himmelspach - us china 2009

Upload: materials-research-institute

Post on 30-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Himmelspach - US China 2009

    1/71

    Chemical and physical synthesisof TiO2-based nanocomposites for

    solar energy production and otherenvironmental applications

    US China Workshop

    17 October 2009

    Kimberly A. Gray

    Institute for Catalysis in Energy Processes,Civil & Environmental Engineering, Chemical & BiologicalEngineering,

    Northwestern UniversityEvanston, IL

    CB

    VB

    e-

    h+

    et

    ht

    O2

    O2-

    OH-

    OH

    E hv

  • 8/14/2019 Himmelspach - US China 2009

    2/71

    The Photocatalysis Challenge: SolarFuels

    Basic Research Needs for Solar Energy Utilization", Report of the 2005 BasicEnergy Sciences Workshop on Solar Energy Utilization, US Department of Energy.

  • 8/14/2019 Himmelspach - US China 2009

    3/71

    Shift photoresponse into visible light region

    Increase photoefficiency Retard

    recombination

    Target chemical reaction - CO2 reduction to CO,CH4 or

    CH3OH (catalytic active sites or hot spots)

    CO2 Redox Potential: - 1.9 V NHE (single electron

    transfer)

    - 0.103 V NHE (presence of H+-donor)

    Challenge for Solar Energy Capture,Conversion & Storage

    CO2 + 2H+ + 2e- CO + H2O

    CO2 + CH3CH=CH2 CO + CH3CH-CH2

    O

  • 8/14/2019 Himmelspach - US China 2009

    4/71

    CO2 adsorption/ CO2 speciation

    Role of water

    - Hole scavenger

    - Proton donor

    - Hydroxylate catalyst surface

    - Solvate CO2 (H2CO3, HCO3-, CO3

    2- )

    Hydrogen management (H+

    , H

    , H-

    ) Reaction mechanism & retard back-reactions

    Multiple electron transfer reaction/product

    control

    Photoefficiency how high can we push it. . .

    But, there are some other issues, as

    well:

  • 8/14/2019 Himmelspach - US China 2009

    5/71

    H2O H2 + O2 CO2 CH4 + CH3OHFujishima and Honda, Nature1972, 238, 37

    Inoue et al., Nature1979, 277, 637Gratzel, Nature2001, 414, 338

    TiO2 Photocatalysis for Solar Fuel Generation

    Anatase

    Ebg = 3.2 eV; m = 385 nm

    Rutile

    Ebg = 3.0 eV; m = 415 nm

    ruby.colorado.edu/~smyth/min/tio2.htmlhttp://www.che.kyutech.ac.jp/chem23

    Brookite

  • 8/14/2019 Himmelspach - US China 2009

    6/71

    -0.85 CO2/HCOOH

    -0.76 CO2/CO

    -0.72 CO2/HCHO

    -0.66 H+/H2

    -0.62 CO2/CH3OH

    -0.48 CO2/CH4

    pH = 7Anatase

    (bulk)

    Potential

    /V

    vsSCE

    +2.50

    3.23 eV-0.50

    -1.00 -0.85 CO2/HCOOH

    -0.76 CO2/CO

    -0.72 CO2/HCHO

    -0.66 H+/H2

    -0.62 CO2/CH3OH

    -0.48 CO2/CH4

    pH = 7Anatase

    (bulk)

    Potential

    /V

    vsSCE

    +2.50

    3.23 eV-0.50

    -1.00

    Inoue et al, Nature1979, 277, 637; Yoneyama, Catal. Today1997, 39, 169

    Relative energies for CO2 reduction

  • 8/14/2019 Himmelspach - US China 2009

    7/71

    Conceptual Picture

    e-

    e-

    h+

    CB

    VB

    hv

    ht

    CB

    VB

    et

    ht

    et

    Rutile Anatase

    e-h+

    1 2

    3

    Solid-Solid Interface -

    Key to Highly Efficient & Reactive Photocatalysts

    Location of adlineation or defect sites

    4

  • 8/14/2019 Himmelspach - US China 2009

    8/71

    EPR studies of P25 photochemistry

    Electron trapping sites are rutile and anatase lattice sites

    2.10 2.05 2.00 1.95 1.90 1.85

    g

    anatase, UV(black) and visible (red)

    rutile, visible illumination

    Degussa P25 Visible

    UV

    anatase: g= 1.990

    rutile: g= 1.975

    anatase: g =1. 957

    rutile:g =1.940

    Hurum, Gray, Rajh, Thurnauer. J. Phys. Chem. B2003, 107, 4545

  • 8/14/2019 Himmelspach - US China 2009

    9/71

    ~0.45 m

    2.05 2.00 1.95 1.90

    g

    ~1.5 m

    P25 Slurry

    ~0.2 m

    Hurum, Gray, Rajh, Thurnauer, J. Elect. Spect. 2006, 150, 155 ; J. Phys. Chem. B2003, 107,

    4545

    Better electron transfer

    Higher photoactivityEPR spectra of size-fractionated P25

    Photochemistry of P25 (1): NanostructuredAssembly

    Anatase

    1.990Rutile1.975

    Visible light

    (> 400 nm)

  • 8/14/2019 Himmelspach - US China 2009

    10/71

    Direct evidence of surface dominated recombination

    Intensity =517.6 au

    Intensity =1197.5 au

    Intensity=922.3 au

    Intensity=1354.3 au

    2.10 2.05 2.00 1.95 1.90 1.85

    g

    Interfacialg=1.979

    Anatase

    surfaceg=1.930

    Recombination is dominated by surfacereactions.

    Experimental evidence of an interfacial electrontrapping site.

