honsneuroscience/biomedicalsciences%% … · 2013. 11. 1. · ! 4!...

19
1 Hons Neuroscience/Biomedical Sciences THE NEUROMUSCULAR JUNCTION IN HEALTH AND DISEASE Practical Exercises: Function and Structure of Neuromuscular Synapses Aim 1. To make recordings and explore the control of action potentials in your own motor units; 2. To investigate and measure the action, specificity, and efficacy of ions and drugs that affect synaptic transmission and muscle excitability at the neuromuscular junction. 3. To study and measure the structure and organization of neuromuscular synapses Skills you will develop Recording action potentials (electromyogram, EMG) using surface electrodes applied to the skin overlaying your own muscles Measuring twitch contractions in an accurate computer simulation of the classic, rat diaphragm nervemuscle preparation Constructing doseresponse curves, in response to addition of ions and drugs Appraising the morphology of healthy and diseased neuromuscular synapses Making and keeping accurate records of your practical work Answering questions about the experiments you have done and their theoretical background Background The exercises will be held in the Greenfield computer suite. However, all the software you will use is in the public domain and can be downloaded free of charge from the following websites: 1. Backyard Brains: https://backyardbrains.com/ 2. Strathclyde Institute of Pharmacy and Biomedical Sciences: http://spider.science.strath.ac.uk/sipbs/showPage.php?page=software_si ms 3. ImageJ: http://rsbweb.nih.gov/ij/ The exercises comprise a mixture of handson recording of motor unit activity in your own muscles; experiments using a computer simulation; an online tutorial on structure and function of neuromuscular junctions; and an exercise using image analysis techniques to obtain morphological data from images of neuromuscular junctions.

Upload: others

Post on 29-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  1  

Hons  Neuroscience/Biomedical  Sciences      THE  NEUROMUSCULAR  JUNCTION  IN  HEALTH  AND  DISEASE    Practical  Exercises:  Function  and  Structure  of  Neuromuscular  Synapses    Aim    

1. To  make  recordings  and  explore  the  control  of  action  potentials  in  your  own  motor  units;  

2.  To  investigate  and  measure  the  action,  specificity,  and  efficacy  of  ions  and  drugs  that  affect  synaptic  transmission  and  muscle  excitability  at  the  neuromuscular  junction.  

3. To  study  and  measure  the  structure  and  organization  of  neuromuscular  synapses  

   Skills  you  will  develop  

-­‐ Recording  action  potentials  (electromyogram,  EMG)  using  surface  electrodes  applied  to  the  skin  overlaying  your  own  muscles  

-­‐ Measuring  twitch  contractions  in  an  accurate  computer  simulation  of  the  classic,  rat  diaphragm  nerve-­‐muscle  preparation  

-­‐ Constructing  dose-­‐response  curves,  in  response  to  addition  of  ions  and  drugs  

-­‐ Appraising  the  morphology  of  healthy  and  diseased  neuromuscular  synapses  

-­‐ Making  and  keeping  accurate  records  of  your  practical  work  -­‐ Answering  questions  about  the  experiments  you  have  done  and  their  

theoretical  background      

Background    The  exercises  will  be  held  in  the  Greenfield  computer  suite.  However,  all  the  software  you  will  use  is  in  the  public  domain  and  can  be  downloaded  free  of  charge  from  the  following  websites:    

1. Backyard  Brains:  https://backyardbrains.com/  2. Strathclyde  Institute  of  Pharmacy  and  Biomedical  Sciences:  

http://spider.science.strath.ac.uk/sipbs/showPage.php?page=software_sims  

3. ImageJ:  http://rsbweb.nih.gov/ij/    

The  exercises  comprise  a  mixture  of  hands-­‐on  recording  of  motor  unit  activity  in  your  own  muscles;  experiments  using  a  computer  simulation;  an  on-­‐line  tutorial  on  structure  and  function  of  neuromuscular  junctions;  and  an  exercise  using  image  analysis  techniques  to  obtain  morphological  data  from  images  of  neuromuscular  junctions.      

Page 2: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  2  

       Exercise  1.  Recording  EMG  using  a  Backyard  Brains  “SpikerBox”  1.  Go  to  the  website  for  Backyard  Brains.  You  will  find  a  youtube  video  there,  which  you  can  also  find  here:    http://www.youtube.com/watch?v=E2dALNLa8_g    2.  Attach  a  pair  of  adhesive  electrodes  to  your  forearm  and  connect  them  to  the  spiker  box  input  terminals.  Attach  the  third  (ground)  electrode  clip  to  an  item  of  metal  jewelry  you  are  wearing  or,  to  an  adhesive  electrode  over  your  wrist.      3.  From  your  Greenfield  Suite  computer,  locate  and  run  from  the  Start  menu  (bottom  left,  multicolour  flags  icon),  the  Backyard  Brains  Neuron  Recorder  program.  Connect  one  output  of  the  Spiker  box  to  a  set  of  earphones  or  headphones  if  you  have  them,  and  the  other  to  the  line-­‐input  of  your  computer  (this  will  be  demonstrated).    (If  you  have  an  iPad,  or  a  smartphone  like  an  iPhone  or  Android,  you  can  download  an  App  from  the  Backyard  Brains  website  or  Apple’s  AppStore  and  connect  the  Spiker  box  output  to  that,  using  one  of  the  special  cables  provided.  Ask  a  demonstrator.  The  Neuron  Recorder  program  is  also  free  so  you  could  download  and  run  it  using  your  own  laptop  PC/Mac  if  you  wish).    4.  Start  the  Neuron  recorder  program  and  voluntarily  contract  your  arm  muscles,  observing  the  spikes  on  the  screen  and  the  crackle  and  clicks  you  hear  from  the  loudspeaker.  How  do  the  spikes  change  as  you  increase  the  strength  of  your  muscle  contraction?    5.  Now  semi-­‐quantify  this.  Take  the  grip-­‐strength  dynamometer  and  exert  forces  of  increasing  magnitude  that  you  can  read  of  the  digital  display:  try  1kg,  2kg,  5kg,  10kg,  20kg,  40kg.  Note  on  a  scale  of  1-­‐10,    a)  the  frequency,  b)  the  amplitude  of  the  spikes  as  you  apply  increasing  force.    Kg  force     0         1     2   5   10      20              40    Frequency    Amplitude      Summarise  what  you  have  learned,  including  making  sketches  of  the  responses  you  have  elicited.    

