high performance vector control invertersrepmatel.es/directorio/manuales/fuji/frenic.pdf ·...

52
MEH405c High Performance Vector Control Inverters A HIGHLY EFFICIENT AND EFFECTIVE GLOBAL INVERTER WITH THE FUNCTIONS AND CAPABILITIES FOR ALL YOUR NEEDS.

Upload: others

Post on 27-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

MEH405c

High Performance Vector Control Inverters

A HIGHLY EFFICIENT AND EFFECTIVE GLOBALINVERTER WITH THE FUNCTIONS AND CAPABILITIES FOR ALL YOUR NEEDS.

Page 2: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

FRENIC5000VG7S is our highest performance vector control inverter developed

using Fuji's leading technologies for the 21st century.

The inverter has a multi-drive function for high performance control of motors, worldwide.

System integration with UPAC

(optional card incorporating user-programmable functions)

enhances the capabilities of machines and devices such as vertical transfer equipment

(cranes, multi-storied parking facilities), winding machines, injection molding machines,

textile machines and steel production lines.

These enhancements allow comprehensive cost reductions. The wide range of capacity,

conformity to international standards, and multi-language KEYPAD

make the inverter ready for applications all over the world.

5000VG7S

The world's finest inverter. The best control capability. The most requested functions.

2

Page 3: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

5000VG7S

Tuning function to control various motors optimally. Load vibration suppressing

observer function and load adaptive control function.Position control function such as

zero speed lock.Position synchronization control

using pulse train input (Option).Advanced orientation control

(Option).

A wealth of built-in functions

A single specification with a capacity range from 0.75 to 630kW makes system configuration simple.Optimal control is achieved with the

CT use (constant torque) for 150% overload capability, the VT use (variable torque) for 110% overload capability and the HT use for 200% overload torque.

A wide range of capacities and applications

A standard product, conforming to UL/cUL and CE marking, allows unification of devices and machines made at home and abroad.The KEYPAD has 8 user interface

languages as standard to make export simple.Interfaces with various fieldbuses

(Option).

Global products

UPAC, the optional card incorporating user-programmable functions, enables user-original system configuration and construction. Dedicated package software products are also available.The RS-485 communication function is

provided as standard and T-link and SX bus communication functions are available as options.Inverter support loader for Windows is supplied

to facilitate function code setting.

System integration

Capacity range expanded

The multi-drive functions feature vector control, sensorless vector control, V/f control and vector control for synchronous motors.Vector control with dedicated motors has

attained the industry's best control performance such as speed control accuracy of ±0.005%, speed response of 100Hz, current response of 800Hz and torque control accuracy (linearity) of ±3%.

The industry's best control performance

3

Page 4: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

The industry's best control performanceLEVELUP

Use with different control types (multi-drive function)

A wide range of capacity/flexible applications

4

Speed control accuracy of ±0.005% (tested with a dedicated motor with PG under vector control: one half compared to our conventional model).Speed response of 100Hz (tested with a dedicated motor with PG under vector control: twice compared to our conventional model).Current response of 800Hz (tested with a dedicated motor with PG under vector control: four times compared to our conventional model).Torque control accuracy (linearity) of ±3%.

You can select four types of control for different motors. ・Induction motors: vector control, sensorless vector control, V/f control ・Synchronous motors: vector control (optional card required)

Simple system configuration based on a single specification with a capacity range from 0.75 to 630kW.A standard product that meets three specifications types.

* Torque control accuracy is ± 5% for the motors with a capacity larger than 55kW. Contact Fuji Electric FA representative if further accuracy is required.

  : One class smaller model applicable.

Specification type Overload capability Main application Carrier frequency

CT 150% Constant torque applications High frequency

VT* 110% Variable torque applications Low frequency

HT 200%/170% Vertical transfer applications High frequency

Wow characteristics Follow-up characteristics under impact load

0.2s

Load on(100%)

Torque current reference value

Actual speed

Motor current

Load off(0%)

100%

100 r/min

FRN7.5VG7S-2, at 500r/min

Speed-torque characteristics Speed response characteristics

150

100

50

0

-50

-100

-1501

-25.0dB

25.0dB

10 100 1000Frequency [Hz]

[30kW] FRN37VG7-4 :105Hz,-3dBVG5(conventinal model): 54Hz,-3dB

Conventional model (FRENIC5000VG5)

FRENIC5000VG7S

2.5r/min

1.5r/min

1-360.0

deg

0.0deg

10 100 1000Frequency [Hz]

Axi

al to

rque

[%]

[37kW]

1000 2000 3000 3600 Motor speed [r/min]

Wow at low speed has been improved down to 60% or less (1Hz) by enhancing the speed response frequency by 2 times (compared with VG5), digital speed control accuracy by one tenth, and current control response by four times (compared with VG5).

(*)

This high performance vector control inverter has complete control over speed and torque

Mg[dB]

Phase[deg]

Page 5: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Built-in user-programmable functions (option as UPAC)UPAC

Enhanced network readiness

5

Inverter support loader provided

Users can personalize inverter control and terminal functions in order to build an original system using the  programmable functions of UPAC (User Programmable Application Card) .Dedicated package software products for tension control, dancer control and position control are provided.

The RS-485 communication function is provided as standard, and the T-link and SX bus functions are provided as options.Interfaces with various fieldbuses such as PROFIBUS-DP or DeviceNet are available.

An inverter support loader for Windows is available as an option to facilitate function code setting.

Inter-inverter link (optical or simplified RS-485 communication). Min. 2ms cycle on optical communication

Personal computer

RS-485(38.4kbps)

Inverter support loaderUPAC support loader(Equivalent to D300win)・RS-485/RS232C converter (Recommended: NP4H-CNV)・USB-RS-485 converter (System Sacom Sales-made)

UPAC is installed only on a master VG7S inverterAn inverter link option is installed on each inverter

FRENIC5000VG7S dedicated motors or general-purpose motors

UPAC System

T-link System

You can set an operational environment easily with the inverter support loader software by connecting to your personal computer over built-in RS-485 interface (max. 38,400bps).

The loader runs on Windows95/98 and NT. Real-time trace and historical trace are incorporated along with operation monitor and function settings.

MICREX-F or MICREX-SX with T-link module Personal computer

RS-485(38.4kbps)

T-link(500kbps)

・RS-485/RS232C converter (Recommended: NP4H-CNV)・USB-RS-485 converter (System Sacom Sales-made)VG7S with T-link option

FRENIC5000VG7S dedicated motors or general-purpose motors

Install a dedicated SX bus option to connect with the SX bus. Install dedicated bus options to connect with fieldbuses like PROFIBUS-DP.

Page 6: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Standard copy function  Easily copies function code data to other inverters.

Remote operation capability  The KEYPAD is detachable for remote operation using an

optional cable.

8 standard language interfaces (English, German, French, Italian, Spanish, Chinese, Korean and Japanese)Jogging operation from the KEYPAD or with input

from an external signalSwitching between KEYPAD operations (LOCAL)

and external signal input operations (REMOTE) using the KEYPAD

I/O terminal checking functionMain circuit capacitor life judgmentInverter load factor measureRecords and displays accumulated operation timeDisplays operating conditions such as output

voltage, heat sink temperature and calculated torque valueDetailed data is recorded on inverter tripSetting the thermal time constant of the electronic

thermal overload protection makes different motors applicable.Standard protective function against input phase

loss. Protects the inverter from damage caused by power line disconnectionMotor protection with PTC thermistorEquipped with terminals for connecting DC

REACTOR that can suppress harmonics

Improved tuning function Motor parameters can be tuned while the motor is stopped.

Built-in observer function for load vibration suppressingEquipped with load adaptive control function Stepless variable double-speed control is possible at light load.

Increased position control function ・Zero-speed locking control. ・Position synchronizing control using pulse train input (Option). ・Orientation control (Option).

Vector control is applicable to two types of motors.  Also, V/f control is applicable to the third motor.

Built-in PG interface card Both 12V and 15V voltage inputs are accepted. The card  can handle line drivers as an option.

Standard conformity to EC Directive (CE Marking), UL and cUL standards enables unification of specifications at home and abroadConforms to the European EMC Directive with optional EMC filters

Built-in braking unit Built-in braking unit for 55kW or smaller models (200V  series) and for 110kW or smaller models (400V series) allows downsizing machines and devices.

23 I/O terminal points

Analog

Digital

Input

3 points

11 points

Output

3 points

6 points

North America/Canada

UL and cUL standards

Europe

EC Directive (CE Marking)

Note: Among FRENIC5000VG7S series, only 400V series conform to the EN standards.

6

Enhanced built-in functions

Conformity to world standards

Upgraded maintenance/protective functions Interactive KEYPAD for simple operation

Page 7: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Triple ratings (CT use, VT use, and HT use) and a wide variety of models from 0.75 to 630kW make system configuration easy!

How to read the model number

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

Nominal applied motor (kW)

CT use(150%)

VT use(110%)

HT use(200%/170%)

HT use(200%/170%)

CT use(150%)

VT use(110%)

Applicable inverter

Applicable inverter

MVK8095A

MVK8097A

MVK8107A

MVK8115A

MVK8133A

MVK8135A

MVK8165A

MVK8167A

MVK8184A

MVK8185A

MVK8187A

MVK8207A

MVK8208A

MVK9224A

MVK9254A

MVK9256A

Common to all uses

Dedicated motor

Applicable inverter

Applicable inverter

Applicable inverter

MVK8115A

MVK8133A

MVK8135A

MVK8165A

MVK8167A

MVK8184A

MVK8185A

MVK8187A

MVK8207A

MVK8208A

MVK9224A

MVK9254A

MVK9256A

MVK9284A

MVK9286A

MVK931LA

MVK931MA

MVK931NA

Common to all uses

Dedicated motor

FRN 5.5 VG 7 S - 2CodeFRN

Series nameFRENIC5000 Series

CodeVG

Application rangeHigh performance vector control

Code7

Developed inverter series7 series

Code24

Input power sourceThree-phase 200VThree-phase 400V

CodeS

EnclosureStandard

Code Nominal applied motors

Applicable inverter

〜 〜

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4 Capacity range Expanded

200V Series 400V Series

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

500

630

710

0.751.52.23.75.57.5

630

0.75kW1.5kW2.2kW3.7kW5.5kW7.5kW

630kW

7

Variation

Page 8: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

① 15-step digital speed setting

Multi-storied parking facilityMulti-storied parking facility

Vector control inverters with sensors are applied to hoisting and elevating devices

which require large starting torque and quick response while general-purpose

motors and sensorless inverters are applied to traversing and traveling devices.

Control block diagram

Crane system configuration

Operational characteristics

Digital settings reduce speed fluctuations on starting and stopping at zero-speed operations.

② Multiple S-curves

Smooth acceleration and deceleration is achieved.

③ 200% or more of maximum torque

Attains 200% of maximum torque using HT specification.

④ Torque bias function

The torque detection signal drastically reduces rollbacks at starting.

⑤ Load adaptive control

Load adaptive control enables stepless variable double-speed control at light load.

① Combination of vector control and sensorless vector control

PWM converters drastically reduce harmonic current in power lines. Energy

saving is achieved by supplying regenerative energy to power lines on

winding-down or decelerating operations and utilizing the regenerative energy

of individual inverter section (for example; applying regenerative energy from

traverse to drive energy of elevating up/down) while providing a common DC

power supply to inverters for traversing, elevating, and traveling devices.

② PWM converter application

Multiplexing windings of a hoist motor and providing an inverter with

each winding can comply with the large capacity system.

③ Multiple-winding motor drive function

Load adaptive control enables stepless variable double-speed control at light load.

④ Load adaptive control

FRENICS5000VG7S can build an optimal system for a multi-storied parking facility.

CraneCrane

Torque bias

Load detection signal

M

FRENIC5000VG7S

ASR

Counterweight

Brake

Winding machine

: Auto Speed RegulatorVC : Vector ControlACR : Auto Current Regulator

ASR ACRDigital speed

setting VC

Speed

Torque

Run signal

OFF

Time

ON

Torque bias

PG

Soft starting and stopping with

S-curves

Hoisting

Inverter(with sensor)

Inverter(with sensor)

Inverter(sensorless)

Inverter(sensorless)

Inverter(sensorless)

Inverter(with sensor)

Dedicated motor Dedicated motorMPG PG

General-purposemotor

General-purposemotor

General-purposemotorM

Elevating up/downTraversing

M M

Traveling

M

Dedicatedfilter

Dedicatedreactor

Dedicatedfilter

Dedicatedfilter

Dedicatedreactor

Dedicatedreactor

PWMconverter

PWMconverter

PWMconverter

VG7S VG7S VG7S VG7S VG7S VG7S

8

Application examples

Page 9: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

① Winding diameter calculationControl block diagram

Fuji's PLC calculates winding diameter by reading the line speed and motor speed of the winding-up machine. The winding diameter of winding-off machines is calculated from the line speed and motor speed of the winding-off machine.