    The mechanisms of recombination is randomflight.

    Anatase

    TiO O

    O O

    O

    O

    TiO O

    O OO

    OTi

    OO

    O

  • 8/14/2019 Himmelspach - US China 2009

    11/71

    Conceptual Picture

    e-

    e-

    h+

    CB

    VB

    hv

    ht

    CB

    VB

    et

    ht

    et

    Rutile Anatase

    e-h+

    1 2

    3

    4

    Extend photoresponse into visible. Spatially separate and stabilize charge. Create interfacial sites having unique chemistry and

    reactivity - adlineation (defect) sites.

    The high activity of mixed phase TiO2 due to

    rutile-anatase interactions that:

    c

  • 8/14/2019 Himmelspach - US China 2009

    12/71

    Current Work

    Hypothesis:

    The solid-solid interface in nanocomposite materials iskey to overcoming the three grand challenges of TiO2

    photocatalysis

    (high activity, tailored chemistry, visiblephotoresponse)*

    Methods to synthesize materials with high densitiesof

    solid-solid interface & controlled defects

    - Solvothermal method for TiO2nanocomposites; Low T, tune phase composition by HCl:H2O**

    - Reactive DC magnetron sputtering - target power,substrate bias, oxygen partial pressure, and

    deposition angle***

    * G. Li, K.A. Gray (2007). The Solid-Solid Interface: Explaining the High and Unique Reactivity of TiO2-based NanocompositeMaterials. Chemical Physics,

    339:173-187.

    **G. Li, K.A. Gray (2007). Preparation of Mixed-phase Titanium Dioxide Nanocomposites via Solvothermal Processing. Chemistry of Materials, 19:1143-

    1146.

    ***Chen, Graham, Li and Gray, Fabricating Highly Active Mixed Phase TiO2 Photocatalysts by Reactive DC Magnetron Sputter Deposition,Thin Solid Films

    2006, 515, 1176-1181.

    0

    20

    40

    60

    80

    100

    0 10 20 30 40 50

    A%R%B%

    WeightPerc

    HCl/Ti molar ratio

  • 8/14/2019 Himmelspach - US China 2009

    13/71

    Thermal treatmentAnatase (A)

    RA

    A

    R

    Rutile (R)

    Tetrahedral Ti Sites During PhaseTransformation

    Li, Dimitrijevic, Chen, Nichols, Graham, Rajh and Gray, JACS.2008, 130:5402-5403.

  • 8/14/2019 Himmelspach - US China 2009

    14/71

    CO2Sampling

    Port

    Cooling Water

    Stir Bar

    CO2Sampling

    Port

    Cooling Water

    Stir Bar

    Mixed-Phase TiO2: Highly Active

    PhotocatalystsUV, isopropanol

    A+R 773 K

    A+R 373 K

    3100 3200 3300 3400 3500 3600

    A R

    Field (Gauss)

    UV

    Li, Ciston, Saponjic, Chen, Dimitrijevic, Rajh and Gray, J. Catal.2007, 253:105-110.

  • 8/14/2019 Himmelspach - US China 2009

    15/71

    Preparation of mixed phase TiO2 thin film by

    magnetron sputtering

    Cryo Pump

    Load Lock

    Rotating Substrate Holder

    Valve

    FlowMeter

    FlowMeter

    Valve

    O2

    BaratronFlowController

    Ar

    Valve

    MassSpectrometer

    Slave FlowController

    Slave FlowController

    MasterController

    FlowMeter

    CryoPump

    Target Target

    Pulsed dcPower

    rf/Pulseddc Power

    Pulsed dcPower

    Schematic of dual-cathode unbalanced

    magnetron system

    Cryo-pumped chamberand load lock

    Closed-field unbalancedmagnetron targetarrangement (13cm x 38cm targets)

    Arc suppression (pulsedpower) for targets

    RF power for substrate Mass spectrometer control

    of reactive gas partialpressure

    Rotating substrate table

    Target: pure titanium; Substrates: glassslides

  • 8/14/2019 Himmelspach - US China 2009

    16/71

    Process Effects for TiO2Conditions XRD results

    Low angle deposition,

    Power: 3kW, Bias: 300W,

    TP: 6mTorr, Anneal: 400C (1 hr)

    Pure anatase

    Normal deposition,

    Power: 5.8kW, Bias: 150W,

    TP: 3.5mTorr, No anneal

    Almost pure rutile

    Low angle deposition,

    Power: 5.8kW, Bias: 120W,

    TP: 3.5mTorr, No anneal

    Mixed phase.More anatase

    Normal deposition,

    Power: 5.8kW, Bias: 120W,

    TP: 3.5mTorr, No anneal

    Mixed phase,more rutile

    xrd f or pure anatase made by pvd metho

    0

    1000

    2000

    3000

    4000

    5000

    6000

    20 30 40 50 60

    2 thet a

    intensity(counts)

    xrd for ruti l e PVD sampl

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    20 30 40 50 60

    2 theta

    intensity(counts)

    xr d f or mi xed phase PVD (

    0

    500

    1000

    1500

    2000

    2500

    3000

    20 30 40 50 60

    2 thet

    intensity(counts)

    xr d f or mi xed phase PVD(

    0

    500

    1000

    1500

    2000

    20 30 40 50 60

    2 thet

    intensity

    (counts)

  • 8/14/2019 Himmelspach - US China 2009

    17/71

    The morphology and structure of the films

    TEM figures

    TEM results

    A(110)

    A(112)

    R(101)

    TEM plan-view image of themixed phase film preparedby magnetron sputtering

    (JEOL JEM-2100F FAST TEM )

    TEM plan-view selected areadiffraction pattern of the sputteredmixed phase film

    (Hitachi H-8100 )

    Anatase crystals and rutile crystals are completely mixedtogether, indicating a high density of rutile-anataseinterfaces were created.