• How  might  you  quantify  the  recordings?      • What  do  we  need  to  know  in  order  to  understand  what  you  have  observed?      • Can  you  think  of  any  other  experiments  you  could  do  using  the  Spiker  Box  to  

help  you  find  out?      • What  other  research  and  techniques  might  you  use  to  take  your  knowledge  

and  understanding  of  mechanisms  and/or  functions  to  a  deeper  level?        • What  could  go  wrong,  leading  to  dysfunction  or  disease?  

Page 3: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  3  

Exercise  2.  Simulation  of  neuromuscular  function  in  the  rat  diaphragm    The  simulated  preparation  consists  of  the  hemisected  diaphragm  of  a  rat,  a  classical  skeletal  muscle  preparation  in  neuromuscular  pharmacology.  In  a  real  experiment,  the  hemidiaphragm  from  one  side  (usually  the  left  side,  for  technical  reasons)  is  dissected  complete  with  a  long  distal  stump  of  the  phrenic  nerve  .  Stimulation  of  the  nerve  with  single  pulses,  about  0.1  ms  in  duration  and  1-­‐5V  in  amplitude,  triggers  action  potentials  in  the  motor  nerve  fibres,  which  in  turn  cause  release  of  acetylcholine  (ACh)  from  synaptic  vesicles  in  motor  nerve  endings.  The  ACh  molecules  diffuse  across  the  narrow  synaptic  cleft  and  bind  to  specific,  nicotinic  receptors  in  the  membranes  of  the  ‘motor  endplate’  region  of  the  muscle  fibre.  These  ionotropic  receptors  mediate  a  current  (the  endplate  current,  EPC)  that  depolarizes  the  muscle  fibre  (the  endplate  potential,  EPP).  An  EPP  evoked  in  this  way  is  normally  large  enough  to  trigger  an  action  potential  in  the  muscle  fibre.  The  simultaneous  firing  of  action  potentials  in  all  the  muscle  fibres  can  be  detected  and  monitored  by  EMG  recording  (see  part  1)  and  also  by  the  twitch  contraction  of  the  muscle.  These  contractions  can  be  measured,  for  example  by  attaching  the  muscle  to  a  force  transducer  that  changes  its  electrical  resistance  in  proportion  to  the  force  applied  to  it.  Incorporation  of  the  transducer  into  a  Wheatstone  bridge  circuit  and  recording  the  output  through  a  analogue-­‐to-­‐digital  interface  allows  the  change  in  resistance  (hence,  force)  to  be  digitized,  measured  and  displayed  on  a  computer  screen.      When  we  change  the  ionic  environment,  or  add  drugs  to  a  nerve-­‐muscle  preparation,  these  ions  or  drugs  may  affect  conduction  of  nerve  impulses;  synthesis,  storage,  release,  action  and  inactivation  of  the  ACh  neurotransmitter;  action  potentials  in  muscle  fibres;  or  muscle  contractions.  However,  in  this  exercise  what  we  are  measuring  in  all  cases  is  the  end  result:  muscle  contractile  force.  Thus,  preparations  like  the  rat  phrenic  nerve-­‐hemidiaphragm  have  proved  useful  in  giving  us  a  quantitative  but  rough  indication  of  the  effects  of  drugs.  The  effects  must  be  interpreted  with  caution,  however.  More  sophisticated  investigations  are  normally  required,  using  electrophysiological  techniques  or  ligand  binding  assays,  to  establish  the  precise  mechanisms  of  action  the  ions  or  drugs,  and  on  which  specific  components  of  the  neuromuscular  system  they  are  acting.    Accessing  the  Virtual  Twitch  Program    1.  Log-­‐in  to  an  open-­‐access  computer.    2.  From  the  Start  menu  (lowest  left  four-­‐colour  flag  icon)  select  'All  Programs'  then  select  '_School  Applications_'  then  click  on  'Medicine  and  Veterinary  Medicine'  and  select  the  'MedCAL'  option.  (You  may  find  there  is  a  MedCAL  shortcut  already  on  your  Desktop  display.)  From  the  menu  that  appears,  select  ‘Virtual  Twitch’.    This  program  can  also  be  downloaded  to  your  own  computer  from  here:    http://spider.science.strath.ac.uk/sipbs/showPage.php?page=software_sims      

Page 4: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  4  

Simulated  twitch  contractions  of  the  diaphragm  muscle  are  produced,  as  in  a  real  experiment,  either  using  a  stimulating  electrode  attached  to  the  phrenic  Nerve  (“indirect”);  or  by  an  electrode  attached  directly  to  the  Muscle    (“direct”)  stimulation.  (Note:  It  is  important  to  appreciate  that  direct  stimulation  will  also  normally  also  stimulate  the  motor  nerves  that  ramify  throughout  the  muscle.  However,  if  neuromuscular  transmission  is  blocked  ,  then  direct  stimulation  will  excite  only  the  muscle  fibres.  )      Important  Notes:    

1. Ionic  and  drug  concentrations  in  the  program  are  given  in  exponent  form:  e.g.  2x10-­‐6M  (or  2  µM),  is  entered  as  2.0E-­‐006  M.      