① Die diameter calculation

Different types of drawings are conducted on

the same wire drawing line and die diameters

vary according to wire. Employing Fuji's PLC

and entering diameters as digital values after

setting reduction ratios in the mechanical

system and motor speed enables high-

precision speed setting to skip readjusting

when dies are changed.

② Winding diameter calculation

The reference speed is provided such that the peripheral speed of

a spool remains constant by reading in the line speed and the

motor speed while the diameter of the spool continuously changes.

③ Dancer control

Dancer control prevents lines from breaking due to

differences in tensions among drawing machines and

keeps the tensions constant. Dancer roll positions are

set such that tensions among drawing machines are

balanced when dancer rolls are at sensor positions. The

PLC detects the movement of dancer rolls from tension

imbalances and corrects the speeds to return the dancer

rolls to sensor positions. A PID controller for adjusting

dancer roll positions is integrated into the PLC.

② Torque control

Torque is set, based on the following limitations because applying reference torque values corresponding to tension references directly into inverters may increase motor speed to the overspeed (OS) alarm level if there is breakage.

Speed reference・・・・Speed reference higher than the speed of the motor is given to the winding-up device. Speed reference lower than the speed of the motor (or 0 [r/min]) is given to the winding-off device.

Torque limiter・・・・Since inverters try to provide maximum torque with the speed references above, the PLC commands torque values corresponding to tension reference as torque limiter values.

Closed-loop control is also possible by employing tension pickups and inputting actual tensions into the PLC.

Control block diagram

Winding-up and winding-off machinesWinding-up and winding-off machines

Wire drawing lineWire drawing line

The following diagram shows simplified tension control for winding-upand winding-off machines (torque reference open loop).

= ×

Winding-off machine Winding-up machine

Master

Tension pickup

Tension pickup

Tension setting Line speed setting Tension setting

M PG M PG

MICREX-F or MICREX-SXThe PLC part can be configured with the UPAC.

VG7S VG7SMotor speed Motor speed

Torquelimiter

Speed reference

M PG

VG7S

Torquelimiter

Speed reference

Main speed reference

Torque reference is obtained fromUsing winding diameter calculation by PLC since tension reference cannot be input directly into the inverter.

Torque Tension Windingdiameter

Spool

Line speed settingDie diameter Die diameter

MICREX-F or MICREX-SXThe PLC part can be configured with the UPAC.

M PG

SG

VG7SMotor speed

Master

M PG

SG

VG7S

M PG

SG

VG7S

Dancer position Dancer position

Synchro Synchro Synchro

Amplifier for synchro

Amplifier for synchro

Amplifier for synchro

M PG

VG7S

Speed reference Speed reference Dancer positionSpeed reference Speed reference

Wire drawer Wire drawerDie Die Die

9

Page 10: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

CT use (for constant torque, overload capability: 150% - 1min.)

Type FRNVG7S-2 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (Continuous)

(1min.)

Phase, Voltage, Frequency

Voltage/frequency variation

Momentary voltage dip capability

(*4)

Rated current [A] (with DCR)

(*7) ( without DCR)

Required power supply capacity [kVA] (*5)

Braking method /braking torque

Carrier frequency [kHz] (*6)

Mass [kg]

Enclosure

Three-phase 200V series

0.75

1.9

5

7.5

3-phase 200 to 230V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*3)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 165V.

If the voltage is less than 165V, the inverter can be operated for 15ms.

3.1

6.4

1.1

Braking resistor discharge control: 150% braking torque, Separately installed braking resistor (option), Separately

installed braking unit (option for 75kW or more)

0.75 to 15

8

Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

1.5

3.0

8

12

5.7

11.1

2.0

8

2.2

4.1

11

16.5

8.3

16.1

2.9

8

3.7

6.8

18

27

14.0

25.5

4.9

8

5.5

10

27

40.5

19.7

40.8

6.9

8

7.5

14

37

55.5

26.9

52.6

9.4

8

11

18

49

73.5

39.0

76.9

14

12.5

15

24

63

94.5

54.0

98.5

19

12.5

18.5

28

74

111

3-phase 200 to 220V/50Hz, 200 to 230V/60Hz (*2)

66.2

117

23

25

22

34

90

135

78.8

136

28

25

30

44

116

174

109

168

38

30

37

55

145

217.5

135

204

47

37

45

68

180

270

163

243

57

46

55

81

215

333

199

291

69

48

75

107

283

441

272

95

0.75 to 10

70

90

131

346

519

327

114

115

Inpu

t rat

ings

Three-phase 400V series

*1) Inverter output capacity [kVA] at 220V.*2) Order individually for 220 to 230V/50Hz.*3) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models).   Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67*4) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.*5) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)*6) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.*7) This value is obtained by using a FUJI original calculation method.*8) Use the function code F80 to switch between CT, VT and HT uses.*9) Not EN standard conformed.

*1) Inverter output capacity [kVA] at 440V.*2) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models).   Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67*3) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.*4) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)*5) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.*6) This value is obtained by using a FUJI original calculation method.*7) Use the function code F80 to switch between CT, VT and HT uses.*8) When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside the inverter must be switched.*9) The inverter for 18.5kW motor does not conform to EN standards.If a standard-compliant model is required, select the inverter for 22kW.

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (Continuous)

(1min.)

Phase, Voltage, Frequency (*1)

Voltage/frequency variation

Momentary voltage dip

capability (*3)

Rated current [A] (with DCR)

(*6) (without DCR)

Required power supply capacity [kVA] (*4)

Braking method/braking torque

Carrier frequency [kHz] (*5)

Mass [kg]

Enclosure

Type FRNVG7S-4

3.7

6.8

9.0

13.5

3-phase 380 to 480V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*2)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 310V.

If the voltage is less than 310V, the inverter can be operated for 15ms.

7.1

14.9

5.0

Braking resistor discharge control: 150% braking torque, Separately installed braking resistor (option), Separately

installed braking unit (option for 132kW or more)

0.75 to 15

8

Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

3.7

5.5

10

13.5

20.0

10

21.5

7.0

8

5.5

7.5

14

18.5

27.5

13.5

27.9

9.4

8

7.5

11

18

24.5

36.5

19.8

39.1

14

12.5

11

15

24

32.0

48.0

26.8

50.3

19

12.5

15

18.5

29

39.0

58.5

3-phase 380 to 440V/50Hz, 380 to 480V/60Hz (*8)

33.2

59.9

24

25

18.5

22

34

45.0

67.5

39.3

69.3

28

25

22

30

45

60.0

90.0

54

86

38

30

30

37

57

75.0

113

67

104

47

35

37

45

69

91.0

137

81

124

57

40

45

55

85

112

168

100

150

70

41

55

75

114

150

225

134

93

0.75 to 10

50

75

90

134

176

264

160

111

72

90

110

160

210

315

196

136

72

110

132

192

253

380

232

161

100

132

160

231

304

456

282

196

100

160

200

287

377

566

352

244

140

200

220

316

415

623

385

267

140

220

280

396

520

780

3-phase 380 to 480V, 50/60Hz

491

341

320

280

315

445

585

878

552

383

320

315

355

495

650

975

624

432

410

355

400

563

740

1110

704

488

410

400

500

731

960

1440

880

610

0.75 to 6

525

500

630

891

1170

1755

1104

765

525

630

Standard Specifications

10

Inpu

t rat

ings

Page 11: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

VT use (for variable torque, overload capability: 110% - 1min.)

*1) Inverter output capacity [kVA] at 220V.*2) Order individually for 220 to 230V/50Hz.*3) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models).   Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67*4) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.*5) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)*6) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.*7) This value is obtained by using a FUJI original calculation method.*8) Use the function code F80 to switch between CT, VT and HT uses.*9) Not EN standard conformed.

Type FRNVG7S-2 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (Continuous)

(1min.)

Phase, Voltage, Frequency

Voltage/frequency variation

Momentary voltage dip

capability (*4)

Rated current [A] (with DCR)

(*7) (without DCR)

Required power supply capacity [kVA] (*5)

Braking method/braking torque

Carrier frequency [kHz] (*6)

Mass [kg]

Enclosure

1.5

3.0

8

8.8

3-phase 200 to 230V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*3)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 165V.

If the voltage is less than 165V, the inverter can be operated for 15ms.

5.7

11.1

2.0

Braking resistor discharge control: 110% braking torque, Separately installed braking resistor (option), Separately

installed braking unit (option for 75kW or more)

0.75 to 10

8

Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

2.2

4.1

11

12.1

8.3

16.1

2.9

8

3.7

6.8

18

19.8

14.0

25.5

4.9

8

5.5

10

27

29.7

19.7

40.8

6.9

8

7.5

14

37

40.7

26.9

52.6

9.4

8

11

18

49

53.9

39.0

76.9

14

8

15

24

63

69.3

54.0

98.5

19

12.5

18.5

28

74

81.4

66.2

117

23

12.5

22

34

90

99

3-phase 200 to 220V/50Hz, 200 to 230V/60Hz(*2)

78.8

136

28

25

30

44

116

128

109

168

38

25

37

55

145

160

135

204

47

30

45

68

180

198

163

243

57

37

55

81

215

237

199

291

69

46

75

107

283

311

272

95

48

90

131

346

381

327

114

0.75 to 6

70

110

158

415

457

400

139

115

*1) Inverter output capacity [kVA] at 440V.*2) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models).  Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67*3) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.*4) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)*5) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.*6) This value is obtained by using a FUJI original calculation method.*7) Use the function code F80 to switch between CT, VT and HT uses.*8) When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside the inverter must be switched.*9) The inverter for 22kW motor does not conform to EN standards.If a standard-compliant model is required, select the inverter for 30kW.

Three-phase 200V series

Three-phase 400V series

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (Continuous)

(1min.)

Phase, Voltage, Frequency (*1)

Voltage/frequency variation

Momentary voltage dip

capability (*3)

Rated current [A] (with DCR)

(*6) (without DCR)

Required power supply capacity [kVA] (*4)

Braking method/braking torque

Carrier frequency [kHz] (*5)

Mass [kg]

Enclosure

Type FRNVG7S-4 3.7

7.5

14

18.5

20.4

13.5

27.9

9.4

8

5.5

11

18

24.5

27

19.8

39.1

14

8

7.5

15

24

32.0

35.2

26.8

50.3

19

12.5

11

18.5

29

39.0

42.9

33.2

59.9

24

12.5

15

22

34

45.0

49.5

3-phase 380 to 440V/50Hz, 380 to 480V/60Hz (*8)

39.3

69.3

28

25

18.5

30

45

60.0

66

54

86

38

25

22

37

57

75.0

82.5

67

104

47

30

30

45

69

91.0

100

81

124

57

35

37

55

85

112

123

100

150

70

40

45

75

114

150

165

134

93

41

55

90

134

176

194

160

111

0.75 to 6

50

75

110

160

210

231

196

136

72

90

132

192

253

278

232

161

72

110

160

231

304

334

282

196

100

132

200

287

377

415

352

244

100

160

220

316

415

457

385

267

140

200

280

396

520

583

491

341

140

220

315

445

585

655

3-phase 380 to 480V, 50/60Hz

552

383

320

280

355

495

650

737

624

432

320

315

400

563

740

847

704

488

410

355

500

731

960

1056

880

610

410

400

630

891

1170

1287

1104

765

525

500

710

1044

1370

1507

1248

865

0.75 to 4

525

630

11

Inpu

t rat

ings

Inpu

t rat

ings

5.5

10

13.5

14.9

3-phase 380 to 480V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*2)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 310V.

If the voltage is less than 310V, the inverter can be operated for 15ms.

10

21.5

7.0

Braking resistor discharge control: 150% braking torque, Separately installed braking resistor (option), Separately

installed braking unit (option for 132kW or more)

0.75 to 10

8

Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

Page 12: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

HT use (for vertical transfer application, overload torque: 200%/170% - 10s)

Three-phase 200V series

*1) Inverter output capacity [kVA] at 220V.*2) Select the inverter capacity such that the square average current in cycle operation is

80% or less of the rated current of an inverter.*3) Order individually for 220 to 230V/50Hz.*4) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for

FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average

voltage [V] × 67

*5) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.