  • 8/14/2019 Himmelspach - US China 2009

    18/71

    Comparison of Acetaldehyde Decay (UVirradiation)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40 50

    time(min)

    C/C0

    mixed phase magnetron sputtering (71%1.12um2/um2

    anatase magnetron sputtering1.10um2/u

    P25 dip coating 2.18um2/um2

    mixed phase solgel (70%A) 1.09um2/um

    L. Chen, M.E. G raha m, G. Li, K.A. Gra y (2006) Fabrica ting Highly Ac tive Mixed Phase T iO2

    Photocatalysts b y React ive D C M agnetron Sputter Deposition,Thin Solid Films

    , 515(3):1176-1181.

  • 8/14/2019 Himmelspach - US China 2009

    19/71

    0. 00E+00

    1. 00E+04

    2. 00E+04

    3. 00E+04

    4. 00E+04

    5. 00E+04

    6. 00E+04

    7. 00E+04

    420 440 460 480 500 520 540 560 580 600

    energ loss/ eV

    counts

    TEM results

    100 nm

    TEM Cross section, 70% A

    (Hitachi HF-2000 )

    Electron Energy

    Lossspectroscopy

    results

    T

    N

    T

    N

    T: in the column

    N: at the interfaces of the columns

    Ti-L edge

    (mixture of Ti3+ and Ti4+ )

    O-K edge

    More oxygen at point T (Ti:O=44.2: 55.8)

    than point N (Ti:O=70:30);

    Ti-L edge is shifted to low energy state

    for point N lower Ti-valence.

    More oxygenvacancies at the

    interfaces of the

    columns

    50nm

  • 8/14/2019 Himmelspach - US China 2009

    20/71

    CO2 reduction results

    UV condition (mercury vapor lamp

    100W)+ water added as holescavenger

    Film (1): O2: 0.07 pa,with minimumnitrogen

    Film (2): O2: 0.07 pa,with no nitrogenFilm (3): O2: 0.08 paFilm (4): O2: 0.035 paFilm (5): O2: 0.12 pa

    No detectionof methanefor P25coated film

    Film(1)

    Film(3)

  • 8/14/2019 Himmelspach - US China 2009

    21/71

    Photoefficiency Comparison

    Kaneco, S., et al., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powderswith a positive hole scavenger. Journal of Photochemistry and Photobiology a-Chemistry, 1998.115(3): p. 223-226.

    0.00%

    0.01%

    0.02%

    0.03%

    0.04%

    0.05%

    0.06%

    1 2 3 4 5

    Photoefficiency

    1. Mixed phase low angle film with oxygen vacancies under UVlight

    2. High angle mixed phase film under UV light

    3. Titania nanotubes (TiNT) under UV light4. Mixed phase film with oxygen vacancies under visible light5. P25 suspended in isopropyl alcohol illuminated with light

    >345nm with about 28atm of CO2 (Kaneco, et. al)

    Continued work with TiNT - > 0.1% conversion efficiency, butcatalyst deactivation

  • 8/14/2019 Himmelspach - US China 2009

    22/71

    X-ray diffraction patterns for TiO2 and

    Ti1-x NbxO2 thin films. Films are prepared

    under idential sputtering conditions withvarying concentrations of Nb.

    UV-visible absorption spectra for TiO2

    andTi1-x NbxO2 thin films

    Nb additions promote the growth of

    rutileAS PREPARED films are amorphousabove 32%NbCrystalline films with 40%Nb have beenprepared upon post deposition annealingat 550C

    0% Nb, 81% anatase

    15% Nb, rutile

    9.6% Nb, 17% anatase

    45%Nb, amorphous

    Nb-doped films have red-shifted

    photoresponsePhotocurrent measurements confirmbandgap excitation with visible light

    Film growth and phaseformation

    Optical response

    Nb-doping to red-shift photoresponse

  • 8/14/2019 Himmelspach - US China 2009

    23/71

    Conclusions Solid-solid interface

    - facilitates charge transfer and separation; hindersrecombination, increases photoefficiency

    - location hot spots (tetrahedral Ti4+ , oxygen deficiencyTi3+ )

    By varying sputtering power, substrate bias, totalpressure, depostion angle of reactive DC magnetronsputtering

    - prepared a variety of TiO2 films having high interfacialdensities & with different phases, structures,

    function.

    Mixed phase sputtered film proved to be superior tothe other films as measured by oxidation andreduction reactions.

    - The surface of the mixed phase sputtered TiO2 film has

    columnar structure composed of well mixed and

  • 8/14/2019 Himmelspach - US China 2009

    24/71

    Techniques to synthesize TiO2-based composites -

    Second Generation TiO2-x photocatalysts

    - Oxygen vacancies help to extend the catalysts light responseto the visible light range while maintaining the high activity of thecatalysts. They are located mainly at the interfaces of the columns.

    - There is an optimum pN2 stabilizes oxygen control and films

    The ability to reduce CO2

    to fuel under visible light provides thelarge potential for both environmental and energy areas.