2. Drug  additions  are  cumulative.  This  means  that  if  you  add  the  same  dose  twice,  then  the  concentration  is  doubled  in  the  bath.      

3. When  you  apply  Muscle  (direct)  stimulation,  take  care  to  return  to  Nerve  (indirect)  stimulation  before  giving  the  next  drug  

 Varying  ion  concentrations  in  the  bathing  medium  and  addition  of  drugs  can  be  simulated  in  this  program,  to  illustrate  various  presynaptic  and  postsynaptic  effects.    Experiment  A:  Changing  Ions    As  you  should  have  learned  from  lectures  on  excitable  cells  physiology,  resting  potentials  and  action  potentials  in  nerve  axons  are  very  sensitive  to  changes  in  Na+  and  K+  ions  in  the  extracellular  fluid.  Synaptic  transmission  is,  in  addition,  very  sensitive  to  the  concentration  of  Ca2+    ions.  This  is  because  the  probability  of  exocytosis  of  a  synaptic  vesicle  and  release  of  neurotransmitter  (acetylcholine,  ACh,  in  this  case)  is  strongly  influenced  by  Ca2+    ions,  which  interact  co-­‐operatively  with  a  Ca  –sensor  proteins,  including  synaptotagmin,  found  in  the  SNARE  complexes  that  control  exocytosis.  The  main  source  of  the  Ca2+  for  exocytosis  is  from  the  extracellular  fluid.  Ca2+  ions  flow  into  the  nerve  terminal  through  voltage-­‐gated  Ca-­‐channels  in  the  nerve  terminal  membrane  when  it  is  depolarized  by  an  action  potential.  The  amount  of  Ca2+  entering  is  very  small  (less  than  1  pM  per  cm2  of  membrane),  but  the  volume  of  the  nerve  terminal  is  also  very  small.    Thus,  following  an  action  potential,  intracellular  Ca2+  concentration  increases  from  about  1  nM  to  about  0.1  µM.  Thus,  there  is  about  a  100-­‐fold  increase  in  intracellular  Ca2+  concentration.  Mg2+  ions  compete  with  Ca2+  for  entry  through  the  Ca-­‐channels,  and  possibly  for  binding  sites  on  the  Ca2+  sensors.  By  contrast,  Mg2+    ions  do  not  promote  exocytosis:  they  inhibit  it.    

Page 5: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  5  

Procedure    

1. Drag  the  screen  dimensions  for  a  large  display  or  click  the  full  screen  button  at  the  top  right  of  the  window.      

2. Make  sure  the  Stimulator  is  set  to  Nerve  (indirect).  Click  the  Start  button.  Observe  successive  twitch  contractions  as  the  trace  scrolls  across  the  screen.  (You  may  notice  periodic  changes  in  the  thickness  of  the  vertical  lines.  This  is  a  digital  display  artifact  called  ‘aliasing’).  Note  how  the  peaks  of  the  twitch  contractions  vary  slightly.    

3. Click  the  Stop  button.  Measure  the  average  of  ten  successive  twitch  contractions  by  hovering  the  cursor  over  their  peaks  and  recording  the    Twitch  amplitude  in  grams.  Enter  the  values  into  a  Microscoft  Excel  spreadsheet  (run  from  the  Start  flag…  All  programs..  Microsoft  Office..).  Calculate  the  mean  and  standard  deviation  using  the  inbuilt  AVERAGE    and  STDEV  functions.  Convert  the  mean  value  to  Newtons  of  force  by  multiplying  the  value  in  kg  by  the  gravitational  constant,  9.81ms-­‐2  (note  the  measurements  are  in  grams  so  you  must  convert  to  kg).  Save  the  file  with  an  appropriate  name  on  your  area  of  the  server.    

4. Open  a  Microsoft  Powerpoint  file.  Make  the  Experiment  window  the  “top”  window  by  clicking  it  again  to  show  the  twitches.  Now  press  <ALT>-­‐PrintScreen  together.  This  copies  the  window  to  the  Clipboard.  Click  on  your  Powerpoint  file  and  Paste  (or  <CTRL>-­‐V)  the  image  into  the  slide.  Add  text  to  describe  what  it  is.  Save  the  file  with  an  appropriate  name  on  your  area  of  the  server  

   Effect  of  Calcium  ions  Change  solution  to  one  with  zero  calcium  by  selecting  the  “Low  Ca  Kreb’s”  from  the    Wash  menu  at  the  top  of  the  window.  After  the  trace  has  settled  press  the  Stop  button.    Scroll  to  the  region  of  interest  and  copy  (<ALT>-­‐PrintScreen)  and  paste  the  image  into  another  Powerpoint  slide.    

 

1. What  happens  to  the  twitch  contractions  over  time?        

2. How  rapidly  does  this  happen?        

3. Why  do  you  think  it  takes  so  long?    

   

Page 6: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  6  

Select  Muscle  (direct)  stimulation  and  click  Start.  The  contraction  is  back!    After  a  few  twitches  have  been  recorded,  press  Stop.      Click  Nerve  (indirect)  stimulation.    Select  “Wash”from  the  top  menu  and  select  “Normal  Ca  Kreb’s  solution”.  Click  Start  .  Observe  the  twitch  contractions  gradually  return.        When  the  contractions  have  recovered,  press  Stop.  

 Now  do  an  experiment  to  measure  the  effect  of  increasing  Ca2+  over  a  range  from  100  µM  to  1  mM.      First,    select  Wash  …  Low-­‐Ca  Krebs  and  press  Start.    Once  the  contractions  have  stopped,  Select  Ions,  Calcium  and  from  the  dropdown  menu  “1.0E-­‐004  M”.  This  means  you  are  adding  Ca2+  to  the  bathing  medium  to  a  final  concentration  of  100  µM.    