*6) When power-factor correcting DC REACTOR (option) is used.*7) The inverter may automatically reduce carrier frequency in accordance with ambient

temperature or output current in order to protect itself.*8) This value is obtained by using a FUJI original calculation method.*9) These torque characteristics are obtained when combined with a dedicated motor.*10) Use the function code F80 to switch between CT, VT and HT uses.*11) Not EN standard conformed.

Three-phase 400V series形式 FRNVG7S-4 110 132 160 200 220 280

*1) Inverter output capacity [kVA] at 440V.*2) Select the inverter capacity such that the square average current in cycle operation is

80% or less of the rated current of an inverter.*3) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for

FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average

voltage [V] × 67*4) Tested at the standard load condition (85% load of nominal applied motor) prescribed

by JEMA.*5) When power-factor correcting DC REACTOR (option) is used.*6) The inverter may automatically reduce carrier frequency in accordance with ambient

temperature or output current in order to protect itself.*7) This value is obtained by using a FUJI original calculation method.*8) These torque characteristics are obtained when combined with a dedicated motor.*9) When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside

the inverter must be switched.*10) Use the function code F80 to switch between CT, VT and HT uses.*11) The inverter for 18.5kW motor does not conform to EN standards. If a standard-compliant model is required, select the inverter for 22kW.

~22kW:200% 10s

30~55kW:170% 10s

1min. rating

Cont. rating

< Driving torque characteristics >

Torque

200%

170%150%

100%

0 80% 100%

Speed

~22kW:200% 10s

30~55kW:170% 10s

1min. rating

Cont. rating

Torque

200%

170%150%

100%

0 75% 100%

Speed

< Braking torque characteristics >

Torque characteristics of HT use (for vertical transfer application, overload torque: 200%/170%) (Common to 3-phase 200V/400V)

Type FRNVG7S-2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (*2)

(1min.)

(10s)

Phase, Voltage, Frequency

Voltage/frequency variation

Momentary voltage dip capability (*5)

Rated current [A] (with DCR)

(*8) (without DCR)

Required power supply capacity [kVA] (*6)

Carrier frequency [kHz] (*7)

Mass [kg]

Enclosure

Continuous [%] (*9)

1min. rating [%] (*9)

10s rating [%] (*9)

Braking method/braking torque

3.7

6.8

18

27

32.4

3-phase 200 to 230V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*4)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 165V. If the voltage is less than 165V, the inverter can be operated for 15ms.

14.0

25.5

4.9

0.75 to 15

8Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

100%

150%200% (at 80% or less of rated speed)/170% (at rated speed)

Braking resistor discharge control: 150% braking torque, Separately installed braking resistor (option)

5.5

10

27

40.5

45.7

19.7

40.8

6.9

8

7.5

14

37

55.5

63.3

26.9

52.6

9.4

8

11

18

49

73.5

85.8

39.0

76.9

14

12.5

15

24

63

94.5

111

54.0

98.5

19

12.5

18.5

28

74

111

142

3-phase 200 to 220V/50Hz, 200 to 230V/60Hz (*3)

66.2

117

23

25

22

34

90

135

170

78.8

136

28

25

30

44

116

174

194

109

168

38

30

170%

37

55

145

217.5

246

135

204

47

37

45

68

180

270

290

163

243

57

46

55

81

215

333

360

199

291

69

48

Type FRNVG7S-4 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55

Nominal applied motor [kW]

Rated capacity [kVA] (*1)

Rated current (*2)

(1min.)

(10s)

Phase, Voltage, Frequency

Voltage/frequency variation

Momentary voltage dip capability (*4)

Rated current [A](with DCR)

(*7) (without DCR)

Required power supply capacity [kVA] (*5)

Carrier frequency [kHz] (*6)

Mass [kg]

Enclosure

Continuous [%] (*8)

1min. rating [%] (*8)

10s rating [%] (*8)

Braking method/braking torque

5.5

10

13.5

20.0

22.7

10

21.5

7.0

8

7.5

14

18.5

27.5

31.6

13.5

27.9

9.4

8

11

18

24.5

36.5

42.9

19.8

39.1

14

12.5

15

24

32.0

48.0

59.1

26.8

50.3

19

12.5

18.5

29

39.0

58.5

73.5

3-phase 380 to 440V/50Hz, 380 to 480V/60Hz (*9)

33.2

59.9

24

25

22

34

45.0

67.5

85.1

39.3

69.3

28

25

30

44

58.0

90.0

96.0

54

86

38

30

170%

37

57

75.0

113

120

67

104

47

35

45

69

91.0

137

150

81

124

57

40

55

85

112

168

182

100

150

70

41

3.7

6.8

9.0

13.5

16

3-phase 380 to 480V, 50Hz/60Hz

Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*3)

When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 310V. If the voltage is less than 310V, the inverter can be operated for 15ms.

7.1

14.9

5.0

0.75 to 15

8

Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)

100%

150%

200% (at 80% or less of rated speed)/170% (at rated speed)

Braking resistor discharge control: 150% braking torque, Separately installed braking resistor (option)

Inpu

t rat

ings

Tor

que

Inpu

t rat

ings

Tor

que

Standard Specifications

12

Page 13: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

CT use, VT use and HT use

Commonm Specifications

13

100Hz (max.)

20Hz (max.)

Analog setting: ±0.1% of max. speed (25±10˚C)

Digital setting: ±0.005% of max. speed (-10 to +50˚C)

Analog setting:±0.5% of max. speed (25±10˚C)

Digital setting: ±0. 5% of max. speed (-10 to +50˚C)

0.005% of max. speed

KEYPAD operation: FWD or REV key, STOP key

Digital input signal operation: FWD or REV command, Coast-to-stop command, reset input, multistep speed selection command, etc.

Main circuit type

Motor control method

Speed control

Sensorless control

Control response

4P: 6,000 r/min2P: 12,000 r/min

6P: 4,000 r/min where PG frequency is 100kHz or less200Hz in terms of inverter output frequency

Voltage type IGBT sinusoidal PWM inverter

Vector controlSensorless vector controlV/f controlVector control (synchronous motors)Simulated operation mode

Item Explanation

400Hz for V/f control

Transistor output: Inverter running, Speed equivalence, Speed detection, inverter overload early warning, torque limiting, etc.

Analog output: Motor speed, Output voltage, Torque, Load factor, etc.

0.01 to 3600s (4 independent settings for acceleration and deceleration selectable with external signals)

(S-curve acceleration/deceleration in addition to linear acceleration/deceleration)

Sets the proportional relationship between analog speed setting and motor speed in the range of 0 to 200%.

Jump speed (3 points) and jump hysteresis width (1 point) can be set.

A rotating motor can be smoothly picked up by the inverter without stopping. (Vector control and sensorless vector control)

Automatic restart is available without stopping the motor after a momentary power failure.

Compensates for the decrease of speed due to load and realizes stable operation (V/f control).

The motor speed droops in proportion to output torque.

Limits the torque to predetermined values (selectable from "common to 4 quadrants", "independent driving and

braking", etc.)

Analog and external signal (2 steps) settings are available (vector control and sensorless vector control).

PID control with analog input

Stops the cooling fan at low temperatures to reduce noise.

Can be set using a fixed value (1 step, with polarity change in accord with motor rotating direction),

internal setting (3 steps) by combination of external signals (DI signals), and analog setting (with holding function).

Same limit to FWD/REV rotation, upper and lower limits, and individual limits to FWD/REV rotation. Speed limit

usable even in torque control mode.

Select from three types.

Optional

Speed can be set with external signals (DI signals); combination of UP command, DOWN command, and zero clear command.

Three types of stopping functions, STOP 1, 2 and 3

Divides PG signal for output.

Suppresses load disturbances and vibrations.

Optional

Optional

Rotating motor pick up (Flying start)

Auto-restart after momentary power failure

Slip compensation

Droop control

Control

Acceleration/Deceleration time

Gain for speed setting

Jump speed

Running status signal

Torque limiting

PID control

Fan stop operation

Torque bias

Speed limiting

Motor selection

Multiple winding motor drive

UP/DOWN control

Stopping function

PG pulse output

Observer

Position control

Synchronized operation

Speed setting

Maximum speed

Control range

Control accuracy

Setting resolution

Operation method

Vector control

Sensorless controlV/f control

Vector control

Sensorless control

Vector control

1:100 (Min. speed, base speed: 15 to 1500 r/min in terms of 4P)1:4 (Constant torque range, constant output range)

1:1000 (Min. speed, base speed: 1.5 to 1500 r/min in terms of 4P with PG of 1024P/R)1:4 (Constant torque range, constant output range)

KEYPAD operation: or key

External potentiometer: three terminals, 1 to 5kΩAnalog input: 0 to ±10V

UP/DOWN control: Speed increases when UP signal (DI) is ON, and decreases when DOWN signal (DI) is ON.

Multistep speed: Up to 15 different speeds can be selected by combining four external input signals (DI).

Digital signal: Setting with an option card's 16-bit parallel signal

Serial link operation: RS-485 (standard). Setting through different communication options is possible.

Jogging operation: or key, FWD or REV terminals in jogging mode

Page 14: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Commonm Specifications

14

• DC fuse blown

• KEYPAD panel communication error

• Operation procedure error

• UPAC error

• Undervoltage

• External alarm input

• Motor 2 overload

• Overvoltage

• Ground fault

• Excessive position deviation

• CPU error

• Output wiring error

• Inter-inverter communication error

• NTC thermistor disconnection

• Inverter internal overheat

• Motor 3 overload

• PG error

• Network error

• A/D converter error

• IPM error

• Overcurrent

• Motor overheat

• Inverter unit overload

• Charging circuit error

Explanation

Displays function codes, names, and data.

Multi-language display: English, French, Spanish, German, Italian, Chinese, Korean and Japanese.

Stores and displays data for the last ten trips.

Stores and displays the detailed cause of the last trip.

ON when there is residual voltage in the main circuit capacitors.

Protects the inverter by electronic thermal overload relay and the detection of inverter temperature.

Detects DC link circuit overvoltage and stops the inverter.

Protects the inverter from surge voltage between the main circuit power lines and the ground.

Detects DC link circuit undervoltage and stops the inverter.

Stops the inverter by detecting the inverter internal temperature.

Protects the inverter from overcurrent due to a short-circuit in the output circuit.

Protects the inverter from overcurrent due to a ground fault in the output circuit.

Protects the motor with NTC thermistor and PTC thermistor.

Protects the motor with electronic thermal overload relay.

Overload early warning: Overload early warning can be issued at a predetermined level before stopping the inverter.

(The electronic thermal overload relay and the overload early warning can be set for motor 1 to 3 individually)

• Protects through internal functions of the inverter.

• For the optional DB resistor, an external alarm signal issued from the built-in temperature sensor stops the inverter.

Protects the inverter from damage due to input phase loss.

Detects impedance imbalance in the output circuit and issues an alarm (under tuning operation).

Sets the retry numbers and retry waiting time for stoppage due to an alarm (only for , , , , , , , ).

Indoor use only. Free from corrosive and flammable gases, dusts, and direct sunlight.

–10 to +50˚C

5 to 95%RH (no condensing)

3000m or less (output reduction may occur if the altitude is in the range between 1001 and 3000m).

Amplitude: 3mm at 2 to 9Hz, 9.8m/s2 at 9 to 20Hz. 2m/s2 at 20 to 55Hz (2m/s2 at 9 to 55Hz for 90kW or over), 1m/s2 at 55 to 200Hz

–25 to +55˚C

5 to 95%RH

Life judgment function installed

• Displays and records accumulated time for capacitor life and cooling fan operation time in the control power.

• Displays and records inverter operation time.

• Displays and records the maximum output current and the maximum internal temperature for the past one year.

Provided as standard

• Detected speed value • Speed reference value • Output frequency • Torque current reference value

• Torque reference value • Torque calculation value • Motor output • Output current • Output voltage

• DC link circuit voltage • Magnetic-flux reference value • Magnetic-flux calculation value

• Load shaft speed • PID reference value • PID feedback value • PID output value • Ai adjusted value (12)

• Ai adjusted value (Ai1) • Ai adjusted value (Ai2) • Ai adjusted value (Ai3) • Ai adjusted value (Ai4) • Optional monitor 1

• Optional monitor 2 • Optional monitor 3 • Optional monitor 4 • Optional monitor 5 • Optional monitor 6

• Presence of digital input/output signal • Motor temperature • Heat sink temperature • Load factor

• Operation time, etc.