    Other environmental applications for Titania nanocomposites:

    - Photocatalytic ceramic ultrafiltration membranes for watertreatment

    - Photocatalysts for gas phase chemical oxidation for airtreatment

  • 8/14/2019 Himmelspach - US China 2009

    25/71

    Northwestern University Le Chen, Gonghu Li, Shannon Ciston, Paul Desario Dr. Michael Graham (Materials Science and Engineering) Yuan Yao, Prof. Richard Lueptow (Mechanical Engineering) Drew Gentner (undergrad), Jamie Nichols (RET program) NUANCE, MRSEC, ASL

    Argonne National Laboratory Dr. Nada Dimitrijevic Dr. Tijana Rajh Dr. Zoran Saponjic

    Degussa for their generous donation of P25U.S. National ScienceFoundationU.S. Department of Energy

    Honeywell Corporation

    Acknowledgements

  • 8/14/2019 Himmelspach - US China 2009

    26/71

    TiO2 can only utilize ~5% of the solar spectrum

    http://www.globalwarmingart.com/images/thumb/4/4c/Solar_Spectrum.png/400px-Solar_Spectrum.png

  • 8/14/2019 Himmelspach - US China 2009

    27/71

    CB

    VB

    e-

    h+

    et

    ht

    O2

    O2-

    OH-

    OH

    Ehv

    Artificial Photosynthesisvs.

    Water splitting or PV

    Why TiO2

    - new focus

    (solid-solid interface &reduction)

    Understand relationshipbetween

    synthesis-structure-function

  • 8/14/2019 Himmelspach - US China 2009

    28/71

    Why do mixed phase TiO2

    materials show such highphotoactivity?

    - Degussa P25 used as model- Flame hydrolysis of TiCl4

    - Composition approximately80% Anatase20% Rutile

    - Anatase generally considered the

    active phase (385 nm, 3.2 eV)- Rutile comparatively less activecatalytically (410 nm, 3.0 eV)

    Why does mixing an inactivewith active phase yield higheractivity material?

    Previous Work:

    TiO O

    O O

    O

    O

    TiO O

    O OO

    1.980

    (Ti-O)

    1.949 (Ti-O)

    TiO O

    O O

    O

    O

    TiO O

    O OO

    1.980 (Ti-O)

    1.934 (Ti-O)

    a,b =3.7842 c= 9.5146

    Anatase

    Rutile

    a,b =4.5845 c= 2.9533

    University of Colorado Mineral Structure Database

    T ti t l d l f

  • 8/14/2019 Himmelspach - US China 2009

    29/71

    Two competing conceptual models ofactivity

    Rutile acts as an electron sink for anatase improving

    activity by separating the hole and the electron. OR Rutile acts as an electron source for anatase

    improving activity by both separating charges andextending the photoresponse of the catalyst.

    h+

    CB

    VB

    e-

    hv

    ht

    CB

    VB

    et

    ht

    e-et

    Rutile

    Anatase

    Anatase Anatase

    Hurum, D. et.al. J. Phys. Chem. B,107, 4545 (2003)

    Rutile

    Rutile

    Anatase

    e -

    +

    Bickley, R. et al. J. Solid State Chem. 92, 178-190 (1991)

    Mixed PhaseTiO2

    Leytner, S., Hupp, J. Chem. Phys. Letter,330, 231 (2000)

    Mi d Ph TiO Hi hl A ti

  • 8/14/2019 Himmelspach - US China 2009

    30/71

    Mixed-Phase TiO2: Highly Active

    Photocatalysts

    A+R 373 K

    500 nm

    Aldrich

    Anatase

    A+R 773 K

    Hydrothermal

    773 K

    Li, Ciston, Saponjic, Chen, Dimitrijevic, Rajh and Gray, J. Catal.2007, 253:105-110.

    Mixed Phase TiO : Magnetron

  • 8/14/2019 Himmelspach - US China 2009

    31/71

    Mixed-Phase TiO2: Magnetron

    Sputtering

    Chen, Graham, Li and Gray, Thin Solid Films2006, 515, 1176

    Sampleholder

    Titarget

    20 25 30 35 40 45 50 55 60

    2-Theta (degree)

    A

    R

    200 nm 200 nm

  • 8/14/2019 Himmelspach - US China 2009

    32/71

    Conceptual Picture

    Solid-Solid Interface Non-stoichiometryLocation of Undercoordinated Ti & Oxygen-

    deficiency

    e-

    e-

    h+

    CB

    VB

    hv

    ht

    CB

    VB

    et

    ht

    et

    Rutile Anatase

    e-h+

    1 2

    3

    4

    TiO2Ti

    TiO2(phase

    1)

    MOx(phase

    2)

    TiO2-x

    Ti

    O

    M

    Chen et al. 2006. Thin Solid Films, 515(3):1176-1181; Chen et al. 2009. Thin Solid Films, in press; Chen et al 2009.

    JVST-A, in press; Li & Gray (2007). Chem. Mater., 19:1143-1146; Li & Gray, 2007. Chemical Physics, 339:1-3:173-187; G. Li, N.M. Dimitrijevic, L. Chen, J.M. Nichols, T. Rajh, K.A. Gray (2008)JACS, 130:5402-5403.

