how to implement maximum power point tracking for … to implement... · how to implement maximum...

22
1 How to implement maximum power point tracking for low power solar charging

Upload: truongdang

Post on 21-Aug-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

1

How to implement maximum power point tracking for low power solar charging

Page 2: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

2

• Application definition and solution

• MPPT algorithm implementation

Agenda

Page 3: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

3

Solar panel application definition

Page 4: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

The solar problem

• I-V Characteristic

– High Impedance Source

– Non-ideal parameters affect curve

• Resistive losses

• Diode leakage

• Material properties

• Maximum Power Point

– Irradiance

• Affects short circuit current

– Temperature

• Shifts open circuit voltage

– Causes MPP to move

4

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00P

ow

er

(W)

0.00

2.50

5.00

7.50

10.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00P

ow

er

(W)

0.00

2.50

5.00

7.50

10.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00P

ow

er

(W)

0.00

2.50

5.00

7.50

10.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Po

we

r (W

)

0.00

2.50

5.00

7.50

10.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (A

)0.00

250.00m

500.00m

750.00m

1.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (A

)0.00

250.00m

500.00m

750.00m

1.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (A

)0.00

250.00m

500.00m

750.00m

1.00

Page 5: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

The Solar Solution

• Maximum Power Point Tracking Algorithm

– Fractional Open Circuit Voltage (F.OCV)

• Fixed ratio of the instantaneous open-circuit

– Perturb & Observe (P&O)

• Manipulates load and monitors change in power

continuously

– Incremental Conductance (IC)

• Manipulates load and monitors change in

conductance

5

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (A

)

0.00

250.00m

500.00m

750.00m

1.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (A

)

0.00

250.00m

500.00m

750.00m

1.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Po

we

r (W

)

0.00

2.50

5.00

7.50

10.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Po

we

r (W

)

0.00

2.50

5.00

7.50

10.00

Pk > Pk-1 Pk > Pk-1

1

2

1

2

K x VOC 1

1

2 ∆𝐏

∆𝐕 > 0

∆𝐏

∆𝐕 < 0

1

2

∆𝐏

∆𝐕 = 0

3

Page 6: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

MPPT Software Complexity Hardware Complexity Tracking Ability

F.OCV • Calculate K*VOC • Resistor divider

• Ratiometrically follows open circuit voltage

• Estimate of power point; good for single solar cell

• Partial shading affects estimate

Solution Comparisons • Algorithm/Controller Considerations

– Software

• Calculation | Measurement | Storage

• Processing | Power | Speed

– Hardware

• Sensing | Memory | Control

• Cost | Size | Speed | Efficiency

– Tracking Ability

• Accuracy | Adaptability | Timing

6

MPPT Software Complexity Hardware Complexity Tracking Ability

IC • Calculate (I), (V) Slope and (P)

• Store Previous States

• (V) and (I) Sensors

• Controller (memory, multiplier)

• Can suffer from oscillation under certain conditions

• Step size determines tracking time

F.OCV • Calculate K*VOC • Resistor divider

• Ratiometrically follows open circuit voltage

• Estimate of power point; good for single solar cell

• Partial shading affects estimate

MPPT Software Complexity Hardware Complexity Tracking Ability

P&O • Calculate (P)

• Store Previous States

• (V) and (I) Sensors

• Multiplier

• Memory or State Machine

• Continuously tracks power

• Suffers from oscillation

• Step size determines tracking time

IC • Calculate (I), (V) Slope and (P)

• Store Previous States

• (V) and (I) Sensors

• Controller (memory, multiplier)

• Can suffer from oscillation under certain conditions

• Step size determines tracking time

F.OCV • Calculate K*VOC • Resistor divider

• Ratiometrically follows open circuit voltage

• Estimate of power point; good for single solar cell

• Partial shading affects estimate

Page 7: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

The Solar Charging Solution – 3M Approach

• Basic Functions for a Solar Charger

→Monitor

• Key Charging and Input Parameters

→Manipulate

• Operating Point and Loading Conditions

→Maximize

• Input Power and Charging Current

7

Page 8: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

8

MPPT Algorithm Implementation

Page 9: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Maximizing Charging Current

9

• Implementation

– Prioritize battery charging

– Adjust operating point to get max charge

• Assumptions

– Battery voltage constant

• CC Charge

– Low/constant System Load

• ISYS < ICHG << IINDPM Supplement Mode

• Goals

– Time

• Tracking within 5s

– Accuracy

• ±50mA of IMPP

• ± 300mV of VMPP

Page 10: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Algorithm Methodology

• Working Principle

– With given VBAT and ISYS charge current will move proportionally with input

power

• Neglect efficiency

• Neglect dynamic loading

– Based on P&O MPPT

10

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (

A)

0.00

250.00m

500.00m

750.00m

1.00

T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Cu

rre

nt (

A)

0.00

250.00m

500.00m

750.00m

1.00T

Input voltage (V)

0.00 5.00 10.00 15.00 20.00

Po

we

r (W

)0.00

2.50

5.00

7.50

10.00

Ik < Ik-1

Ik > Ik-1

1

2

1

2

Page 11: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Algorithm Flow Diagram

• Core Blocks

– Device Initialization

• Setting Preconditions

• Is there power from the Panel?