 Make  sure  you  have  Nerve  (indirect)  stimulation  selected  and  press  Start.  You  should  see  little  or  no  response.  We  must  therefore  conclude  that  100  µM  Ca2+  is  not  sufficient  to  restore  or  maintain  synaptic  transmission  at  any  of  the  neuromuscular  synapses.    Now  add  another  dose  of  Ca2+  to  increase  the  concentration  to  200µM  (by  adding  another  “1.0E-­‐004  M”).    Note  that  the  accumulated  concentration  in  the  bath  is  indicated  below  the  trace  at  the  point  in  time  when  the  solution  was  added.      

1. Why  does  the  muscle  still  respond  to  direct  but  not  indirect  stimulation  in  low  Calcium  Krebs?        

2. Why  does  contraction  slowly  return  when  Ca2+  ions  are  returned  ?        

3. Why  do  you  think  it  takes  so  long?    

   

Suppose  the  bath  volume  was  10  ml  and  you  had  a  stock  solution  of  0.1M  CaCl2.  What  volume  of  stock  would  you  add  to  the  bath  to  obtain  a  final  concentration  Ca2+  concentration  of  100  µM?  

   

Page 7: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  7  

Once  the  trace  has  stabilized,  add  successive  doses  of  100  µM  Ca2+  until    you  reach  a  bath  concentration  of  1  mM  (that  is,  until  the  note  under  the  trace  1.0E-­‐003  M).  The  normal  twitch  is  almost  restored.    Press  Stop.  Use  the  scrollbar  to  display  the  result  of  your  experiment  and  copy  and  paste  it  to  your  Powerpoint  file.  Enter  text  description  (adding  arrows,  if  you  wish)  and  save  the  file.    Return  to  the  traces.  Measure  the  average  amplitude  of  three  twitches  in  the  region  where  the  trace  has  stabilized,  and  record  this  against  the  bath  concentration  of  Ca2+  in  your  Excel  Spreadsheet.  Plot  a  graph  of  the  amplitude  of  the  twitch,  as  percentage  of  the  maximum,  against  the  logarithm  of  the  Ca2+concentration  in  the  bath  .  Copy  and  paste  this  graph  into  your  Powerpoint  file.    

 Effect  of  Magnesium  ions.  Without  washing  the  preparation,  press  Start  and  select  Magnesium  from  the  Ions  menu.  Increase  the  ionic  concentration  of    Mg2+  ions  by  1  mM  (1.0E-­‐003  M).    Allow  the  trace  to  stabilize.    Now  progressively  increase  Mg2+  in  1  mM  steps,  allowing  the  trace  to  stabilize  each  time,  until  the  concentration  of  Mg2+  in  the  bath  has  reached  10  mM.      Press  Stop;  scroll  so  your  region  of  interest  fills  the  screen  and  copy  and  paste  it  into  a  new  slide  in  your  Powerpoint  file.  Add  arrows  and  make  notes  as  appropriate.    Return  to  your  traces,  measure  the  average  of  three  contractions  at  each  concentration  of  Mg2+,  transfer  the  data  to  your  Excel  file  and  plot  twitch  contraction  directly  against  Mg2+  concentration.  

Comment  on  the  nature  and  steepness  of  the  relationship  between  force  of  contraction  and  Ca2+concentration:  

   

Page 8: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  8  

 

 Finally,  go  to  this  website:    https://en.wikipedia.org/wiki/Reference_ranges_for_blood_tests  ..and  examine  the  ionic  composition  of  human  blood  plasma  from  the  link  to    3.1:  Ions  and  Trace  Metals.    Summarise  what  you  have  learned  from  this  part  of  the  practical  and  note  the  file  names  of  your  Excel  and  Powerpoint  files  for  future  reference.  Print  out  the  spreadsheet  and  graphs,  and  the  representative  traces  you  have  saved  and  attach  them  to  this  workbook.  Make  sure  your  name  and  the  date  are  noted  on  each  page.  This  is  good  laboratory  practice.        

Comment  on  the  sensitivity  and  the  relationship  of  the  muscle  contractions  to  Ca2+ions  compared  with  the  relationship  and  sensitivity  to  Mg2+:  

     Use  a  web  browser  and  google  Pubmed.  Locate  the  classic  paper  by    Dodge  and  Rahamimoff  (1967)  PMID  6065887.  Download  the  paper.  Read  the  Summary  at  the  front  of  the  paper  then  locate  Figure  3.  Comment  on  the  relationship  between  the  amplitude  of  the  End-­‐plate  potential  (EPP)  in  a  single  muscle  fibre  as  Ca2+  ionic  concentration  is  increased,  in  progressively  increasing  concentrations  of  Mg2+  ions.        How  might  the  analysis  in  Dodge  &  Rahamimoff’s  research  paper  help  you  to  understand  the  effects  of  Ca2+  and  Mg2+on  muscle  twitch  contractions?  

Page 9: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  9  

1. What  are  the  normal  concentrations  of  Ca2+  and  Mg2+  ions  in  human  blood  plasma  ?      

2. What  are  the  normal  concentrations  of  Ca2+  and  Mg2+  ions  in  Krebs  mammalian  physiological  saline?      

3. What  concentration  of  Ca2+  ions  was  required  to  maintain  indirect  muscle  twitch  contractions  of  the  rat  diaphragm  at  half  the  maximum  value?      

4. In  the  presence  of  1  mM  Ca2+,  what  concentration  of  Mg2+  ions  reduces  the  twitch  contractions  to  half  the  initial  amplitude?      

5. Mathematically,  what  is  the  relationship  between  the  amplitude  of  an  endplate  potential  (EPP)  and  Ca2+  concentration?      