  • 8/14/2019 Himmelspach - US China 2009

    33/71

    Proposal: A possible

    pathway of CO2 reduction

    33

    Series of surfaces (progressing from model (110 rutile) to morerelevant (101, 001 anatase, nanocubes)

    H+ H

    H-

    HCOOH

    H- H-H+e-

    H

    O

    H

    O

    H

    O

    TiO2

    e-

    e-

    e-

    H+

    H+

    H+

    H+

    e-

    e-e- e-

    -H2O H2COCO2

    H

    e- H+

    H+ H+H

    H

    CH3OH CH4-H2O

    H

    e-

  • 8/14/2019 Himmelspach - US China 2009

    34/71

    Standard Magnetron

    Intensifies plasma at target

    surface for higher sputtering

    rate Minimizes heating of

    substrate from ions and

    electrons

    Unbalanced Magnetron

    Increases plasma density

    close to substrate Increases numberof ions

    hitting the substrate

    Closed field further intensifies

    plasma at substrate

    (-) V BiasPump

    VacuumChamber

    Plasma

    Ar O2

    -V -VN S

    substrate

    Target(cathode)

    Argon

    atoms

    MagnetAssembly

    EDislodged Tiatoms

    Argon ions and

    electrons form

    plasma

    Preparation of mixed phase TiO2 thin film by

    magnetron sputtering

  • 8/14/2019 Himmelspach - US China 2009

    35/71

    Changing the band-gap structure of

    TiO2

    N. Serpone / J. Phys Chem B 2006, 110, 24287-24293

    a) Bandgap of TiO2b) localized dopant levels near VB and CBc) band gap narrowing due to broadening of VB,d) localized dopant levels and electronic transitions to CBe) electronic transitions from localized levels near VB to corresponding excited states for Ti3+ and

    F+ centers

  • 8/14/2019 Himmelspach - US China 2009

    36/71

    SEM results

    SEM (Leo)

    Low angle, 70% A film

    Low angle, 70% A film,

    with oxygen vacancies

    High angle, 70% A film

    High angle, N-doped film

    Columnar structure

    Similar to Anpos

    structures -

    mixedphase column;

    Anisotropy key to

    optical and electronic

    properties;

    Increasing visible light

    absorption withdecreasing O:Ti

  • 8/14/2019 Himmelspach - US China 2009

    37/71

  • 8/14/2019 Himmelspach - US China 2009

    38/71

    Solar FuelGeneration

    Methane production under UV light for films with different

    oxygen partial pressure

    0

    20

    40

    60

    80

    100

    120140

    160

    0 50 100 150 200

    time (min)

    m

    ethaneproduction(umol)

    O 4 E-8 minium N 1.3 E-9

    O 3.7 E-8 minimum N: 2.3E-9

    O 3.7 E-8 N 8E-9

    O 4E-8, no N, not stable

    O 4E-8, N 4E-9

    O 4.2E-8, No N

    Methane production after 4 hours under

    visible light illumination

    8.90

    13.90

    18.60

    22.62

    15.01

    9.64 9.94

    5.57

    0.00

    4.60

    0

    5

    10

    15

    20

    25

    30

    O:5E-

    8

    O:4

    .6E-

    8

    O:4

    .2E-

    8

    O:4E-

    8,not

    stable

    O:4E-

    8,N:1

    .3E-

    9

    O:4E-

    8,N:4E-

    9

    O:3

    .5E-

    8,N:3E-

    9

    O:3E-

    8,N:6E-

    9N>

    OP2

    5

    O and N partial pressure gradient,65-80%A

    mehaneproduction(umol)

  • 8/14/2019 Himmelspach - US China 2009

    39/71

    GOAL Delineate details of mechanism

    39

    COgas CH4CH3OH

    C2H4, C2H6HCOO-

    CO2H+

    (H)(e-) C3, > C3(H)

    (:CH2)

    n

    H2C CH 2

    :CH2

    2e- 2H+

    (H)H2C

    -H2O

    4H+ + 4e-(H)

    slow

    2H+ + 2e-

    -H2O

    e-H

    H

    CO22e-

    H+

    O

    C

    COads

    (H)

    Starting point:

    Simplified Reaction Network at an ElectrodeSurface

    ?

    Centi et al. 2007, Green Chemistry, 9, 671-678; Gattrell, Gupta & Co, 2006, J. Electroanal.Chem., 594, 1-19.

    eac on resu s - e ane

  • 8/14/2019 Himmelspach - US China 2009

    40/71

    eac on resu s e aneProduction

    CH4 producti on

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150

    ti me (mi n)

    CH4umol/surfacearea(

    70%A sputtered(H)

    5%A sputtered

    P25

    70%A sputtered(L)

    pure A sputt ered (L)

    With addition of I-PrOH

    Normalized by surface

    area

    CH4 Production @180 min.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    P25 A (L) 70% A (L) 70% A (H) 5% A (H)

    CH4production(nmo/mm2)

    Figure 3. CH4 production of sputtered films and P25

    UVexcitation

    Chen, Graham, Li, Gentner, Dimitrijevic and Gray, Thin Solid Films (2009). Photoreduction of CO2 by TiO2 Nanocomposites

    Synthesized through Reactive DC magnetron Sputter Deposition, Thin Solid Films

    Optimization of Methane Production

    0

    50

    100

    150

    200

    250

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Time (hr)

    Methane(umol)

    Exp 1

    Exp 2

    Exp 3

    Exp 4

  • 8/14/2019 Himmelspach - US China 2009

    41/71

    Objectives:1. Determine effect of Nb on film growth and phase formation2. Characterize films structurally and optically

    XRD, SEM, AFM, XPS, DR, etc.1. Determine solubility limit for Nb in TiO

    2

    Goal:

    To determine if Nb substitution in the TiO2 lattice is aneffective way to red shift the photo response of thematerial without deleteriously modifying itsphotochemical properties.

