high res electron de broglie wavelength 12.3 v

10
10/21/2015 1 Principles of TEM Image Formation Lecture 3 Peter Rosenthal (Francis Crick Institute) EMBO Course on Image Process for Cryo EM Birkbeck College, London, Sept 1-11, 2015 Electron Optics ElectronSpecimen Interactions Amplitude and Phase Objects Zernike Phase Plate Lens Aberrations Defocused Phase Contrast Infocus Phase Contrast in Cryo EM n d sin I I Low res high res electron de Broglie wavelength Typical wavelengths for biological specimens 0.033 Å (120kV) 0.025 Å (200kV) 0.02 Å (300 kV) ~1 Å Xray 12.3 V

Upload: others

Post on 15-Mar-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

10/21/2015

1

Principles of

TEM Image FormationLecture 3Peter Rosenthal

(Francis Crick Institute)

EMBO Course on Image Process for Cryo EM

Birkbeck College, London, Sept 1-11, 2015

• Electron Optics• Electron‐Specimen Interactions• Amplitude and Phase Objects• Zernike Phase Plate• Lens Aberrations• Defocused Phase Contrast• In‐focus Phase Contrast in Cryo EM

n d sin

II

Low res

high res electron de Broglie wavelength

Typical wavelengths for biological specimens0.033 Å (120kV)0.025 Å (200kV)0.02 Å (300 kV)~1 Å X‐ray

12.3

V

10/21/2015

2

Geometrical Optics

SCATTERED BEAMS ARE FOCUSSED AT THE BACK FOCAL PLANEFORMING A “DIFFRACTION PATTERN”

UNSCATTERRED BEAMS FOCUSSED AT SINGLE POINT “ZERO ORDER”

FT FT

Gun

C1

C2

OBJ

Intermediate

Projector

Screen

Aperture

Aperture

Electron Lens

10/21/2015

3

Electron‐specimen interaction

• Coulomb field: positive nucleus, negative cloud• Depends on atomic properties (Z)• Elastic Scattering• Inelastic Scattering• Atomic scattering factors

Published in: E. V. Orlova; H. R. Saibil; Chem. Rev. Article ASAPCopyright © 2011 American Chemical Society

Amplitude Object

Phase Object

Amplitude Object

Phase Object

10/21/2015

4

PHASE SHIFT

ie

Phase Object Approximation: electrons experience a phase shift on passing through the projected 2D Coulomb potential of the specimen

i ( x ,y )e

(x, y) (x, y,z)dz

Weak Phase Object Approximation

The transmitted wave is the resultant of the unscattered wave and the second term is the scattered wave with a 90 phase shift.

ei ( x ,y ) 1 i x, y ... The phase shift is very small, in which case:

Thin biological specimens are weak phase objects

• Proteins Low Z atoms (C,O,P,N) 1.35 g/cm3

• Vitreous Ice 0.92 g/cm3

21i x,y 1 2 1 No Contrast!We measure intensities at the image plane:

10/21/2015

5

Zernike Phase Plate

Zernike, F. How I discovered phase contrast. Science 121, 345‐9 (1955). 

4

Phase Contrast

Amplitude Contrast

Zernike Phase Contrast

• The phase plate changes the relative length of the optical path of the diffracted beams with respect to the zero‐order beam (such that an extra phase

• Converts phase contrast to amplitude contrast.• Possible because of separation of unscattered and scattered waves at the back focal plane.

Contrast in TEM

Negative Stain

Cryomicroscopy

Cryo-Negative Stain

10/21/2015

6

Scattering/Aperture Contrast

Negative Stain

Lens Aberrations

Source: Wikipedia

Ray diagrams of lens aberrations: (a) perfect lens, (b) spherical, (c) chromatic, and (d) astigmatic aberration. F is the focal length of the lens.

Published in: E. V. Orlova; H. R. Saibil; Chem. Rev. Article ASAPCopyright © 2011 American Chemical Society

Path Length Difference/Phase Shift Due to Lens Aberrations

Cs4 Spherical Aberration

=0 is not affected!

10/21/2015

7

Scattererat focus

Scatterernot at focus

Defocus Phase Contrast

F 2Defocus

=0 is not affected!