Displays the following trip codes;

• Overheat at the DB circuit

• Memory error

• RS-485 error

• Speed disagreement

• Input phase loss

• Overheating at heat sink

• Motor 1 overload

• Overspeed

Running/Stopping

Programming

Trip mode

Running/Trip mode

Charge lamp

Overload

Overvoltage

Incoming surge

Undervoltage

Overheat

Short-circuit

Ground fault

Motor protection

DB resistor overheating

Input phase loss

Output phase loss

Retry

Installation location

Ambient temperature

Ambient humidity

Altitude

Vibration

Storage temperature

Storage humidity

Main circuit capacitor life

Common functions

RS-485 communication

Item

Indication

Protection

Conditions

Maintenance

Communication

Page 15: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Protective functions

15

NOTES: • All protective functions are reset automatically if the control power voltage decreases to where maintaining the operation of the inverter control circuit is impossible.• Fault history data is stored for the last ten trips.• Stoppage due to a protective function can be reset by the RST key of the KEYPAD or turning OFF and then ON between the X terminal (RST assigning) and the CM. This action

is invalid if the cause of an alarm is not found and resolved.• In addition to these protective functions, there can be further protective from surge voltage by connecting surge suppressors to the main circuit power terminals (L1/R, L2/S, L3/T)

and the auxiliary control power terminals (R0, T0).

LED monitor

When the built-in braking resistor overheats, the inverter stops discharging and running.

Function codes E35 to 37 corresponding to the resistor (built-in/external) must be set.

When a fuse at the main DC circuit blows due to a short-circuit in the IGBT circuit, the inverter stops operation.

Activated by a ground fault in the inverter output circuit. Connect a separate earth-leakage protective

relay or an earth-leakage circuit breaker for accident prevention such as human damage and fire.

Activated when the position deviation between the reference and the detected values exceeds the

function code o18 "Excessive deviation value" in synchronized operation.

The option code "o" becomes valid and is displayed on the KEYPAD after installing options.

Activated when a fault such as "write error" occurs in the memory.

Activated if a communication error is detected between the inverter control circuit and the KEYPAD

when the start/stop command from the KEYPAD is valid (function code F02=0).

NOTE: KEYPAD communication error does not indicate the alarm display and issue the alarm relay output

when the inverter is operated by external signal input or the link function. The inverter continues operating.

Activated when a CPU error occurs due to noise.

Activated if a communication error occurs due to noise when the inverter is operated through T- Link,

SX bus or field bus.

Activated if:

The function code H32 is set to 0 to 2, or

a disconnection continues for more than the specified period of 0.1 to 60.0 with the function code H38.

Activated if multiple network options (T-Link, SX bus, and field bus) are installed. Though you can

install multiple SI, DI and PG options, this error is issued if the two SW settings are identical.

Activated when the measured data are out of the motor characteristic data range during executing

tuning or the wires are not connected in the inverter output circuit.

Activated when an error occurs in the A/D converter circuit.

Activated when the deviation between the speed reference (speed setting) and the motor speed

(detected speed, predicted speed) becomes excessive.

Activated on a hardware fault in the UPAC option or a communication error between the inverter control circuit and the UPAC option.

Activated if a communication error occurs in inter-inverter communication over the optical option or simplified RS-485.

Actuated if IPM self-shutoff function is triggered by excessive current or overheat.

The inverter is protected from being damaged due to input phase loss.

Activated if the DC link circuit voltage decreases to the undervoltage level due to a reduction in the supply voltage.

The alarm output is not issued when the DC link circuit voltage decreases and the "function code F14" is set to "3 to 5".

• Undervoltage detection level:

200V series: 186V DC, 400V series: 371V DC.

Activated if the thermistor circuit is disconnected when the application of NTC thermistors to

corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47.

Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault.

Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due

to cooling fan stoppage.

The inverter stops on receiving the external alarm signal (THR).

It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected

to alarm terminals of external devices such as a braking unit or a braking resistor.

Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter.

Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection

exceeds the data of the "function code E30 Motor overheat protection".

Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11".

Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33".

Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49".

Activated if the output current exceeds the overload characteristic of the inverse time characteristic.

Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the

specified value by the function code "maximum speed".

Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current

from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake.

• Overvoltage detection level

200V series: 400V DC, 400V series: 800V DC

Activated when the pulse generator terminal PA/PB circuits are disconnected.

It is not activated when the sensorless control or the V/f control is selected.

Activated if the bypass circuit of the DC link circuit is not formed (the magnetic contactor for the

charging circuit bypass is not closed) two minutes after power is supplied.

DB resistor

overheating

DC fuse blown

Ground fault

Excessive position

deviation

Memory error

KEYPAD

communication error

CPU error

Network error

RS-485

communication error

Operation

procedure error

Output wiring error

A/D converter error

Speed disagreement

UPAC error

Inter-inverter communication error

IPM error

Input phase loss

Undervoltage

NTC thermistor

disconnection

Overcurrent

Overheating at

heat sink

External alarm

Inverter internal overheat

Motor overheat

Motor 1 overload

Motor 2 overload

Motor 3 overload

Inverter unit overload

Overspeed

Overvoltage

PG error

Charging circuit error

Related function code

E35-37

o18

F02

o30,31

H32,H33,H38

H01,H71

F14

P30,A31,A47

E01-E14

E30,E31

F11

A33

A49

F03,A06,A40

Function Description

Page 16: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

External Dimensions

Fig. A (Internal mounting type) Fig. B (External cooling type)

Fig. E (Type common to internal mounting, external cooling, and stand alone)

KEYPAD (Common to all models)Fig. C (Internal mounting type) Fig. D (External cooling type)

External Dimensions

16

W

W1

C

D2

D

H1

H4

H2

H5

H

W1

H1

4-Bolt

2-øC

Panel drilling

W

W1

C

D3

D1

H1

H4

H2

H5

H

W1

W4

W2

W5

H9

H6

H3

H7

H8

4-Bolt

2-øC

Note: Optional adapter required

Panel cutting

WW1

W3

W1

W3

H1

H4

H2

H5

H1

H

D2

D

D1

C

2or3-øC

4-ø18Lifting hole

4or6- Bolt

Panel drilling

WW1

W3

W2W1

W3

H1

H4

H2

H5

H3

H1

H6

H

D2

D1

C

2or3-øC

4-ø18Lifting hole

4or6-Bolt

Panel cutting

RUN

REMOTE/LOCAL

JOG/NORMAL

FWD

Hz A V % s/min

REV STOP REM LOC COMM JOG

PRG FWD

RESET

REV

STOP

SHIFT

FUNCDATA

m/min kW X10 X100

78.664

2-M3×17(Supplied)

7.317.5 6.8

4.77.3

126.

8

100.

426

.4

115

5.9

5.9

7.2

64±0.3

Mounting hole positions for KEYPAD

2-M3(ø3.5 for nut)

43±0.5

28.350.31111 ø35

115 ±

0.3

20.5

±0.5

W DD1W1

W3 W4

H1

H5

H2

H6

D4

D3

H7

H

C

D23or4-øC

4-ø35Lifting bolt

Panel drilling for internal mounting type Stand alone type

Panel cutting for external cooling type

W1

W5

W3 W4

H1

6 or 8-Bolt 4-øC

W1

W2

W3 W4

H1

H3

6 or 8-Bolt

D1D2

D1D2

H7

W1

W2

W3 W4

H4

7 or 8-Bolt

D6

D5

Page 17: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Nominal

applied motor

[kW]

Inverter typeW1W W2

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

205

250

340

375

530

680

A

B

C

D

181

226

240

275

430

580

207

252

326

361

510

660

W3

265

W4

197

242

W5

159

202

H

300

380

480

550

615

740

750

880

H1

278

358

460

530

595

720

720

850

H2

255

335

430

500

565

690

685

815

H3

314

394

442

512

577

702

695

825

H4

11

12

15.5

H5

21

25

32.5

H6

253.5

333.5

9

12.5

H7

39

H8 H9

8

315

395

D

245

255

270

285

360

D1

125

145

145

220

D2

10

4

D3

7

C

10

10

15

M8

M8

M12

8

8

12.5

25

30

37

46

48

70

115

Mtg.

bolt

Approx.

mass

[kg]

NOTE: For 75kW or larger inverters, the DC REACTOR for power-factor correction is provided as standard (separately installed).     Reserve the installation space outside of the inverter.

200V series

400V series

Dimensions [mm]

Nominal

applied motor

[kW]

Inverter typeW W2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

500

630

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4

205

250

340

375

530

680

680

880

999

A

B

C

D

E

181

226

240

275

430

580

580

780

900

207

252

326

361

510

660

660

860

980

W3

290

290

260

300

W4

197

242

260

300

W5

159

202

610

810

900

H

300

380

480

550

675

740

740

1000

1400

1550

H1

278

358

460

530

655

720

710

970

1370

1520

H2

255

335

430

500

625

690

675

935

1330

1480

H3

314

394

442

512

637

702

685

945

1340

1490

H4

11

12

15.5

1335

1485

H5

21

25

32.5

15.5

15.5

H6

253.5

333.5

9

12.5

35

35

H7

39

14.5

14.5

H8

8

H9

315

395

D

245

255

270

315

360

450

500

D1

125

145

175

220

285

313.2

D2

10

4

6.4

6.4

D3

7

50

42

C

10

10

15

15

15

M8

M8

M12

M12

M12

8

12.5

25

30

35

40

41

50

72

100

140

320

410

525

Mtg.

bolt

Approx.

mass

[kg]

Dimensions [mm]

D4

100

100

D5

35

D6

115

Fig.

Fig.

Since the 18.5kW or larger model can be modified to external cooling type by replacing the mounting bracket, the adapter is not required.

Mounting adapter for external cooling (optional for models of 15kW or less)

PBVG7-7.5

PBVG7-15

FRN0.75VG7S-2~FRN7.5VG7S-2

FRN3.7VG7S-4~FRN7.5VG7S-4

FRN11VG7S-2, FRN15VG7S-2

FRN11VG7S-4, FRN15VG7S-4

Applicable inverter type Option type

W1

17

Page 18: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Three-phase 200V series standard specifications

Three-phase 400V series standard specifications

Common specifications

Dedicated motor rated output [kW] 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90

Applicable motor type (MVK_)

Moment of inertia of rotor [kg•m2]

Base speed/Max. speed [r/min]

Vibration

Cooling fan

Approx. mass [kg]

8095A

0.009

1500/3600

V10 or less

200 to 210V/50Hz, 200 to 230V/60Hz

1-phase/4P

40/50

0.29/0.27 to 0.31

28

8097A

0.009

29

8107A

0.009

32

8115A

0.016

46

8133A

0.030

63

8135A

0.037

73

8165A

0.085

3-phase/4P

90/120

0.49/0.44 to 0.48

111

8167A

0.11

133

8184A

0.21

150/210

0.75/0.77 to 0.8

190

8185A

0.23

197

8187A

0.34

1500/3000

235

8207A

0.41

280

8208A

0.47

296

9224A

0.53

1500/2400

V15 or less

200V/50Hz, 200, 220V/60Hz

80/120

0.76/0.8, 0.8

380

9254A

0.88

1500/2000

270/390

1.9/2.0, 2.0

510

9256A

1.03

570

Voltage [V]

Number of phases/poles

Input power [W]

Current [A]

Voltage [V]

Number of phases/ poles

Input capacity [W]

Current [A]

3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90 110 132 160 200 220

8133A

0.030

63

8135A

0.037

73

8165A

0.085

400 to 420V/50Hz, 400 to 440V/60Hz

3-phase/4P

90/120

0.27/0.24 to 0.25

111

8167A

0.11

133

8184A

0.21

150/210

0.38/0.39 to 0.4

190

8185A

0.23

197

8207A

0.41

280

9224A

0.53

1500/2400

V15 or less

400V/50Hz, 400, 440V/60Hz

80/120

0.39/

0.4, 0.4

380

9254A

0.88

270/390

1.0/1.0, 1.0

510

9284A

1.54

710

9286A

1.77

380, 400, 415V/50Hz

400, 440V/60Hz

450/650

1.8, 1.8, 1.8/2.4, 2.2

760

931LA

2.97

1230

931MA

3.29

1310

931NA

3.66

1420

NOTE: Contact a FUJI representative for dedicated motors other than those with 4-pole and a base speed of 1500 [r/min].