  • 8/14/2019 Himmelspach - US China 2009

    42/71

    Solubility Preparation

    Chargecompensation

    Reference

    >10at.% in anatase Sol-gel - Sacerdoti, Ruiz,Traversa

    >40at.% in anatase DC co-sputtering

    Low conc.: cationvacancy

    High conc.: both Nb andTi reduced

    Sheppard

    >1at.% in rutile singlecrystals Diffusionaltechnique Low conc.: Ti reduced(Ti3+ )High conc.: Nb & Ti

    reduced

    Morris

    40at.% in rutile MBE Nb substitutes as Nb4+ Gao

    6.6at.% in rutile heattreatment

    Nb substitutes as Nb5+ , Tireduced (Ti3+ )

    Valigi

    >10at.% in anatase,6% in rutile

    Sol-gel Cation vacancies RuizNb doping: charge compensation1) One Ti4+ vacancy for every four Nb5+ ions2) One Ti4+ reduced to Ti3+ for every Nb5+ ion (or Nb5+ reduced to Nb4+ )3) One oxygen interstitial for two Nb5+ ions

    L. Sheppard et al. / Thin Solid Films 510 (2006) 119-124

  • 8/14/2019 Himmelspach - US China 2009

    43/71

    Future Research Directions Does Nb segregate in rutile phase or at interphases?

    LEAP (Local-Electrode Atom-Probe) tomography

    Can we synthesize films at high concentrations of Nb withhigh anatase content? Post-deposition treatment

    What is the mechanism of charge compensation in ourfilms?

    Does red-shift in absorption lead to higher visible lightactivity? Photoreduction of CO

    2and photooxidation of acetaldehyde

  • 8/14/2019 Himmelspach - US China 2009

    44/71

    What is EPR?

    Electron ParamagneticResonance (EPR) is aspectroscopic method whichcan be used to detect,identify, and quantifyparamagnetic species.

    A single electron has a spinof +1/2 or -1/2, a doubletstate.

    Any nonzero spin can beobserved. ie... triplet statesin phosphorescence, organicradicals, and transitionmetals.

    O

    Cl

    Cl

    Cl H

    H

    Ti

    O

    Ti

    http://www.northwestern.edu/
  • 8/14/2019 Himmelspach - US China 2009

    45/71

    Titanium Dioxide/Carbon Nanotube

    Composites for Photo-reactive Filtration

    Speaker: Yuan Yao

    Advisor: Prof. Richard M. Lueptow

    Co-advisor: Prof. Kimberly A. Gray

    Colleagues: Dr. Gonghu Li

    Shannon Ciston

    Funded by NSF

    Background

    http://www.northwestern.edu/
  • 8/14/2019 Himmelspach - US China 2009

    46/71

    Not all membrane filtration processes can remove organic compoundseffectively.

    Organic compounds

    Problem 1 BiofoulingAccumulation and growth of microbial communities (biofilms) on the

    membrane surfaces.

    Ref:

    Biofouling in water treatment, in Biofouling and Biocorrosion in Industrial Water Systems, edited by H.C. Flemming (Springer-Verlag,Berlin, 1991), pp. 47-80.

    www.micromemanalytical.com/ bacAA/bactAA.htm

    Membrane filtration

    EPS(extracellular polymeric substances)

    Microorganisms

    algaeTEM image of biofilm(Transmission Electron Microscropy)

    widely used for water purification.

    Disinfection by-products (DBP)

    Biofouling

    Problem 2 Organic compound removal

    Background

    http://www.micromemanalytical.com/bacAA/bactAA.htmhttp://www.micromemanalytical.com/bacAA/bactAA.htmhttp://www.micromemanalytical.com/bacAA/bactAA.htm
  • 8/14/2019 Himmelspach - US China 2009

    47/71

    TiO2

    Electrons transfer reduced recombination

    enhanced reactivity

    Energ

    y(eV)

    Ref:D. C. Hurum, et al. J. Phys. Chem. B 107:4545-4549, 2003.

    Example: Degussa P25 (composed of 70-80% anatase, 20-30% rutile)

    High photocatalytic activity

    Mixed-phase TiO2:

    Mechanism:

    TiO2 photocatalysis

    CB

    VB

    e-

    h+

    Carbon nanotube

    ?

    Background

  • 8/14/2019 Himmelspach - US China 2009

    48/71

    Synergistic effect enhanced photocatalysis

    Oxidation of organic compounds & inactivation of microorganisms

    Porous structure as filtration media

    Reduction of biofouling

    Objective:

    TiO2coated on MW-CNTsMixture of TiO2& MW-CNTs

    New

    SW-CNTs attached on TiO2

    To fabricate a TiO2/CNT composite with enhanced photocatalytic action

    for membrane filtration.

    10mg photocatalyst

    Results

  • 8/14/2019 Himmelspach - US China 2009

    49/71

    Phenol degradation testPhenol degradation test

    in a suspension:in a suspension:

    10mg photocatalyst

    100ml phenol (C0=400M)

    Mercury UV lamp , (100W, with intense

    lines at 366, 436 and 549nm)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 15 30 45 60 75 90

    Irradiation Time (minutes)

    C/C0

    P25 control

    TiO 2 (100nm) control

    20:1

    SWCNTs control

    TiO2 (100nm) /SW-CNTs

    Results

  • 8/14/2019 Himmelspach - US China 2009

    50/71

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 15 30 45 60 75 90

    Irradiation Time (minutes)

    C/C0

    P25 control

    10:1

    TiO 2 (100nm) control

    20:1100:1

    SWCNTs control

    Mixture 20:1 control

    TiO2 (100nm) /SW-CNTs

    Phenol degradation testPhenol degradation test

    in a suspension:in a suspension:

    10mg photocatalyst

    100ml phenol (C0=400M)

    Mercury UV lamp

    Results

  • 8/14/2019 Himmelspach - US China 2009

    51/71

    TiO2(100nm)/MW-CNTs TiO2(100nm)/SW-CNTs

    Lower degree of contact Greater degree of contact

    MW-CNT diameter:

    20-30nm

    SW-CNT diameter:

    ~1.4nm (individual)

    2-10nm (bundles)

    Results

  • 8/14/2019 Himmelspach - US China 2009

    52/71

    TiO2(5nm)/SW-CNTs TiO2(5nm)/MW-CNTs

    TiO2(5nm)

    huge clumps bad reactivityTiO2 (5nm) and its composites

    Results

  • 8/14/2019 Himmelspach - US China 2009

    53/71

    Laser activation

    PL spectra collected

    TiO2 has a broad

    peak at ~ 540nm due

    to recombination

    Photoluminescence (PL) test:Photoluminescence (PL) test:

    TiO2(100nm)/CNTs composites have reduced recombination.