– MPPT Initialization

• Setting Limits to the Algorithm

• Redefining Parameters

– MPP Tracker

• Manipulate the operating point

• Monitor outputs

• Maximize charging current

11

Page 12: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Core Sub-Blocks

• Device Initialization

– Unclamped Power Point

• IINDPM

• Charge Current

• FORCE_VINDPM

– Power Good

• Heavily shaded?

• Damaged?

• Power Not Good

– Default Hi-Z

12

Page 13: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Core Sub-Blocks

13

• MPPT Initialization

– Hi-Z mode for VOC

– 65%VOC

• Definable

• Optimize

– Tracking Time

– IV Curve

• Start Condition

– ICHGMAX

• Compare to instant ICHG

• Update

Page 14: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Core Sub-Blocks

14

• MPP Tracker

– ADC Read

• Burst Mode

• Multiple reads = Precision

– Charge Current > ICHGMAX?

• Current increasing/decreasing

• Update Max Charge

– Increment VINDPM

• Step Size

– Optional: Stop after decrease

• Improves speed of algorithm

– Sample Interval

• Sunlight variance

Page 15: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

bq25895

+

-

Test Conditions

• Model (Simulated Panel)

– Standard 4-Component Model

• Outdoor (Real Panel)

– SolarLand Model #: SLP005-06U

– Polycrystalline

– 5W, 6V, 10.5V VOC, 0.67A ISC

– 3.1V VBAT, 6Ah capacity

• Testing Conditions

– 4.5V – VMPP+1

– Stop after Max Power

15

Page 16: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

High Irradiance Model: 1A Short Circuit Current

• High Irradiance Test

• Results

– Charge current = Max

Stop Tracking

– Similar ICHG readings

• Near VMPP

• Could affect reading

• Select Midpoint as Max

– VMPP(Real) - VMPP(Selected) = 100mV

– PMPP(Real) - PMPP(Selected) = 70mW

16

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Po

wer

(W)

Cu

rren

t (A

) Voltage (V)

MPPT Model Test - 10VOC, 1A ISC, 3.8VBAT

ADC Charge Current

Real Charge Current

Panel Power

Panel Power

Real MPP

Selected MPP

Page 17: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Low Irradiance Model: 0.5A Short Circuit Current

17

• Low Irradiance Test

• Results

– Similar behavior to 1A ISC

– Power has sharp corner

• Non-ideal Solar Model

– VMPP(Real) - VMPP(Selected) = 300mV

– PMPP(Real) - PMPP(Selected) = 40mW

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.50

0.75

1.00

1.25

1.50

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

Po

wer

(W)

Cu

rren

t (A

)

Voltage (V)

MPPT Model Test - 10VOC, 0.5A ISC, 3.8VBAT

ADC Charge Current

Real Charge Current

Panel Power

Panel Power

Real MPP

Selected MPP

Page 18: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Input Current Input Voltage Charge Current

Test Results - Model

• Results

– Sweeps/Tracks in 6.4s

• Faster if 65-90%VOC

– Near VOC, sharp corner in

power

• No effect on tracking

– Customizable hold time

18

Bounded track time ~3.5s

Input Power

Page 19: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Po

wer

(W)

Cu

rren

t (A

)

Voltage (V)

MPPT Outdoor Test - 9.5VOC, 0.65A ISC, 3.1VBAT, 6Ah

Test Results – Outdoor: Real Panel

• Results

– PMPP(Selected) = PMPP(Real)

– Sunlight can change in seconds

• Affects Temperature

• Shifts Power curve

19

Input Power

ADC Charge Current

Input Current

Real MPP

Selected MPP

Page 20: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

• Measure Solar Panel Open-Circuit Voltage with 100mV

resolution, Charging Current with 50mA resolution, and

Battery Voltage with 20mV resolution

• Adjust Solar Panel Power Point through VINDPM

• Optimized Input Power Conversion for Maximum Charge

• Operate with High Voltage Solar Panels up to 14V

• Provide Reverse Current Protection to the Solar Panel

• TIDA-01556 Tools Folder

• Design Guide

• Design Files: Software

• Device Datasheets: ‒ bq25895

‒ MSP430FR4133

bq25895 I2C Controlled Single Cell 5-A Charger with Power Management for MPPT with Solar Input

• Integrated 7-Bit ADC to Monitor Input Voltage, Battery

Voltage, and Charge Current

• Adjustable Input Voltage Power Management threshold

with 100 mV Resolution

• High Charge Efficiency with 93% @ 2 A and 91% @ 3 A

• Wide Input Voltage Operating Range from 3.9 V to 14 V

• Integrated Reverse Blocking at Input

Features Benefits

Tools & Resources

• Smart Shared Bikes

• IP Cameras

• Portable Speakers

Applications

20

Page 21: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

Conclusion / Summary

• Solar Power Tracking

– Max Power moves with Sunlight and Temperature

• Algorithms: F.OCV | P&O | IC

• Trackers: Software | Hardware | Accuracy

– 3M: Monitor | Manipulate | Maximize

• Simple MPPT Implementation

– Max ICHG PMPP

• P&O approach

• Reflected PIN

• TIDA-01556: I2C Controlled Single Cell 5-A Charger

with Power Management for MPPT with Solar Input

21

Page 22: How to implement maximum power point tracking for … to Implement... · How to implement maximum power point ... –MPP Tracker •Manipulate the operating point •Monitor outputs

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.

Use of this material is subject to TI’s , viewable at TI.com