Item

Dedicated motor rated output [kW]

Applicable motor type (MVK_)

Moment of inertia of rotor [kg•m2]

Base speed/Max. speed [r/min]

Vibration

Cooling fan

Approx. mass [kg]

Item

Specifications

Specifications

Item

Insulation class/Number of poles

Terminal design

Mounting method

Degree of protection, Cooling method

Installation location

Ambient temperature, humidity

Finishing color

Standard conformity

Standard accessories

SpecificationsClass F/4P

Class F/4P

Main terminal box (lug type): 3 or 6 main circuit terminals, NTC thermistor terminals = 2 (MVK8 series), 3 (MVK9 series, 1 is reserved)

Auxiliary terminal box (terminal block): Pulse generator (PGP, PGM, PA, PB, SS), cooling fan (FU, FV or FU, FV, FW)

Foot mounted with bracket (IMB3), NOTE: Contact FUJI for other methods.

JP44, Totally enclosed forced-ventilation system with cooling fan motor.A cooling fan blows air over the motor toward the drive-end. (* Only MVK8095A (0.75kW) is of natural air cooling type.)

Indoor, 1000m or less in altitude.

-10 to +40˚C, 90%RH or less (no condensation)

Munsell N5

MVK8 series: JEC-2137-2000, MVK9 series: JEM1466 or JEC-37

Pulse generator (1024P/R, +15V, complementary output), NTC thermistors (1 or 2), cooling fan (except for MVK8095A).

8115A

0.016

1500/3600

V10 or less

200 to 210V/50Hz,

200 to 230V/60Hz

1-phase/4P

40/50

0.29/0.27 to 0.31

46

8187A

0.34

1500/3000

235

8208A

0.47

296

9256A

1.03

1500/2000

570

Dedicated motor Specifications

18

Page 19: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

External dimensions of dedicated motors

Motorratedoutput [kW]

Motor type Fig. Dimensions [mm] Shaft extension [mm]

A C D E F G I J K KD KL L M N R XB Z Q QR S T U W

Approx. mass

[kg]

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

MVK8095A

MVK8097A

MVK8107A

MVK8115A

MVK8133A

MVK8135A

MVK8165A

MVK8167A

MVK8184A

MVK8185A

MVK8187A

MVK8207A

MVK8208A

MVK9224A

MVK9254A

MVK9256A

MVK9284A

MVK9286A

MVK931LA

MVK931MA

MVK931NA

A

B

A

C

C

D

E

201.5

277.5

292

299

309

328

400

422

435

454

490

723

693.5

711.5

764

789.5

1060

1084.5

1184.5

90

100

112

132

160

180

200

225

250

280

315

204

203

236

273

321

376

411

445

535

600

688

70

80

95

108

127

139.5

159

178

203

228.5

254

62.5

70

89

105

127

120.5

139.5

152.5

143

155.5

174.5

184

209.5

203

228.5

10

12.5

14

17

18

20

25

25

30

35

42

195

238

270

311

376

428

466

515

743

798

918

35.5

40

45

50

75

80

80

100

120

35.5

40

50

63

75

85

95

120

145

27

34

48

60

80

180

190

205

223

272

305

364

391

370

446

485

499

548

586

723

767

786.5

824.5

915.5

1155

1157

1194

1308

1359

1649

1699

1799

170

195

224

250

300

350

390

436

506

557

628

150

170

175

180

212

250

300

292

330

360

366

411

449

468

519

526

577

168.5

193

200

239

258

323

345

351.5

370.5

425.5

432

463.5

482.5

544

569.5

589

614.5

56

63

70

89

108

121

133

149

168

190

216

10

12

14.5

18.5

18.5

24

28

50

60

80

110

140

140

170

0.5

1

1.5

2

2

24j6

28j6

38k6

42k6

48k6

55m6

60m6

65m6

75m6

85m6

95m6

7

8

9

10

11

11

12

14

4

5

5.5

6

7

7

7.5

9

8

10

12

14

16

18

18

20

22

25

28

29

32

46

63

73

111

133

190

197

235

280

296

380

510

570

710

760

1230

1310

1420

(Note 1) MVK8095A (0.75kW) is of natural cooling type (cooling system: IC410).(Note 2) MVK8095A has the cable lead-in hole ofφ22 (in 1 place).(Note 3) MVK9224A (55kW) has an auxiliary terminal box for fan as shown in Fig. C.

Common dimensions to 200V and 400V series

Fig.C

Fig.BFig. A

Fig.D Fig.E

J ZE E

MXB

NFF

K

φKDQR

2-φ22

2-φ22

DKL

LRA

Q

C0

-0.5

G

I

102

AIR

J

MXB

N

K

φKDQR

2-φ222-φ22

DKL

LRA

Q

C0

-0.5

G

I

102

ZE EFF

AIR

φKDQR

2-φ22

2-φ22

DKL

LRA

Q

C0

-0.5

G

I

102

J ZE E

MXB

NFF

K

AIR

T

U

SW

Shaft extension

QR

G

I

L

KF F XB

N

R

QAIR

C

JE

D

EM

Z

QR

G

I

L

KF F XB

N

R

AIR

C

JE E

D

M

Z

Q

AA

External dimensions of dedicated motors

19

Mainterminal box

Aux.terminal box

(L&R)

Main terminal box

Aux. terminal box

(L&R)

Main terminal box

Aux. terminal box

(L&R)

Main terminal box

Aux. terminal box (for PG)

Aux. terminal box (for fan) Main

terminal boxAux. terminal box (for PG)

Aux. terminal box (for fan)

A bushing to fill the cable hole is attached on the right side of the main terminal box (indicated by ).*

Page 20: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Terminal Functions

20

Speedsetting

Analoginput

Digitalinput

L1/R, L2/S,

L3/T

U, V, W Connects a 3-phase motor.

Connects an external braking resistor (optional).

Ground terminal for inverter chassis (housing).

Connects the same AC power supply as that of the main circuit to back up the control circuit power supply.

Connects a 3-phase power supply.

Connects a DC REACTOR.A DC REACTOR is optional for 55kW or less and standard for 75kW or more.

Connects a braking resistor via the braking unit.Used for a DC bus connection system.

P (+), P1

P(+), N(-)

P(+), DB

G

R0, T0

Inverter output

For DC REACTOR

For BRAKINGUNIT

For EXTERNALBRAKING RESISTOR

Grounding

Used for power supply for a speed setting POT (variable resistor: 1 to 5kΩ). 10V DC 10mA Max.13Potentiometerpower supply

Used for analog reference voltage input.• 0 to +10V DC /0 to max. speed• Reversible operation can be selected by ±signals: 0 to +10V DC /0 to max. speed. (Input resistance: 10kΩ)

12Voltage input forspeed setting

Common terminal to input signals.11Analog inputcommon

The following functions can be selected and set according to the external analog input voltage (0 to ±10V DC). (Input resistance: 10kΩ)0: Input signal off [OFF] 1: Auxiliary speed setting 1 [AUX-N1] 2: Auxiliary speed setting 2 [AUX-N2]3: Torque limiter (level 1) [TL-REF1] 4: Torque limiter (level 2) [TL-REF2] 5: Torque bias reference [TB-REF]6: Torque reference [T-REF] 7: Torque current reference [IT-REF]8: Creep speed 1 in UP/DOWN setting [CRP-N1] 9: Creep speed 2 in UP/DOWN setting [CRP-N2] 10: Magnetic-flux reference [MF-REF] 11: Detected speed [LINE-N] 12: Motor temperature [M-TMP] 13: Speed override [N-OR] 14: Universal Ai [U-AI] 15: PID feedback value [PID-FB] 16: PID reference value [PID-REF] 17: PID correction value [PID-G] 18: Option Ai [O-AI]

Ai1 Analog input 1

Ai2 Analog input 2

MAnalog inputcommon

FWD - CM: ON... The motor runs in the forward direction.FWD - CM: OFF...The motor decelerates and stops.

Common terminal to input signals.

FWDForward operationcommand

REV - CM: ON... The motor runs in the reverse direction.REV - CM: OFF...The motor decelerates and stops.

REVReverse operationcommand

The following functions can be assigned to the terminals X1 to X9.0, 1, 2, 3: Multistep speed selection (step 1 to 15) [0: SS1, 1: SS2, 2: SS4, 3: SS8]4, 5: ASR, ACC/DEC time selection (4 steps ) [4: RT1, 5: RT2] 6: 3-wire operation stop command [HLD]7: Coast-to-stop command [BX] 8: Alarm reset [RST] 9: Trip command (External fault) [THR]10: Jogging operation [JOG] 11: Speed setting N2/Speed setting N1 [N2/N1]12: Motor M2 selection [M-CH2] 13: Motor M3 selection [M-CH3] 14: DC brake command [DCBRK]15: ACC/DEC cleared to zero [CLR] 16: Creep speed switching in UP/DOWN setting [CRP-N2/N1]17: UP command in UP/DOWN setting [UP] 18: DOWN command in UP/DOWN setting [DOWN]19: Write enable for KYEPAD (data can be changed) [WE-KP] 20: PID control cancel [KP/PID]21: Inverse mode change over [IVS] 22: Interlock signal for 52-2 [IL] 23: Write enable through link [WE-LK]24: Operation selection through link [LE] 25: Universal DI [U-DI] 26: Pick up start mode [STM]27: Synchronization command [SYC] 28: Zero speed locking command [LOCK] 29: Pre-exciting command [EXITE]30: Speed reference cancel [N-LIM] 31: H41 (torque reference) cancel [H41-CCL]32: H42 (torque current reference) cancel [H42-CCL] 33: H43 (magnetic-flux reference) cancel [H43-CCL]34: F40 (torque limiter mode 1) cancel [F40-CCL] 35: Torque limiter (level1, lecel2 selection) [TL2/TL1]36: Bypass [BPS] 37, 38: Torque bias reference 1/2 [37:TB1, 38:TB2]39: Droop selection [DROOP] 40: Ai1 zero hold [ZH-AI1] 41: Ai2 zero hold [ZH-AI2]42: Ai3 zero hold [ZH-AI3] 43: Ai4 zero hold [ZH-AI4] 44: Ai1 polarity change [REV-AI1]45: Ai2 polarity change [REV-AI2] 46: Ai3 polarity change [REV-AI3] 47: Ai4 polarity change [REV-AI4]48: PID output inverse changeover [PID-INV] 49: PG alarm cancel [PG-CCL]50: Undervoltage cancel [LU-CCL]51: Ai torque bias hold [H-TB] 52: STOP1 (The motor stops with standard deceleration time) [SOPT1]53: STOP2 (The motor decelerates and stops with deceleration time 4) [STOP2] 54: STOP3 (The motor stops with torque limiter) [STOP3]55: DIA card enable [DIA]56: DIB card enable [DIB]57: Multi-winding motor control cancel [MT-ccl]58, 59, 60, 61, 62, 63: Option Di 1/2/3/4/5/6 [O-DI1 to 6]

X1 Digital input 1

X2 Digital input 2

X3 Digital input 3

X4 Digital input 4

X5 Digital input 5

X6 Digital input 6

X7 Digital input 7

X8 Digital input 8

X9 Digital input 9

Connects to the PLC output signal power supply. (Rated voltage 24V (22 to 27V) DC)PLCPLC signalpower supply

Common terminal to digital input signals.CMDigital inputcommon

Auxiliary controlpower supply

Power inputMain circuit

FunctionSymbol Terminal name

Page 21: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

仕様

21

• Provides the monitor signal of 0 to ±10V DC for signals from the following:

0: Detected speed (Speedometer, one-way deflection) [N-FB1+]

1: Detected Speed (Speedometer, two-way deflection)[F-FB1±]

2: Speed setting 1 (Before acceleration/deceleration calculation) [N-REF1] 3: Speed setting 2 (ASR input) [N-REF2]

4: Detected speed [N-FB2±] 5: Detected line speed [LINE-N±]

6: Torque current reference (Torque ammeter, two-way deflection) [IT-REF±]

7: Torque current reference (Torque ammeter, one-way deflection) [IT-REF+]

8: Torque reference (Torque meter, two-way deflection) [T-REF±]

9: Torque reference (Torque meter, one-way deflection) [T-REF+]

10: Motor current rms value [V-AC] 11: Motor voltage rms value [V-AC] 12: Input power [PWR]