6. Mathematically,  what  is  the  relationship  between  the  amplitude  of  an  EPP  and  the  Mg2+concentration?  

 

Page 10: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  10  

Experiment  B  :  Adding  Drugs    Drugs  can  act  presynaptically,  affecting  neurotransmitter  release;  or  postsynaptically,  affecting  sensitivity  to  neurotransmitter.  In  addition,  some  drugs  interfere  with  the  inactivation  of  neurotransmitter,  by  inhibiting  or  enhancing  either  its  breakdown;  or  by  inhibiting  or  enhancing  the  uptake  of  neurotransmitter  or  its  breakdown  products.      At  mammalian  neuromuscular  junctions,  acetylcholine  is  released  by  exocytosis  from  synaptic  vesicles;  and  the  molecules  bind  to  nicotinic  acetylcholine  receptors  in  the  muscle  membrane,  embedded  in  the  membranes  of  the  junctional  folds,  at  the  motor  endplate.  Acetylcholine  is  normally  broken  down  to  acetate  ions  and  choline,  catalyzed  by  the  enzyme  acetylcholinesterase.  Here  you  will  investigate  the  effects  of  a  drug  that  enhances  neurotransmitter  release  (4-­‐aminopyridine);  drugs  that  inhibit  nicotinic  acetylcholine  receptors  (d-­‐tubocurarine  and  suxamethonium);  a  drug  inhibit  acetylcholinesterase  (neostigmine);  and  a  drug  that  inhibits  the  sodium  channels  that  cause  action  potentials  (tetrodotoxin).    4-­‐aminopyridine  is  used  clinically  in  the  treatment  of  Lambert-­‐Eaton  Myasthenic  Syndrome  (LEMS),  an  autoimmune  disease  that  attacks  voltage-­‐sensitive  Ca-­‐channels  in  presynaptic  motor  nerve  terminals,  reducing  neurotransmitter  release.  It  is  also  used  in  the  treatment  of  the  demyelinating  disease,  multiple  sclerosis,  in  which  action  potentials  in  nerve  axons  fail,  causing  loss  of  sensation  and  paralysis  of  movement,  due  to  the  loss  of  their  insulating  myelin  sheath.      Analogues  of  d-­‐tubocurarine,  such  as  atracurium  or  rocuronium,  are  used  clinically  to  produce  muscle  relaxation,  for  example  during  surgery.  Suxamethonium  is  also  used  as  a  muscle  relaxant  during  certain,  short  surgical  procedures.    Neostigmine  is  used  clinically  in  the  treatment  of  the  disease  myasthenia  gravis  (MG),  an  autoimmune  disease  that  attacks  nicotinic  ACh  receptors  at  neuromuscular  junctions,  reducing  end-­‐plate  sensitivity  to  acetylcholine.  Another,  short-­‐acting  anticholinesterase  called  edrophinium  is  used  in  a  diagnostic  test  for  MG:  the  ‘tensilon’  test:  patients  with  MG  show  sudden  (temporary)  recovery  from  muscle  weakness  when  this  drug  is  administered.      Drugs  that  block  sodium  channels  are  commonly  used  as  local  anaesthetics,  although  tetrodotoxin  is  not  used  in  this  way  because  it  is  too  potent  and  not  metabolized,  and  therefore  too  dangerous.  One  of  the  most  common  local  anaesthetics  is  lignocaine,  widely  used  in  dentistry,  for  example.  It  is  safe,  relatively  short  acting  and  swiftly  metabolized.  

Page 11: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  11  

   Effect  of  4-­‐aminopyridine  In  Experiment  A  you  varied  the  Ca2+/Mg2+  ionic  concentration  ratio  and  found  this  affected  twitch  contractions  evoked  by  nerve  stimulation.  This  is  most  simply  explained  by  the  requirement  of  Ca2+  ions  for  neurotransmitter  release.  In  the  present  experiment  you  will  examine  the  effect  of  4-­‐aminopyridine  when  the  twitch  contractions  are  partially  inhibited  by  a  reduced  concentration  of  Ca2+  ions.    Begin  by  starting  a  “New  Rat”  from  the  File  menu.  Ensure  you  have  Nerve  (indirect)  stimulation.  Wash  with  low-­‐Ca  Krebs  so  that  the  contractions  fall  to  zero.  Now  add  back  Ca2+  to  a  final  bath  concentration  of  500µM  (5.0E-­‐004  M).    Once  the  contractions  have  stabilized,  select  Drugs,  4-­‐aminopyridine  and  add    1  µM  (1.0E-­‐006  M).    Once  the  trace  has  stabilized,  press  Stop;  adjust  the  control  to  bring  the  complete  trace  into  the  window,  and  copy  and  paste  the  record  into  your  Powerpoint  file.  

1. What  effect  did  4-­‐aminopyridine  have  on  the  muscle  twitch  contractions?          

2. 4-­‐aminopyridine  is  a  drug  that  blocks  the  voltage-­‐gated  potassium  channels  that  are  present  in  nerve  terminal  membranes.  These  channels  are  normally  responsible  for  repolarization  of  the  membrane  during  the  action  potential.  How  would  you  therefore  expect  4-­‐amino  pyridine  to  affect  the  action  potential?  

       

3. Ca2+  ions  enter  motor  nerve  terminals  through  voltage-­‐sensitive  Ca-­‐  channels  but  4-­‐aminopyridine  has  no  direct  effect  on  these  channels.  So,  why  is  Ca2+  entry  prolonged,  leading  to  enhanced  neurotransmitter  release,  in  the  presence  of  4-­‐aminopyridine?          