    -200

    0

    200

    400

    600

    800

    1000

    475 500 525 550 575 600 625 650

    Wavelength (nm)

    Luminescen

    ceIntensity(arb.

    units)

    TiO2(100nm)TiO2(100nm)/SWCNTs

    SWCNTs

    100:1 20:1TiO 2(100nm)/MWCNTs

    Results

  • 8/14/2019 Himmelspach - US China 2009

    54/71

    Dip-coating results:Dip-coating results:

    TiO2(100nm)/SW-CNTs 100:1

    TiO2(100nm)

  • 8/14/2019 Himmelspach - US China 2009

    55/71

    Experiment

    Exhaust GC FID He

    He

    CO2

    Pump

    Six-port Valve

    Reactor

    H2O

    Exhaust GC FID He

    He

    CO2

    Pump

    Six-port Valve

    Reactor

    H2O

    CO2 reduction reactor

    Light condition:

    a Black Ray UV lamp: The UV lamp provided light primarily at a

    wavelength of 365nm and an energy density of ~1mW/cm2

    A solar light lamp (SVLVANIA, 20W)A solar light lamp (SVLVANIA, 20W)

    I-PrOH was added in some cases as a hole scavenger

  • 8/14/2019 Himmelspach - US China 2009

    56/71

    increasing magnetic field

    h = gHE

    In the absence of a magneticfield, the two states for theelectron are at the sameenergy.

    In the presence of themagnetic field, the interactionof the magnetic moment withthe external field splits the

    two states apart. The energyseparation of the states cannow be probed.

    E=h =g H

    Magnetic resonance

    S TiO N it

  • 8/14/2019 Himmelspach - US China 2009

    57/71

    Summary: TiO2 Nanocomposites

    TiO2 Nanocomposites as Highly Active Photocatalysts

    How to fabricate highly active TiO2 nanocomposites?Solution phase method, magnetron sputtering

    Importance of contact: simple mixing does not work

    What is the origin of interfacial sites in mixed-phase TiO2?

    Phase transformation by thermal treatment

    Photoreduction of CO2 with H2O

    Magnetron sputtering: oxygen deficiency

    Role of Defect Sites in Photocatalysis

    Corners, edges, steps, interfacial sites

    Li and Gray, Chem. Phys.2007, 339, 173

    H2

    EvolutionRe

    action

    Jaramillo et al., Science2007, 317, 100

  • 8/14/2019 Himmelspach - US China 2009

    58/71

    0

    2

    4

    6

    8

    10

    12

    14

    0 2 4

    ti me(hr)

    methane(umol)

    P25

    sputtered f i l mwi th

    O2 di f f i ci ency, 60%A

    sputtered f i l m70%A

    N doped f i l m(N/Of l owrate i s 3. 5)

    CO2 reduction for sputtered

    films under visible light

    condition

    Interfacial Sites in Mixed-Phase

  • 8/14/2019 Himmelspach - US China 2009

    59/71

    Interfacial Sites in Mixed PhaseTiO2

    1. Baiker et al., Phys. Chem. Chem. Phys.2002, 4, 3514; 2. Penn and Banfield,Am. Miner.1999,

    84, 871; 3. Zhang et al., J. Phys. Chem. B 2006, 110, 927

    Mixed-phase TiO2: highly distorted, tetrahedrally coordinated interfacial sites

    Tetrahedrally coordinated Ti species in flame synthesized materials(P25) 1

    Distorted clusters with rutile-like character at anatase-anatasecontacts during phase transformation2

    Phase transformation interfaces between anatase particles 3

    Interfacial Sites in Thermally Treated

  • 8/14/2019 Himmelspach - US China 2009

    60/71

    Interfacial Sites in Thermally TreatedP25

    EPR spectra in the presence of TCP

    Li, Dimitrijevic, Chen, Nichols, Graham, Rajh and Gray, JACS,2008, 130:5402-5403.

    20 25 30 35 40 45 50 55 60

    2-Theta (degree)

    P25

    R

    773 K

    873 K

    973 KA

    3200 3250 3300 3350 3400 3450 3500 3550

    Magnetic Field (Gauss)

    R R

    A AS

    P25

    773 K

    873 K

    973 K

    Interfacial Sites in Synthesized Mixed-

  • 8/14/2019 Himmelspach - US China 2009

    61/71

    Interfacial Sites in Synthesized MixedPhase TiO2

    Rutile-like character in A (773 K) Interfacial sites in A+R (873 K)

    20 25 30 35 40 45 50 55 60

    2-Theta (degree)

    873 K

    773 K

    A

    R

    Li, Dimitrijevic, Chen, Nichols, Graham, Rajh and Gray, JACS,2008, 130:5402-5403.

    3200 3250 3300 3350 3400 3450 3500 3550

    Magnetic Field (Gauss)

    R R

    A

    A H2O

    A+R H2O

    A+R TCP

  • 8/14/2019 Himmelspach - US China 2009

    62/71

    Coating Micro-/nano-structure

    Typically columnar

    structure, highly textured,

    tens to hundreds of

    nanometers grain dia.