13: DC link circuit voltage [V-DC] 14: +10V output test [P10] 15: -10V output test [N10]

Analog output 1Analogoutput

FunctionSymbol Terminal name

Analog output 2AO2

AO1

Analog output 3AO3

Transistoroutput

Common terminal to analog output signals.Analog outputcommon

M

• Outputs the selected signals from the following items:

0: Inverter running [RUN] 1: Speed existence [N-EX] 2: Speed agreement [N-AG] 3: Speed equivalence [N-AR]

4, 5, 6: Detected speed 1, 2, 3 [4: N-DT1, 5: N-DT2, 6: N-DT3] 7: Stopping on undervoltage [LU]

8: Detected torque polarity (braking/driving) [B/D] 9: Torque limiting [TL]

10, 11: Detected torque [10: T-DT1, 11: T-DT2] 12: KEYPAD operation mode [KP]

13: Inverter stopping [STOP] 14: Operation ready output [RDY] 15: Magnetic-flux detection signal [MF-DT]

16: Motor M2 selection status [16: SW-M2] 17: Motor M3 selection status [16: SW-M3]

18: Brake release signal [BRK] 19: Alarm indication1 [AL1]

20: Alarm indication 2 [AL2] 21: Alarm indication 3 [AL4] 22: Alarm indication 4 [AL8]

23: Fan operation signal [FAN] 24: Auto-resetting [TRY]

25: Universal DO [U-DO] 26: Heat sink overheat early warning [INV-OH]

27: Synchronization completion signal [SY-C]

28: Lifetime alarm [LIFE] 29: Under accelerating [U-ACC] 30: Under decelerating [U-DEC]

31: Inverter overload early warning [INV-OL] 32: Motor temperature early warning [M-OH]

33: Motor overload early warning [M-OL] 34: DB overload early warning [DB-OL]

35: Link transmission error [LK-ERR]

36: Load adaptive control under limiting [ANL]

37: Load adaptive control under calculation [ANC] 38: Analog torque bias hold [TBH]

39, 40, 41, 42, 43, 44, 45, 46, 47: Optional Do 1/2/3/4/5/6/7/8/9 [O-DO1 to 9]

Transistor output 1Y1

Transistor output 2Y2

Transistor output 3Y3

Transistor output 4Y4

Relayoutput

Communication

Speeddetection

Temperaturedetection

Common terminal to transistor output.

Insulated from terminals CM and 11.Transistor outputcommon

CME

Functions can be selected for signals like Y1 to Y4.

Contact capacity: 250V AC, 0.3A, cosø=0.3 (48V DC, 0.5A in compliance with Low Voltage directive)Relay outputY5A,Y5C

Outputs a non-voltage contact signal (1C) when a protective function is activated to stop inverter.

Contact capacity: 250V AC, 0.3A cosø=0.3 (48V DC, 0.5A in compliance with Low Voltage directive)

Can select alarm for exciting or non exciting conditions.

Alarm relay output(for any fault)

30A,30B,

30C

Input/output terminals for RS-485 communication.

Can connect up to 31 inverters through a multidrop (daisy chain) connection.RS-485 communicationinput/output

RX(+), RX(-)

TX(+), TX(-)

Connects to the shield cable.Communicationshield cable connection

SD(M)

Terminals for connecting 2-phase signal of pulse generator.Pulse generator2-phase signal inputPA,PB

+15V DC pulse generator power supply (or can be switched to +12V).Pulse generatorpower supply

PGP,PGM

Outputs pulse generator signal by dividing by n. The "n" can be changed by function code E29.Pulse generatoroutput

FA,FB

Common terminals to FA and FB.Pulse generatoroutput common

CM

Motor temperature can be detected with the NTC and the PTC thermistors.The motor overheat protective level can be specified by the PTC thermistor function.

NTC ThermistorPTC Thermistor

TH1,THC

Page 22: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Basic Wiring Diagram

Terminal Arrangement

Transformer (*3)FU

G P1(*2)

DC REACTOR (option)

(*2)

Brakingresistor(option)

Inverter unitFRENIC5000VG7S

Basedriver

PWM

ACR

Currentdetector

Voltagedetector

Speedmagnetic-flux

calculator

Processing controller

KEYPAD

Speed/magnetic-flux

positiondetector

Linkcircuit

voltagedetector

Chargelamp

DC/DC

P(+) N(-)DB

WVU

W

TH2TH1(TH1)

(THC) THC

VU

SAL1/R

R

F

C ML2/SL3/T

R0T0

FVFW

MCCB or ELCBMagnetic contactor

ACreactor(option)

Power supply3-phase50/60Hz (*3)

Dedicatedmotor

FUFVFW

FU

FMFVFW

PGMPAPBSS.E

PGP

(PA)(PB)

(PGM)(PGP)

PG

(FA)(FB)(CM)

Y5A

Relay output[RDY]

Serial interface (RS485)

Y5C

30C

Alarm relay output (for any fault)

Transistor output 1 [N-EX]

Transistor output 2 [N-AG]

Transistor output 3 [N-AR]

Transistor output 4 [N-DTI]

Analog output 1

Analog output 2

Analog output 3

30B

30A30

<Y1>

<Y2>

<Y3>

<Y4>

<CME>

[A01]

[A02]

[A03]

[M]

0V

0V

0V

0V

E

(*4)

(CM)

RX(+) RX(–) TX(+) TX(–) SD(M)

(X5)Digital input 5

(X6)Digital input 6

(X7)Digital input 7

(X8)Digital input 8

(X9)Digital input 9

(X4)Digital input 4

(X3)Digital input 3

(X2)Digital input 2

(X1)Digital input 1

(REV)Reverse operationcommand

(FWD)

PLC

[M]

[Ai2]

(Ai1)

(13)

+DC24V

15V 12V

SW5

+DC10V

Forward operationcommand

(12)

(11)

Analog input 1

Speedsetting input

Analog input 2

(*1)

FRN75VG7S-2FRN0.75 to 7.5VG7S-2FRN3.7 to 7.5VG7S-4

FRN280, 315VG7S-4

G G

L1/R L2/S L3/T DB P1 P(+) N(-) U V W

FRN11 to 15VG7S-2FRN11 to 15VG7S-4

FRN18.5 to 22VG7S-2FRN18.5 to 22VG7S-4

FRN30VG7S-2FRN30 to 55VG7S-4

L1/R L2/S L3/T P1 P(+) N(-) U V W

Screw size: M5R0

T0

Scr

ew s

ize:

M4

Screw size: M4

R0 T0

G

GDB

Screw size: M6

Scr

ew s

ize:

M4

R0T0

L1/R L2/S L3/T

DB P1 P(+)U

N(-)V W

Screw size: M6G G

Screw size: M4

Screw size: M8

L1/R L2/S L3/T P1

U V W

P(+) DB N(-)R0 T0

G G

Screw size: M4

R0 T0

L1/R L2/S L3/T P1 P(+) N(-) U V W

Screw size G: M10Other screw size: M12

G G

Screw size R0, T0: M4 G: M10

Other screw size: M12

R0 T0

L1/R

L1/R

P1 P(+) N(-)L2/S L3/T

L2/S L3/T P(+) N(-)

U V

U V

W

WP1

G G

30A30C

30BY5C

Y5AY4

Y3Y2

Y1CME

Ai111

Ai212

M13

Ao1Ao3

Ao2CM

PLCFWD

X1REV

X2CM

X3X6

X4X7

X5X8

PGPX9

PGMFA

PAFB

PBCM

THCTH1

NTCthermistor

Sig

nal i

nput

sec

tion

Sig

nal o

utpu

t sec

tion

(*1) Use twisted cables or shielded cables for the wire indicated with .(*2) When connecting a DC REACTOR, remove the jumper wire between the P1 and P (+) terminals.(*3) The power supply for cooling fan for motors of 7.5kW or less is single-phase. Connect to the FU and

the FV terminals. The cooling fan for models of 7.5kW or less for the 400V series is 200V/50Hz or 200 to 230V/60Hz. The cooling fan for models of 11kW or more for the 400V series is 400 to 420V/50Hz or 400 to 440V/60Hz. Obtain a transformer when using the fan for the power supply voltage that is not mentioned above.

Main circuit terminalsControl circuit

terminals

(*4) The 24V power system and the 15V power system are insulated inside the inverter unit.

0V

FRN37 to 55VG7S-2FRN75 to 110VG7S-4

Screw size: M4

Screw size G: M8 Other screw size: M10

L1/R L2/S L3/T P1

U V W

P(+) DB N(-)R0 T0

G G

FRN500, 630VG7S-4R0 T0

L1/R

L1/R

L2/S L3/T

L2/S L3/T

P(+) P(+)

N(-) N(-)

U V

U V

W

W

P1 P1G G

FRN90VG7S-2FRN132 to 220VG7S-4

Screw size G: M10Other screw size: M12

Screw size: M4

R0 T0

L1/R U V WL2/S L3/T

P(+) N(-)P1

G G

FRN355, 400VG7S-4

Screw size R0, T0: M4 G: M10

Other screw size: M12

Screw size R0, T0: M4 G: M10

Other screw size: M12

R0 T0

L1/R

L1/R

P1 P(+) N(-)L2/S L3/T

L2/S L3/T P(+) N(-)

U V

U V

W

WP1

G G

Wiring Diagram

22

Page 23: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Names and functions of the KEYPAD

KEYPAD operation

Turn on the inverter, set the speed with the and the keys, press the key, and then press the or the

key to operate the inverter with the function codes set at factory shipment.

Press the key to stop the inverter.

See the Basic wiring diagram on page 22 for the connection.

LED monitorOperation mode:

Displays the setting frequency, output current, output voltage, motor speed, and line speed.

Trip mode:Displays the cause of a trip.

Up/Down keysOperation mode:

Increases or decreases the speed.

Program mode: Changes the function codes and specified data values.

FWD/REV keysOperation mode:

Pressing the FWD or REV key lights the RUN lamp. Invalid when the function code F02 (Operation method) is set to 1 (external signal operation).

LCD monitorDisplays different information ranging from operation status to function data.Operation guidance is displayed scrolling at the bottom.

Unit indicationDisplays the unit for the information that appears on the LED monitor.

Program keySwitches the display to the menu screen or the initial screens for the operation and alarm modes.

Shift key (column shift)Used to move the cursor horizontally for data change and to jump to another function block (when pressed with the UP/DOWN keys)

Function/Data select keyUsed to switch the displayed value of LED monitor, input the speed setting and store the function code data.

Stop keyInvalid when the function code F02 (Operation method) is set to 1 (external signal operation).

Reset keyProgram mode:

Cancels the current input data and changes the screen.

Trip mode: Releases from a trip stoppage.

Oparation Procedures

23

Page 24: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

F: Fundamental Functions

E: Extension Terminal Functions

Function setting

24

Name Setting rangeLinkNo.

485No.

Function code

0h

1h

2h

3h

4h

5h

7h

8h

Ah

Bh

Ch

Eh

11h

12h

14h

15h

16h

17h

18h

1Ah

1Bh

24h

25h

26h

27h

28h

29h

2Ah

2Bh

2Ch

2Dh

2Eh

2Fh

30h

31h

32h

33h

34h

35h

36h

37h

38h

39h

3Ah

3Bh

3Ch

3Dh

3Eh

3Fh

40h

41h

42h

43h

80(50h)

81(51h)

82(52h)

83(53h)

84(54h)

85(55h)

86(56h)

87(57h)

88(58h)

89(59h)

90(5Ah)

91(5Bh)

92(5Ch)

93(5Dh)

94(5Eh)

95(5Fh)

96(60h)

97(61h)

98(62h)

99(63h)

100(64h)

101(65h)

102(66h)

103(67h)

104(68h)

105(69h)

106(6Ah)

251(FBh)

107(6Bh)

108(6Ch)

109(6Dh)

110(6Eh)

111(6Fh)

112(70h)

113(71h)

Data protection

Speed setting N1

Operation method

M1 max. speed

M1 rated speed

M1 rated voltage

Acceleration time 1

Deceleration time 1

M 1 electronic thermal overload relay (Select)

M1 electronic thermal overload relay (Level)

M1 electronic thermal overload relay (Thermal time constant)

Restart mode after momentary power failure (Select)

Gain (for speed setting signal 12)

Bias (for speed setting signal 12)

DC brake (Starting speed)

DC brake (Braking level)

DC brake (Braking time)

Starting speed

Starting speed (Holding time)

Motor sound (Carrier freq.)