4. How  do  you  think  you  might  test  your  hypothesis/explanation?        

       

Page 12: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  12  

         Effect  of  d-­‐tubocurarine.    This  drug  is  a  competitive  nicotinic  cholinergic  receptor  antagonist  and,  thus,  a  blocker  of  neuromuscular  transmission  in  skeletal  muscle,  where  ligand-­‐gated,  nicotinic  acetylcholine  receptors  are  found  at  motor  end-­‐plates.      Start  a  new  experiment  by  selecting  “New  Rat”  from  the  File  menu.  Ensure  you  are  using  indirect  stimulation.  Press  Start.    Record  a  few  twitches,  then  add  d-­‐tubocurarine  to  a  concentration  of  0.2µM  (2.0E-­‐007  M).  

   Now  progressively  increase  the  dose  of  d-­‐tubocurarine  in  steps  of  0.2  µM.  Allow  the  twitches  to  stabilize  at  their  new  level  before  adding  each  additional  dose.    Continue  adding  doses  until  the  final  concentration  is  1  µM.  Once  your  reach  this  concentration,  progressively  increase  the  bath  concentration  by  1µM  until  it  reaches  5  µM.    Switch  to  Muscle  (direct)  stimulation.  The  contraction  comes  back!!    Press  Stop.  Transfer  the  record  to  your  Powerpoint  File.  Measure  the  average  response  of  three  twitches  from  the  stable  regions  at  each  concentration  of  d-­‐tubocurarine  and  transfer  the  data  to  your  Excel  spreadsheet.  Plot  a  log  dose-­‐response  curve  (twitch  amplitude  as  percentage  of  maximum  on  the  y-­‐axis  (ordinate)  against  logarithm  of  the  d-­‐tubocurarine  concentration  and  calculate  the  EC50.    Return  to  your  experiments.  Switch  back  to  Nerve  (indirect)  stimulation.  Press  Start.  From  the  Drugs  menu  select  Neostigmine  and  a  concentration  of  1µM.  You  will  observe  a  substantial  recovery  of  the  twitch.  Copy  the  trace  to  your  Powerpoint  file  and  label  it  appropriately.  

Suppose  the  bath  volume  was  10  ml  and  you  had  a  stock  solution  of  10  mg/ml  d-­‐tubocurarine  (MW  625).  What  volume  would  you  need  to  add  to  the  bath  to  achieve  a  concentration  of  0.2  µM?        

Page 13: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  13  

 

1. What  effect  did  d-­‐tubocurarine  have  on  the  muscle  twitch  contractions?      

2. What  was  the  EC50  of  d-­‐tubocurarine  (concentration  required  to  reduce  the  twitch  contraction  in  normal  Krebs  solution  by  50%)?        

3. d-­‐tubocurarine  acts  postsynaptically:  so,  how  come  direct  muscle  stimulation  produce  a  maximal  twitch  contraction?          

4. Why  does  administration  of  neostigmine  counteract  the  blocking  effect  of  d-­‐tubocurarine?  

           5. d-­‐tubocurarine  is  a  drug  that  blocks  nicotinic  Ach  receptors.  These  

ligand  gated  channels  are  normally  responsible  for  depolarization  of  the  muscle  at  the  motor  endplate  following  a  nerve  stimulus:  the  endplate  potential  (EPP).  EPP’s  are  normally  twice  the  size  they  need  to  be  to  trigger  a  muscle  action  potential.  Each  EPP  is  made  up  of  ‘quantal’  steps  about  1  mV  in  amplitude  (miniature  EPP’s).  How  would  you  expect  d-­‐tubocurarine  to  affect  EPPs  and  mEPPs?        

                 

Page 14: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  14  

 Effects  of  Atropine,  Suxamethonium  and  Tetrodotoxin    Atropine  is  a  drug  that  blocks  a  different  type  of  ACh  receptor:  the  so-­‐called  muscarinic  type  of  receptor,  found  for  example  in  cardiac  and  smooth  muscle.  By  contrast,  d-­‐tubocurarine  has  no  effect  on  muscarinic  receptors.  We  can  therefore  test  a  hypothesis  that  the  ACh  receptors  in  a  type  of  muscle  tissue  are  muscarinic  or  nicotinic,  by  comparing  the  effects  of  atropine  and  d-­‐tubocurarine.  The  test  is  not  definitive,  but  it  is  a  good  start.    Start  with  a  “New  Rat”  from  the  File  menu.  Ensure  Nerve  (indirect)  stimulation  is  selected.  Press  Start  and  collect  a  few  twitch  contractions.    Select  Drug…Atropine…  Add  1  mM  (1.0E-­‐003  M)  to  the  bath.      Wait  about  a  minute,  then  add  1  µM  (1.0E-­‐006  M)  of  d-­‐tubocurarine    Wash  with  Normal  Krebs  solution.  Press  Stop  when  the  contractions  are  fully  recovered.    Suxamethonium    is  a  dimer  of  acetylcholine.  It  has  complex  effects  on  ACh  receptors,  initially  activating  them  then  desensitizing  them  and  inactivating  depolarization.  For  this  reason  it  is  referred  to  as  a  “depolarizing  blocker”.  It  is  metabolized  readily  and  is  used  in  some  forms  of  surgery  requiring  brief  muscle  relaxation.    Ensure  you  are  stimulating  via  the  Nerve  (indirect).  Press  Start  and  collect  a  few  baseline  twitches.      Select  Drug—Suxamethonium….Add  20µM  to  the  bath    (2.0E-­‐005  M).  Observe  that  the  twitch  contractions  are  substantively  reduced.      Now  add  neostigmine  at  10  times  the  dose  that  was  effective  when  d-­‐tubocurarine  was  inhibiting  the  contractions  (ie  10µM;  1.0E-­‐005  M).  Not  only  does  neostigmine  not  counteract  the  effect  of  suxamethonium,  it  adds  to  the  latter’s  inhibitory  effect!!  .    Switch  to  Muscle  (direct)  stimulation.  Collect  a  few  twitches,  then  press  Stop.    Copy  the  trace  to  your  Powerpoint  file  and  label  it  appropriately                    

