reality, but not the opposite

3. The modeling parameters which determine the corners should span within a realistic and safe range, for example within a 4.5 σ variation.

σ is the standard deviation of a Monte Carlo parameter, determined from PCM data and a correlation analysis

The problem is a constrained quadratic programming problem. If condition 2 and 3 together do not have a solution, the problem cannot be solved. The corners will then lie inside the spec limits or the parameters will be bigger than 4.5σ (or both).

2

2min ΔpΔmS

m

pmS

σmσ 5.45.4

Page 7

Page 8: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Workflow

23.10.2012 Page 8

Core

2

2min ΔpΔmS

m

pmS

σmσ 5.45.4

Sensitivity analysis

Speclimits values

Model parameters

Sensitivity matrix

Spectre corners file

Corner simulation

- Maximum allowed sigma variation

- Correction factors

Constraints fulfilled?

End

yes

no Monte Carlo parameters

Page 9: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

An example: LDMOS

23.10.2012 Page 9

Isat (before) Isat (after)

Vth (before) Vth (after)

Page 10: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

What about bipolars?

NPN and PNP transistors under investigation:

N1/N2: vertical NPN transistors

P4: lateral PNP transistor

PCM parameters used to characterize a bipolar transistor:

Beta Current gain at 1um collector current

Ic Current gain at 1um collector current

Vea Early voltage (in absolute value)

Vcesat Collector emitter voltage in saturation

Sensitive model parameters of VBIC bipolar model:

Is Transport saturation current

Ibei Ideal B-E saturation current

Ibci Ideal B-C saturation current

Vef Forward Early voltage

• Rcx Extrinsic collector resistance (not used at the moment!)

23.10.2012 Page 10

Page 11: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

How is a corner for bipolar devices?

We can assume that a “fast” corner for a bipolar device is a set of parameters which maximizes the collector current => High Ic

We could, in principle, define different combinations for the corners. But which results would come out?

Can we make predictions on the model parameters, i.e.: can we say which, among Is, Ibei, Ibci, Vea, will become bigger or smaller for a “High IC” corner?

23.10.2012

High Ic Low Ic

Beta USL LSL

IC USL LSL

VEA LSL/USL? USL/LSL?

BJT corners (npn)

High Ic Low Ic

Beta USL LSL

IC LSL USL

VEA LSL/USL? USL/LSL?

BJT corners (pnp)