    Nano-thicknessmultilayers possible.

    Top surface can vary,

    smooth or faceted, denseor open, and is controlled

    by deposition conditions.

    A

    Film growth cross-section cartoon

    Mixed phase TiO2

    The growth of the films

  • 8/14/2019 Himmelspach - US China 2009

    63/71

    The growth of the films

    Nucleation and film growth: creating solid-

    solid interfaces among crystals or columns

    Reactive sputtering: control reactive gas more control on defects formation.

    http://www.alacritas-

    consulting.com/thin_film_growth.html

    Low mobilitycauses smallercolumns orgrains

    The structurezone model of

    Thornton

    Our samples:dualcolumnar

    structure!

  • 8/14/2019 Himmelspach - US China 2009

    64/71

    EPR Characterization of SputteredFil

  • 8/14/2019 Himmelspach - US China 2009

    65/71

    Films

    Li, Chen, Graham and Gray, J. Mol. Catal. A2007, 275, 30

    3200 3250 3300 3350 3400 3450 3500

    Field (Gauss)

    A

    R

    P25

    MS Film

    MS film: domain of crystallinity

    200 nm

    UV

    1 m

    3100 3200 3300 3400 3500 3600

    Field (Gauss)

    Ti3+

    Ti2O3

    MS Powder

    MS powder: oxygen deficiency

    (more like TiO2-x )

    Dark

    Photochemistry of P25 (1): Nanostructured

  • 8/14/2019 Himmelspach - US China 2009

    66/71

    ~0.45 m

    2.05 2.00 1.95 1.90

    g

    ~1.5 m

    P25 Slurry

    ~0.2 m

    Hurum, Gray, Rajh, Thurnauer, J. Elect. Spect. 2006, 150, 155 ; J. Phys. Chem. B2003, 107,4545

    Better electron transfer

    Higher photoactivityEPR spectra of size-fractionated P25

    Photochemistry of P25 (1): NanostructuredAssembly

    Anatase1.990

    Rutile1.975

    Visible light

    (> 400 nm)

    Rutile

    Rutile

    Anatase

    e-

    +

    h

    Direct evidence of surface dominated recombination

  • 8/14/2019 Himmelspach - US China 2009

    67/71

    Direct evidence of surface dominated recombination

    Intensity =517.6 au

    Intensity =1197.5 au

    Intensity=922.3 au

    Intensity=1354.3 au

    2.10 2.05 2.00 1.95 1.90 1.85

    g

    Interfacialg=1.979

    Anatase

    surfaceg=1.930

    Recombination is dominated by surfacereactions.

    Experimental evidence of an interfacial electrontrapping site.

    The mechanisms of recombination is randomflight.

    Hurum, Gray, Rajh and Thurnauer, J. Phys. Chem. B2005, 109, 977

    Semiconductor assisted photocatalysis

  • 8/14/2019 Himmelspach - US China 2009

    68/71

    CB

    VB

    3.2 eV

    TiO2Photoinduced charge separation

    h

    +

    - -

    +

    Anodic part

    Cathodic part

    A/A-

    D+/D

    -

    +

    p y

    +

    -

    Converting photons into chemicalenergy:

    light-induced formation ofcharges

    charge separation

    charge-transfer reactions

    Particulate TiO2 - behaves asminiature electrochemical cell

    Background

  • 8/14/2019 Himmelspach - US China 2009

    69/71

    Background

    Defects:

    Fundamental issues in catalysis:What is the active site?

    Schwab - 1930s; Adlineation of phases (metal clusters onsupport) creates active sites -Adlineation sites at solid-

    solid interface.(Schwab, G. M.; Pietsch, E.Zeitschrift fuer PhysikalischeChemie, Abteilung B: Chemie der Elementarprozesse, Aufbau der Materie1928, 1,386-408.)

    Somorjai (2006) catalytically active surfaces tend to bedisordered, while ordered surface are catalytically

    inactive. (Somorjai, G. A.; Bratlie, K. M.; Montano, M. O.; Park, J. Y.Journal ofPhysical Chemistry B2006, 110, 20014-20022.)

    Selloni & Diebold (2006)- Theoretical work models defectsites on specific crystal surfaces such as the anatase

    TiO2 (001) surface. (Gong, X.-Q.; Selloni, A.; Batzill, M.; Diebold, U. NatureMaterials2006, 5, 665-670.)

  • 8/14/2019 Himmelspach - US China 2009

    70/71

    70

    On rutile (110) single crystal - only observe CO2 adsorption &

    reaction on oxygen deficient surface & in presence of H2O(Funk & Burghaus, 2006. Phys. Chem. Chem. Phys.,8, 4805-4813.)

    - Ability to make anatase single crystals (101) & most reactivefacet (001)

    Defects:

    Yang et al. (2008) Nature453, 638-641;Selloni (2008)Nature Materials, 7, 613 615; P. Zapol, L. A. Curtiss,(2007)

    J. Computational and Theor. Nanoscience. 4, 222.

    Tetrahedrally Coordinated Titanium

  • 8/14/2019 Himmelspach - US China 2009

    71/71

    Anpo and Thomas, Chem. Comm.2006, 3273

    Frei et al., J. Phys. Chem. B2004, 108, 18269

    Tetrahedrally Coordinated TitaniumSpecies

    TiO2 Nanocomposites as Highly Active Photocatalysts

    What is the origin of interfacial sites in mixed-phase TiO2?

    How to engineer the solid-solid interface for high density active sites?

    Excitation: UV