Page 15: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  15  

   

   Tetrodotoxin  is  a  non-­‐selective  blocker  of  voltage-­‐gated  sodium  ion  channels  (NaV  1  type).  It  therefore  blocks  action  potentials  and,  hence,  muscle  contractions.    Wash  the  preparation  with  normal  Krebs  solution.  Ensure  that  the  Stimulator  is  set  for  Nerve  (indirect)  stimulation.  Press  Start  and  collect  a  few  twitches.    When  the  contractions  have  stabilized,  add  tetrodotoxin  (1  µM;  1.0E-­‐006  M)  to  the  bathing  medium.    Observe  the  rapid  and  almost  complete  blocking  effect.  Remember  how  when  we  switched  to  direct  stimulation  in  either  low  Ca-­‐Krebs  or  in  the  presence  of  d-­‐tubocurarine,  how  the  contractions  were  restored  with  Muscle  (direct)  stimulation?  Why  might  you  expect  it  to  be  different  this  time?    To  test  your  hypothesis,  switch  to  Muscle  (direct)  stimulation.  After  about  a  minute,  Wash  with  normal  Krebs  solution  and  observe  the  recovery.  Switch  back  to  Nerve  (indirect)  stimulation  and  observe  that  the  nerve-­‐evoked  response  has  recovered  as  well.  Press  Stop  and  copy  your  records  to  your  Powerpoint  file  and  label  it.  Save  the  Powerpoint  file  and  your  Excel  file.    

Describe  the  effect  of  atropine,  how  it  differs  from  the  effect  of  d-­‐tubocurarine,    and  why:          Describe  the  effect  of  suxamethonium.  How  does  the  effect  of  neostigmine  differ  from  the  effect  when  d-­‐tubocurarine  is  present  instead  of  suxamethonium?            Suxamethonium  is  a  ‘depolarising  blocker’  of  ACh  receptors,  whereas  d-­‐tubocurarine  is  a  competitive  antagonist  of  the  nicotinic  receptors.  Why  does  the  effect  of  neostigmine  in  the  presence  of  suxmethonium  differ  from  its  effect  in  the  prescence  of  d-­‐tubocurarine?  

Page 16: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  16  

Final  Note:  The  effects  of  TTX  are  utilized  by  Japanese  gourmet  chefs:  fugu  is  a  fish  dish  prepared  by  cooking  puffer  fish  sufficient  to  reduce  the  toxicity  of  TTX,  but  retaining  sufficient  levels  to  produce  tingling  and  numbness  in  the  lips  of  diners.  Needless  to  say,  there  are  a  few  deaths  each  year  caused  by  inadequate  preparation  of  fugu..    

   If  you  are  interested  in  testing  your  explanation,  go  back  to  the  MedCAL  menu  and  try  out  the  intracellular  EPP  simulator  program:  Virtual  NMJ.  Block  the  muscle  action  potential  with  10µM  µ-­‐conotoxin  and  note  or  measure  the  EPP.  Then  add  1  µM  d-­‐tubocurarine  and  observe  and  measure  the  effect.  You  can  also  investigate  the  effect  of  reduced  Ca2+  and/or  increasing  Mg2+  in  this  simulation.      

Describe  the  effects  of  tetrodotoxin  on  Nerve  (indirect)  and  Muscle  (direct)  stimulation:        Tetrodotoxin  is  a  non-­‐specific,  reversible  blocker  of    voltage-­‐gated  sodium  channels.  How  does  this  explain  the  effects  you  have  observed  and  described?      µ-­‐conotoxin  is  a  selective  sodium-­‐channel  antagonist  that  blocks  voltage-­‐gated  sodium  ion  channels  of  the  Nav1.5  subtype,  found  in  skeletal  muscle  fibre  membranes.  A  µ-­‐conotoxin  insensitive  type  of  Nav  channel  is  found  in  nerve  axons.  In  light  of  this,  how  would  twitch  responses  in  µ-­‐conotoxin  differ  from  the  effect  of    TTX?          Suppose  instead  you  were  making  a  microelectrode  recording  in  a  muscle  fibre  rather  than  muscle  twitches.  If  the  preparation  was  then  treated  with    µ-­‐conotoxin,  how  would  the  response  differ  from  EPPs  recorded  in  the  presence  of  d-­‐tubocurarine?                

Page 17: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  17  

Exercise  3:  Morphology  of  Neuromuscular  Junctions    Do  this  part  of  the  practical  in  your  own  time.    Go  to  the  following  web  page:    http://www.dns.ed.ac.uk/rrrweb/nmjtutorial.htm    Follow  the  sequence  of  images  you  find  there  and  answer  the  following  questions:  

What  techniques  can  be  used  to  visualize      

a) motor    nerve  terminals  b) motor  endplates  c) synaptic  basal  lamina  

 How  many  neuromuscular  junctions  are  there  in  a  typical  mouse  muscle  motor  unit?    What  four  cell  types  are  found  at  a  mammalian  neuromuscular  junctions?    What  is  the  approximate  length  of  a  motor  endplate?    What  is  the  approximate  area  of  a  motor  end-­‐plate?    How  does  the  shape  of  the  motor  nerve  terminal  (presynaptic)  relate  to  the  structure  of  the  motor  endplate  (postsynaptic)?    Where  is  acetylcholinesterase  located?    Whereabouts  on  the  motor  endplate  are  acetylcholine  receptors  located?    Whereabouts  on  the  motor  endplate  are  voltage-­‐gated  sodium  channels  located?    How  many  active  zones  are  present  in  one  synaptic  bouton?    What  are  the  approximate  dimensions  of  the  following:  