Motor sound (Sound tone)

30RY operation mode

Stop speed

Stop speed (Detection method)

Stop speed (Zero speed holding time)

Torque limiter mode 1

Torque limiter mode 2

Torque limiter value (level 1) selection

Torque limiter value (level 2) selection

Torque limiter value (level 1)

Torque limiter value (level 2)

Mechanical loss compensation value

Torque bias T1

Torque bias T2

Torque bias T3

Torque bias activation timer

Torque reference monitor (Polarity selection)

LED monitor (Display coefficient A)

LED monitor (Display coefficient B)

LED monitor (Display filter)

LED monitor (Display selection)

LED monitor (Display at stopping state)

LCD monitor (Display selection)

LCD monitor (Language selection)

LCD monitor (Contrast adjusting)

Output unit (HP/kW) selection

ASR1-P (Gain)

ASR1-I (Constant of integration)

ASR1-FF (Gain)

ASR1 input filter

ASR1 detection filter

ASR1 output filter

S-curve acceleration start side 1

44h

45h

46h

49h

4Ah

4Bh

4Ch

4Dh

4Eh

4Fh

50h

114(72h)

115(73h)

116(74h)

117(75h)

118(76h)

119(77h)

S-curve acceleration end side 1

S-curve deceleration start side 1

S-curve deceleration end side 1

Magnetic-flux level at light load

Pre-excitation time

Pre-excitation initial level

Speed limiter (method selection)

Speed limiter level 1

Speed limiter level 2

Motor selection (M1, M2, M3)

Current rating switching

101h

102h

103h

104h

105h

106h

107h

108h

109h

10Ah

10Bh

10Ch

10Dh

10Eh

10Fh

110h

111h

112h

113h

114h

115h

116h

117h

118h

119h

11Ah

11Bh

11Ch

11Dh

11Eh

11Fh

120h

121h

120(78h)

121(79h)

122(7Ah)

123(7Bh)

124(7Ch)

125(7Dh)

126(7Eh)

127(7Fh)

128(80h)

129(81h)

130(82h)

131(83h)

132(84h)

133(85h)

134(86h)

135(87h)

136(88h)

137(89h)

138(8Ah)

139(8Bh)

140(8Ch)

141(8Dh)

142(8Eh)

143(8Fh)

144(90h)

145(91h)

146(92h)

205(CDh)

X1 function selection

X2 function selection

X3 function selection

X4 function selection

X5 function selection

X6 function selection

X7 function selection

X8 function selection

X9 function selection

X11 function selection

X12 function selection

X13 function selection

X14 function selection

X function normally open/normally closed

Y1 function selection

Y2 function selection

Y3 function selection

Y4 function selection

Y5 function selection

Y11 function selection

Y12 function selection

Y13 function selection

Y14 function selection

Y15 function selection

Y16 function selection

Y17 function selection

Y18 function selection

Y function normally open/normally closed

PG pulse output selection

Motor overheat protection (Temperature)

Motor overheat early warning (Temperature)

M1-M3 PTC operation level

Inverter overload early warning

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

122h

123h

124h

125h

126h

127h

128h

129h

12Ah

12Bh

12Ch

12Dh

147(93h)

148(94h)

149(95h)

150(96h)

151(97h)

152(98h)

153(99h)

154(9Ah)

Motor overload early warning

DB overload protection

DB overload early warning

DB thermal time constant

Speed detection method

Speed detection level 1

Speed detection level 2

Speed detection level 3

Speed equivalence (Detection range)

Speed agreement (Detection range)

Speed agreement (Off delay timer)

Enable/disable alarm for speed disagreement

1

1

1

1

1

1

1

1

0.1

0.1

0.001

1

25 – 90 – 100 %

0 – 100 %

0 – 80 – 100 %

0 – 300 – 1000 s

000 – 111

0 – 1500 – 24000 r/min

-24000 – 1500 – 24000 r/min

-24000 – 1500 – 24000 r/min

1.0 – 3.0 – 20.0 %

1.0 – 3.0 – 20.0 %

0.000 – 0.100 – 1.000 s

00 – 21

0 – 1

0 – 7

0 – 1

50 – 1500 – 24000 r/min

50 – 24000 r/min

80 – 999 V

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0 – 2

0.01 – 99.99A100.0 – 999.9A1000 – 2000A

0.5 – 75.0 min

0 – 5

0.0 – 100.0 – 200.0 %

-24000 – 0 – 24000 r/min

0 – 3600 r/min

0 – 100 %

0.0 – 30.0 s

0.0 – 150.0 r/min

0.00 – 10.00 s

0.75 – 7 – 15 kHz

0 – 3

0 – 1

0.0 – 10.0 – 150.0 r/min

0 – 1

0.00 – 0.50 – 10.00 s

0 – 3

0 – 3

0 – 5

0 – 5

-300 – 150 – 300 %

-300 – 10 – 300 %

-300.00 – 0.00 – 300.00 %

-300.00 – 0.00 – 300.00 %

-300.00 – 0.00 – 300.00 %

-300.00 – 0.00 – 300.00 %

0.00 – 1.00 s

0 – 1

-999.00 – 1.00 – 999.00

-999.00 – 1.00 – 999.00

0.0 – 0.2 – 5.0 s

0 – 28

0 – 1

0 – 1

0 – 7

0 – 5 – 10

0 – 1

0.1 – 10.0 – 200.0 (times)

0.010 – 0.200 – 1.000 s

0.000 – 9.999 s

0.000 – 0.040 – 5.000 s

0.000 – 0.005 – 0.100 s

0.000 – 0.002 – 0.100 s

0 – 50 %

0 – 50 %

0 – 50 %

0 – 50 %

10 – 100 %

0.0 – 10.0 s

100 – 400 %

0 – 3

-110.0 – 100.0 – 110.0 %

-110.0 – 100.0 – 110.0 %

0 – 2

0 – 2

0 – 63

0 – 1 – 63

0 – 2 – 63

0 – 3 – 63

0 – 4 – 63

0 – 5 – 63

0 – 7 – 63

0 – 8 – 63

0 – 9 – 63

0 – 25 – 63

0 – 25 – 63

0 – 25 – 63

0 – 25 – 63

0000 – 01FF

0 – 1 – 47

0 – 2 – 47

0 – 3 – 47

0 – 4 – 47

0 – 14 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0 – 26 – 47

0000 – 001F

0 – 9

100 – 150 – 200 °C

50 – 75 – 200 °C

0.00 – 1.60 – 5.00 V

25 – 90 – 100 %

indicates the factory setting.

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

1

1

1

1

0.1

1

1

0.1

0.1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.01

1

1

1

1

1

1

1

0.01

0.1

1

0.01

0.1

1

1

0.010.11

0.1

1

0.1

1

1

1

0.1

1

0.01

1

1

1

0.1

1

0.01

1

1

1

1

1

1

0.01

0.01

0.01

0.01

0.01

1

0.01

0.01

0.1

1

1

1

1

1

1

0.1

0.001

0.001

0.001

0.001

0.001

1

Page 25: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

C:Control Functions of Frequency

25

indicates the factory setting.

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

155(9Bh)

156(9Ch)

157(9Dh)

Torque detection level 1

Torque detection level 2

Magnetic-flux detection level

Ai1 function selection

Ai2 function selection

Ai3 function selection

Ai4 function selection

Ai1 gain setting

Ai2 gain setting

Ai3 gain setting

Ai4 gain setting

Ai1 bias setting

Ai2 bias setting

Ai3 bias setting

Ai4 bias setting

Ai1 filter setting

Ai2 filter setting

Ai3 filter setting

Ai4 filter setting

Increment/decrement limiter (Ai1)

Increment/decrement limiter (Ai2)

Increment/decrement limiter (Ai3)

Increment/decrement limiter (Ai4)

AO1 function selection

AO2 function selection

AO3 function selection

AO4 function selection

AO5 function selection

AO1 gain setting

AO2 gain setting

AO3 gain setting

AO4 gain setting

AO5 gain setting

AO1 bias setting

AO2 bias setting

AO3 bias setting

12Eh

12Fh

130h

131h

132h

133h

134h

135h

136h

137h

138h

139h

13Ah

13Bh

13Ch

13Dh

13Eh

13Fh

140h

141h

142h

143h

144h

145h

146h

147h

148h

149h

14Ah

14Bh

14Ch

14Dh

14Eh

14Fh

150h

151h

1

1

1

1

1

1

1

0.001

0.001

0.001

0.001

0.1

0.1

0.1

0.1

0.001

0.001

0.001

0.001

0.01

0.01

0.01

0.01

1

1

1

1

1

0.01

0.01

0.01

0.01

0.01

0.1

0.1

0.1

1 – 30 – 300 %

1 – 30 – 300 %

10 – 100 %

0 – 18

0 – 18

0 – 18

(Displayed when AIO option installed)

0 – 18

(Displayed when AIO option installed)

-10.000 – 1.000 – 10.000 (times)

-10.000 – 1.000 – 10.000 (times)

-10.000 – 1.000 – 10.000 (times)

(Displayed when AIO option installed)

-10.000 – 1.000 – 10.000 (times)

(Displayed when AIO option installed)

-100.0 – 0.0 – 100.0 %

-100.0 – 0.0 – 100.0 %

-100.0 – 0.0 – 100.0 %

(Displayed when AIO option installed)

-100.0 – 0.0 – 100.0 %

(Displayed when AIO option installed)

0.000 – 0.010 – 0.500 s

0.000 – 0.010 – 0.500 s

0.000 – 0.010 – 0.500 s

(Displayed when AIO option installed)

0.000 – 0.010 – 0.500 s

(Displayed when AIO option installed)

0.00 – 60.00 s

0.00 – 60.00 s

0.00 – 60.00 s

(Displayed when AIO option installed)

0.00 – 60.00 s

(Displayed when AIO option installed)

0 – 1 – 31

0 – 6 – 31

0 – 3 – 31

0 – 31

(Displayed when AIO option installed)

0 – 31

(Displayed when AIO option installed)

-100.00 – 1.00 – 100.00

-100.00 – 1.00 – 100.00

-100.00 – 1.00 – 100.00

-100.00 – 1.00 – 100.00

(Displayed when AIO option installed)

-100.00 – 1.00 – 100.00

(Displayed when AIO option installed)

-100.0 – 0.0 – 100.0 %

-100.0 – 0.0 – 100.0 %

-100.0 – 0.0 – 100.0 %

152h

153h

154h

AO4 bias setting

AO5 bias setting

AO1-5 filter setting

-100.0 – 0.0 – 100.0 %

(Displayed when AIO option installed)

-100.0 – 0.0 – 100.0 %

(Displayed when AIO option installed)

0.000 – 0.010 – 0.500 s

0.1

0.1

0.001

201h

202h

203h

204h

205h

206h

207h

208h

209h

20Ah

20Bh

20Ch

20Dh

20Eh

20Fh

210h

211h

212h

213h

214h

215h

219h

21Dh

21Eh

21Fh

220h

221h

222h

158(9Eh)

159(9Fh)

160(A0h)

161(A1h)

162(A2h)

163(A3h)

164(A4h)

Jump speed 1

Jump speed 2

Jump speed 3

Jump hysteresis

Multistep speed 1

Multistep speed 2

Multistep speed 3

Multistep speed 4

Multistep speed 5

Multistep speed 6

Multistep speed 7

Multistep speed 8

Multistep speed 9

Multistep speed 10

Multistep speed 11

Multistep speed 12

Multistep speed 13

Multistep speed 14/Creep speed 1

Multistep speed 15/Creep speed 2

Multistep speed reference agreement timer

Multistep setting definition

Speed setting N2

Jogging speed

ASR-P (Gain) JOG

ASR-I (Constant of integration) JOG

ASR-JOG input filter

ASR-JOG detection filter

ASR-JOG output filter

0 – 24000 r/min

0 – 24000 r/min

0 – 24000 r/min

0 – 1000 r/min

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0 – 24000 r/min

0.00 – 100.00 %

0.0 – 999.9 m/m (Switch with C21)

0.000 – 0.100 s

0 – 2

0 – 7

0 – 50 – 24000 r/min

0.1 – 10.0 – 200.0 (times)

0.010 – 0.200 – 1.000 s

0.000 – 0.040 – 5.000 s

0.000 – 0.005 – 0.100 s

0.000 – 0.002 – 0.100 s

1

1

1

1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

0.001

1

1

1

0.1

0.001

0.001

0.001

0.001

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Page 26: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

P:Motor Parameters

H:High Performance Functions

Function setting

26

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

indicates the factory setting.