Page 11

VCESAT LSL USL VCESAT USL LSL

Page 12: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Sensitivity matrix

23.10.2012

Parameters expressed as multiples of the sigmas used for Monte Carlo simulations

Page 12

Model parameters

n1

_is

_prc

n1

_ib

ei_p

rc

n1

_ib

ci_p

rc

n1

_vef

_p

rc

n2

_is_

prc

n2

_ib

ei_p

rc

n2

_ib

ci_p

rc

n2

_vef

_p

rc

p4

_is_

prc

p4

_ib

ei_p

rc

p4

_ib

ci_p

rc

p4

_dve

f_p

rc

PC

M p

aram

eter

s

B_N1_1u 0.47 -0.82 0.00 0.00

IC_N1_6_0d7 0.77 0.00 0.00 -0.13

VEA_N1 0.05 -0.10 0.00 1.05

VCESAT_N1 -0.38 0.08 0.87 -0.02

B_N2_1u 0.52 -0.84 0.00 0.00

IC_N2_6_0d7 0.79 0.00 0.00 -0.10

VEA_N2 0.06 -0.12 0.00 1.05

VCESAT_N2 -0.55 0.10 0.76 -0.02

B_P4_10u 0.78 -0.99 0.00 0.00

IC_P4_6_0d7 -0.85 0.00 0.00 0.10

VEA_P4 0.33 -0.42 0.00 1.20

VCESAT_P4 0.71 -0.31 -0.88 0.01

High Ic Low Ic

n1_is_prc 4.4147 -5.5834

n1_ibei_prc -2.97 2.2958

n1_ibci_prc -4.3739 3.9213

n1_vef_prc -4.7939 4.7813

n2_is_prc 5.0365 -5.0563

n2_ibei_prc -2.8309 1.6786

n2_ibci_prc -3.5166 3.6475

n2_vef_prc -4.8941 4.7648

p4_is_prc 4.7347 -4.6684

p4_ibei_prc -0.8178 0.8702

p4_ibci_prc -1.0655 1.1047

p4_dvef_prc -5.051 5.6303

Page 13: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

How a different setup can affect a corner

23.10.2012

High Ic corner has big |Vea|

High Ic corner has small |Vea|

Page 13

p4

_is

_p

rc

p4

_ib

ei_

prc

p4

_ib

ci_

prc

p4

_d

vef_

prc

B_P4_10u 0.78 -0.99 0.00 0.00

IC_P4_6_0d7 -0.85 0.00 0.00 0.10

VEA_P4 0.33 -0.42 0.00 1.20

VCESAT_P4 0.71 -0.31 -0.88 0.01

High Ic Low Ic

n1_is_prc 5.9091 -7.0777

n1_ibei_prc -2.1078 1.4337

n1_ibci_prc -3.5573 3.1047

n1_vef_prc 3.8281 -3.8408

n2_is_prc 6.1573 -6.177

n2_ibei_prc -2.1361 0.9838

n2_ibci_prc -2.5579 2.6888

n2_vef_prc 3.691 -3.8203

p4_is_prc 5.5965 -5.5302

p4_ibei_prc -0.1368 0.1892

p4_ibci_prc -0.5557 0.5949

p4_dvef_prc 2.479 -1.8998

High Ic Low Ic

n1_is_prc 4.4147 -5.5834

n1_ibei_prc -2.97 2.2958

n1_ibci_prc -4.3739 3.9213

n1_vef_prc -4.7939 4.7813

n2_is_prc 5.0365 -5.0563

n2_ibei_prc -2.8309 1.6786

n2_ibci_prc -3.5166 3.6475

n2_vef_prc -4.8941 4.7648

p4_is_prc 4.7347 -4.6684

p4_ibei_prc -0.8178 0.8702

p4_ibci_prc -1.0655 1.1047

p4_dvef_prc -5.051 5.6303

For a small |Vea| (∆p<0), the optimizer has to: • Compensate for “is” and “ibei” with a negative “dvef”; • Descrease “is” to compensate for the negative “dvef“ when evaluating IC.

Page 14: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Results (High Ic corner has big |Vea|)

23.10.2012 Page 14

Beta p4 (before) Beta p4 (after)

Vea p4 (before) Vea p4 (after)

Page 15: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Results (High Ic corner has small |Vea|)

23.10.2012

Beta p4 (before)

Vea p4 (before)

Beta p4 (after)

Vea p4 (after)

Page 16: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Conclusion

The new corner methodology allows a systematic generation of corners which properly adhere to the device specifications

The designers will be able to get worst case simulations at the edge of the process window without getting too pessimistic results

For bipolar devices, corners sets require special care. As model parameters can have values bigger than allowed, supervision and verification are needed to ensure model quality.

23.10.2012 Page 16

Page 17: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

For internal use only

Page 18: How to make corner models for bipolar transistors€¦ · Ibci Ideal B-C saturation current Vef Forward Early voltage • Rcx Extrinsic collector resistance (not used at the moment!)

Why more than 4.5σ?

For corners models, some model parameters need to be bigger than 4.5σ. However, 4.5σ is the value used when determining correlations and statistical parameters. How can this be?

If we retain the approximation of linearity for the models, we can write a generic parameter as:

If mi is a Gaussian random distribution, then the variance of p is:

But a corner is only:

23.10.2012

i

iimSp

jim

jiji

mji

i

mip mmSSSjii

,corr5.45.45.45.4)(,

222

i

ii mSp

Page 18