Path Length Difference/Phase Shift Due to Lens Aberrations

Cs4

Spherical Aberration

X

Defocus

Phase contrast for selected

• The contrast of a spacing X of the image is modified by thephase contrast transfer function: 2sin (X)

Erickson, H. P. The Fourier Transform of an Electron Micrograph‐First Order and Second Order Theory of Image Formation. Advances in Optical and Electron Microscopy 5 (1973).

Erickson, H. P. & Klug, A. Fourier Transform of an Electron Micrograph ‐ Effects of Defocussing and Aberrations, and Implications for Use of Underfocus Contrast Enhancement. Berichte Der Bunsen‐Gesellschaft Fur Physikalische Chemie 74, 1129‐& (1970).

X

Phase contrast for selected

10/21/2015

8

Contrast Transfer Function

FFT of Carbon Film

F1F2Angle of astigmatism

F F1cos2 F2 sin2

Scherzer Focus

Defocus choice for proteins Weak Phase/Weak Amplitude Objects

eu(x,y) 1u(x, y)

1 i(x, y) 1u(x, y)

2sin (X)Q2cos (X)Contrast TransferFunction

ei (x,y)eu(x,y) 1 i x, y ... eu(x,y)

IF WE LOOK AT THE EFFECT ON THE IMAGE:

Weak Phase

Weak Amplitude

10/21/2015

9

The fraction (Q) of amplitude contrast for proteins in ice has been measured:

5.8% at 120kV4.8% at 200kV2.7% at 300kV, (6.9% when using an energy filter).

Toyoshima, C. & Unwin, N. Ultramicroscopy 25, 279-91 (1988).Toyoshima, C., Yonekura, K. & Sasabe, H. Ultramicroscopy 48, 165-176 (1993).Yonekura, K., Braunfeld, M. B., Maki-Yonekura, S. & Agard, D. A. J Struct Biol 156, 524-36 (2006).

2sin(X)Q2cos(X)Contrast Transfer Function

FFT of Carbon Film

F1F2Angle of astigmatism

2

(F 2

2

Cs 4

4)

F F1cos2 F2 sin2

In‐focus Phase Contrast Electrons

Boersch, S. Z. Naturforsch.  2a, 615 (1947).Unwin, P. N. Phase contrast and interference microscopy with the electron microscope. Philos Trans R Soc Lond B Biol Sci 

261, 95‐104 (1971).Majorovits, E. et al. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase 

plate. Ultramicroscopy 107, 213‐26 (2007).Cambie, R., Downing, K. H., Typke, D., Glaeser, R. M. & Jin, J. Design of a microfabricated, two‐electrode phase‐contrast 

element suitable for electron microscopy. Ultramicroscopy 107, 329‐39 (2007).Danev, R. & Nagayama, K. Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243‐52 

(2001).

Danev, R. & Nagayama, K. Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struct Biol 161, 211-8 (2008).

10/21/2015

10

Recommended Books1. Reimer, L. Transmission electron microscopy : physics of image formation and microanalysis 

(Springer, Berlin ; New York, 1997).2. Frank, J. Three‐dimensional electron microscopy of macromolecular assemblies : 

visualization of biological molecules in their native state (Oxford University Press, Oxford ; New York, 2006).

3. Slayter, E. M. & Slayter, H. S. Light and electron microscopy (Cambridge University Press, Cambridge [England] ; New York, 1992).

4. Misell, D. L. Image Analysis, Enhancement and Interpretation (ed. Glauert, A. M.) (Elsevier Science & Technology, Oxford, 1978).

5. Spence, J. C. H. High‐resolution electron microscopy (Oxford University Press, Oxford ; New York, 2003).

6. Glaeser, R. M. Electron crystallography of biological macromolecules (Oxford University Press, Oxford ; New York, 2007).

7. Cowley, J. M. Diffraction physics (North‐Holland ; Sole distributor for the U.S.A. and Canada Elsevier Science Pub. Co., Amsterdam ; New York, 1984).

8. Hawkes, P. W. & Valdrè, U. Biophysical electron microscopy : basic concepts and modern techniques (Academic Press, London ; San Diego, 1990).