-­‐ Synaptic  vesicle  :    -­‐ Synaptic  cleft  :    -­‐ Junctional  fold  :  -­‐ Muscle  sarcomere  :  

 Comment  on  the  innervation  of  immature  neuromuscular  junctions  compared  with  adults:    Comment  on  the  structure  of  degenerated  neuromuscular  junctions  after  nerve  injury:    Comment  on  the  structure  of  reinnervated  neuromuscular  junctions  after  nerve  regeneration:    Comment  on  the  abnormal  structure  of  neuromuscular  junctions  in  the  series  of  images  taken  at  differen  stages  of  the  motor  neurone  disease,  ALS:      

Page 18: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  18  

     Exercise  4:  Measurement  and  analysis  of  EPP’s    A  logical  extension  of    measurement  of  the  effects  of  ions  and  drugs  on  nerve-­‐evoked  muscle  contractions  is  to  record  the  effects  of  these  treatments  on  the  electrical  responses  of  individual  muscle  fibres:  endplate  potentials  or  endplate  currents.    From  the  MedCAL  menu  select  Virtual  NMJ.  This  program  can  also  be  downloaded  to  your  own  computer  from  here:    http://spider.science.strath.ac.uk/sipbs/showPage.php?page=software_sims      Record  the  responses  to  nerve  stimuli.    Investigate  the  effects  of  drugs.  Copy  and  paste  illustrative  records  and  annotate  them  in  a  Powerpoint  file.    Exercises  1.  Compare  the  effects  of  µ-­‐conotoxin  and  d-­‐tubocurarine  on  the  generation  of  action  potentials  and  on  the  amplitude  of  the  EPP.    2.  Measure  the  amplitude,  rise  time  and  time-­‐to-­‐half-­‐decay  of  a  series  of  EPPs  in  low  Ca-­‐  High  Mg.  Note  how  they  fluctuate  from  stimulus  to  stimulus:  this  is  due  to  the  probabilistic  nature  of  exocytosis  and  transmitter  release,  despite  the  relative  constant  amplitude  trigger  of  an  action  potential    3.  Calculate  the  quantal  content  using  the  Direct  Method  by  dividing  the  mean  amplitude  of  a  series  of  EPPs  by  the  mean  amplitude  of  spontaneous  MEPP’s  that  you  will  occasionally  observe  on  some  of  the  traces.      4.  Reduce  the  Ca-­‐ion  concentration  until  several  of  the  nerve  stimuli  fail  to  evoke  an  EPP.  Count  the  number  of  ‘failures’  in  a  series  of  100  stimuli.  Use  the  failures  method  to  calculate  the  mean  quantal  content  of  the  EPPs  (including  zeroes).  Do  the  estimates  agree  with  the  Direct  Method?      5.  Measure  the  mean  amplitude  (including  zeroes,  from  failures)  in  the  series  of  100  EPP’s  and  calculate  the  variance  and  coefficient  of  variation  (CV=standard  deviation/mean).  The  variance  method  estimates  quantal  content  from  1/CV2.  How  does  the  estimate  compare  with  the  Direct  and  Failures  methods?      Note:  this  Virtual  NMJ  simulation  is  based  on  a  sophisticated  and  versatile  synaptic  recording  and  analysis  program  called  WinWCP,  that  can  be  downloaded  from  here:  http://spider.science.strath.ac.uk/sipbs/software_ses.htm      

Page 19: HonsNeuroscience/BiomedicalSciences%% … · 2013. 11. 1. · ! 4! Simulated!twitch!contractions!of!the!diaphragmmuscle!are!produced,!as!in!a!real! experiment,eitherusing!a!stimulating!electrode!attached!to!thephrenicNerve

  19  

Exercise  5.  Measurement  of  neuromuscular  junction  morphology    ImageJ  can  also  be  freely  downloaded  to  your  own  home  computer  from  here:  http://rsbweb.nih.gov/ij/    Download  and  follow  the  tutorial  “Using  ImageJ  to  measure  NMJ”  from:    http://www.dns.ed.ac.uk/rrrweb/nmjtutorial.htm    Go  to  the  following  URL:  http://www.dns.ed.ac.uk/rrrweb/YFP/YFPWld01.htm    The  image  you  observe  there  is  a  montage  of  an  axotomised  lumbrical  muscle  from  a  WldS  mutant  mouse,  in  which  degeneration  of  axons  and  motor  nerve  terminals  occurs  about  ten  times  more  slowly  than  in  normal,  wild-­‐type  mice.  The  preparation  was  made  and  imaged  using  a  confocal  microscope,  5  days  after  transecting  the  sciatic  nerve  under  anaesthesia.  The  green  fluorescence  is  due  to  transgenic  expression  of  Yellow  Fluorescent  Protein  (YFP).  A  single  motor  unit  is  labeled,  due  to  mosaic  expression  of  YFP  in  a  small  percentage  of  motor  neurons  in  this  transgenic  line  (thy1.2-­‐YFPH),  which  was  crossbred  into  homozygous  WldS  mice.  Each  of  the  red  patches  is  a  motor  endplate  whose  Ach  receptors  were  labeled  with  a  fluorescent  rhodamine  (TRITC)  conjugate  of  α-­‐bungarotoxin.    Clicking  your  mouse  pointer  over  any  of  the  innervated  NMJ’s  in  this  image  will  bring  up  a  magnified  version  of  that  endplate,  which  you  can  copy  and  paste  into  ImageJ    Questions:  1.  What  is  the  motor  unit  size  in  this  unit?    2.  What  are  the  average  dimensions  of  neuromuscular  junctions  in  the  labeled  motor  unit?    3.  What  is  the  distribution  of  fractional  endplate  occupancies  in  the  labeled  motor  unit?    Generate  a  hypothesis  and  an  experimental  test  to  explain  what  you  have  observed  and  measured.