Min.unit

301h

302h

303h

304h

305h

306h

307h

308h

309h

30Ah

30Bh

30Ch

30Dh

30Eh

30Fh

310h

311h

312h

313h

314h

315h

316h

317h

318h

319h

31Ah

31Bh

31Ch

31Dh

31Eh

167(A7h)

168(A8h)

169(A9h)

170(AAh)

171(ABh)

172(ACh)

173(ADh)

174(AEh)

175(AFh)

176(B0h)

177(B1h)

178(B2h)

179(B3h)

180(B4h)

181(B5h)

182(B6h)

183(B7h)

184(B8h)

185(B9h)

186(BAh)

187(BBh)

188(BCh)

189(BDh)

190(BEh)

191(BFh)

192(C0h)

214(D6h)

193(C1h)

M1 control method

M1 motor selection

M1 rated capacity

M1 rated current

M1 pole number

M1-%R1

M1-%X

M1 exciting current

M1 torque current

M1 slip on driving

M1 slip on braking

M1 iron loss coefficient 1

M1 iron loss coefficient 2

M1 iron loss coefficient 3

M1 magnetic saturation coefficient 1

M1 magnetic saturation coefficient 2

M1 magnetic saturation coefficient 3

M1 magnetic saturation coefficient 4

M1 magnetic saturation coefficient 5

M1 secondary time constant

M1 induced voltage coefficient

M1-R2 correction coefficient 1

M1-R2 correction coefficient 2

M1-R2 correction coefficient 3

M1 exciting current correction coefficient

M1-ACR-P (Gain)

M1-ACR-I (Integration time)

M1-PG pulse number

M1 external PG correction coefficient

M1 thermistor selection

0 – 3

0 – 37

0.00 – 900.0kW (F60 = 0)

0.00 – 120.0HP (F60 = 1)

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

2 – 4 – 30 (poles)

0.00 – 30.00 %

0.00 – 50.00 %

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.001 – 10.000 Hz

0.001 – 10.000 Hz

0.00 – 10.00 %

0.00 – 10.00 %

0.00 – 10.00 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.001 – 9.999 s

0 – 999 V

0.500 – 5.000

0.500 – 5.000

0.010 – 5.000

0.000 – 5.000

0.1 – 20.0

0.5 – 100.0 ms

100 – 1024 – 60000

0000 – 4000 – 4FFF

0 – 1 – 3

401h

402h

403h

404h

405h

406h

408h

409h

40Ah

40Bh

40Dh

40Eh

40Fh

410h

14(0Eh)

194(C2h)

195(C3h)

196(C4h)

Tuning operation selection

All save function

Data initializing

Auto-reset (Times)

Auto-reset (Reset interval)

Fan stop operation

Rev. phase sequence lock

Start mode (Rotating motor pick up)

Energy-saving operation

Automatic operation OFF function

Auto-restart (Restart time)

Auto-restart (Speed fall rate)

Auto- restart (Holding DC voltage)

Auto-restart (Operation command

selfhold setting)

0 – 4

0 – 1

0 – 1

0 – 10

0.01 – 5.00 – 20.00 s

0 – 1

0 – 1

0 – 2

0 – 1

0 – 2

0.1 – 0.5 – 5.0 s

1 – 500 – 3600 ( r/min/s)

200 – 235 – 300V (3-Phase 200V series)

400 – 470 – 600V (3-Phase 400V series)

0 – 1

1

1

0.01

0.01

0.1

1

2

0.01

0.01

0.01

0.1

1

0.01

0.1

1

0.001

0.001

0.01

0.01

0.01

0.1

0.1

0.1

0.1

0.1

0.001

1

0.001

0.001

0.001

0.001

0.1

0.1

1

1

1

1

1

1

1

0.01

1

1

1

1

1

0.1

1

1

1

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

228h

229h

22Ah

22Bh

22Ch

ASR2-P Gain

ASR2-I (Constant of integration)

ASR2-FF (Gain)

ASR2 input filter

ASR2 detection filter

ASR2 output filter

Acceleration time 2

Deceleration time 2

S-curve start side 2

S-curve end side 2

ASR3-P gain

ASR3-I (Constant of integration)

ASR3-FF (Gain)

ASR3 input filter

ASR3 detection filter

ASR3 output filter

Acceleration time 3

Deceleration time 3

S-curve start side 3

S-curve end side 3

ASR4-P gain

ASR4-I (Constant of integration)

ASR4-FF (Gain)

ASR4 input filter

ASR4 detection filter

ASR4 output filter

Acceleration time 4

Deceleration time 4

S-curve start side 4

S-curve end side 4

ASR switching time

Acceleration/deceleration time switching speed

ASR switching time

Creep speed switching (on UP/DOWN control)

0.1 – 10.0 – 200.0 (times)

0.010 – 0.200 – 1.000 s

0.000 – 9.999 s

0.000 – 0.040 – 5.000 s

0.000 – 0.005 – 0.100 s

245h

246h

247h

248h

249h

165(A5h)

166(A6h)

0 – 50 %

0.00 – 1.00 – 2.55 s

0.00 – 100.00%

0.00 – 100.00%

00 – 11

22Dh

22Eh

22Fh

230h

231h

232h

233h

234h

235h

236h

237h

238h

239h

23Ah

23Bh

23Ch

23Dh

23Eh

23Fh

240h

241h

242h

243h

244h

0.000 – 0.002 – 0.100 s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0 – 50 %

0 – 50 %

0.1 – 10.0 – 200.0 (times)

0.010 – 0.200 – 1.000 s

0.000 – 9.999 s

0.000 – 0.040 – 5.000 s

0.000 – 0.005 – 0.100 s

0.000 – 0.002 – 0.100 s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0 – 50 %

0 – 50 %

0.1 – 10.0 – 200.0 (times)

0.010 – 0.200 – 1.000 s

0.000 – 9.999 s

0.000 – 0.040 – 5.000 s

0.000 – 0.005 – 0.100 s

0.000 – 0.002 – 0.100 s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0 – 50 %

0.1

0.001

0.001

0.001

0.001

0.001

0.01

0.1

1

0.01

0.1

1

1

1

0.1

0.001

0.001

0.001

0.001

0.001

0.01

0.1

1

0.01

0.1

1

1

1

0.1

0.001

0.001

0.001

0.001

0.001

0.01

0.1

1

0.01

0.1

1

1

1

0.01

0.01

0.01

1

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

223h

224h

225h

226h

Acceleration time JOG

Deceleration time JOG

S-curve start side JOG

S-curve end side JOG

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0.01 – 5.00 – 99.99s

100.0 – 999.9s

1000 – 3600s

0 – 50 %

0 – 50 %

0.01

0.1

1

0.01

0.1

1

1

1

Page 27: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

A:Alternative Motor Parameters

27

411h

413h

414h

415h

416h

417h

418h

419h

41Ah

41Bh

41Ch

41Dh

41Eh

41Fh

420h

421h

422h

423h

424h

425h

426h

427h

428h

429h

42Ah

42Bh

42Ch

42Eh

42Fh

430h

431h

432h

433h

434h

435h

437h

438h

439h

43Ah

43Ch

43Dh

43Eh

43Fh

440h

441h

442h

444h

446h

447h

448h

449h

197(C5h)

198(C6h)

199(C7h)

201(C9h)

202(CAh)

203(CBh)

200(C8h)

204(CCh)

206(CEh)

207(CFh)

208(D0h)

209(D1h)

210(D2h)

211(D3h)

212(D4h)

215(D7h)

216(D8h)

217(D9h)

218(DAh)

213(D5h)

Auto-restart (Operation command selfhold time)

Active drive

PID control

Command selection

P-gain

I-gain

D-gain

Output upper limit value

Output lower limit value

Speed reference selection

Droop operation

Link function protection

Serial link

RS-485 (Address)

RS-485 (Mode select on no response error)

RS-485 (Timer)

RS-485 (Baud rate)

RS-485 (Data length)

RS-485 (Parity check)

RS-485 (Stop bits)

RS-485 (No response error detection time)

RS-485 (Response interval)

Protocol selection

Torque reference selection

Torque current reference selection

Magnetic-flux reference selection

Magnetic-flux reference value

Observer type selection

M1 compensation gain

M2 compensation gain

M1 integration time

M2 integration time

M1 load inertia

M2 load inertia

Line speed feedback selection

Zero speed control (Gain)

Zero speed control (completion range)

Overvoltage suppressing function

Overcurrent suppressing function

Load adaptive control function definition 1

Load adaptive control function definition 2

Winding up speed

Counter weight mass

Safety coefficient

Mechanical efficiency

Rated loading

Trip data delete

Reserved 1

Reserved 2

Reserved 3

Reserved 4

0.0 – 30.0 s

0 – 1

0 – 3

0 – 1

0.000 – 1.000 – 10.000 (times)

0.00 – 1.00 – 100.00 s

0.000 – 10.000 s

-300 – 100 – 300 %

-300 – -100 – 300 %

0 – 2

0.0 – 25.0 %

0 – 1

0 – 3

0 – 1 – 255

0 – 3

0.01 – 2.00 – 20.00 s

0 – 4

0 – 1

0 – 1 – 2

0 – 1

0.0 – 60.0 s

0.00 – 0.01 – 1.00 s

0 – 1 – 2

0 – 5

0 – 4

0 – 3

10 – 100 %

0 – 2

0.00 – 1.00 (times)

0.00 – 1.00 (times)

0.005 – 0.100 – 1.000 s

0.005 – 0.100 – 1.000 s

0.001 – 50.000 (kg.m2)

0.001 – 50.000 (kg.m2)

0 – 3

0 – 5 – 100 (times)

0 – 100 (pulses)

0 – 1

0 – 1

0 – 3

0 – 1

0.0 – 999.9 m/min

0.00 – 600.00 (t)

0.50 – 1.00 – 1.20

0.500 – 1.000

0.00 – 600.00 (t)

0 – 1

0 – 9999

0 – 6

0 – 9999

0 – 9999

501h

502h

503h

504h

505h

506h

507h

508h

509h

50Ah

50Bh

50Ch

50Dh

50Eh

50Fh

510h

511h

512h

513h

514h

515h

516h

517h

518h

519h

51Ah

51Bh

51Ch

51Dh

51Eh

51Fh

520h

521h

522h

523h

524h

525h

526h

527h

528h

529h

52Ah

52Bh

52Ch

52Dh

229(E5h)

230(E6h)

231(E7h)

232(E8h)

233(E9h)

234(EAh)

235(EBh)

236(ECh)

237(EDh)

238(EEh)

239(EFh)

M2 control method

M2 rated capacity

M2 rated current

M2 rated voltage

M2 rated speed

M2 maximum speed

M2 pole number

M2-%R1

M2-%X

M2 exciting current

M2 torque current

M2 slip on driving

M2 slip on braking

M2 iron loss coefficient 1

M2 iron loss coefficient 2

M2 iron loss coefficient 3

M2 magnetic saturation coefficient 1

M2 magnetic saturation coefficient 2

M2 magnetic saturation coefficient 3

M2 magnetic saturation coefficient 4

M2 magnetic saturation coefficient 5

M2 secondary time constant

M2 induced voltage coefficient

M2-R2 correction coefficient 1

M2-R2 correction coefficient 2

M2-R2 correction coefficient 3

M2 exciting current correction coefficient

M2-ACR-P (Gain)

M2-ACR-I (Integration time)

M2-PG pulse number

M2 thermistor selection

M2 electronic thermal overload relay (Select)

M2 electronic thermal overload relay (Level)

M2 electronic thermal overload relay (Thermal time constant)

M3 rated capacity

M3 rated current

M3 rated voltage

M3 maximum output voltage (at V/f maximum speed)

M3 rated speed

M3 maximum speed

M3 pole number

M3-%R1

M3-%X

M3 exciting current

M3 slip compensation control

0 – 1

0.00 – 900.0kW (F60=0)

0.00 – 1200.0HP (F60=1)

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

80 – 999 V

50 – 1500 – 24000 r/min

50 – 1500 – 24000 r/min

2 – 4 – 12 (poles)

0.00 – 30.00 %

0.00 – 50.00 %

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.001 – 10.000 Hz

0.001 – 10.000 Hz

0.00 – 10.00 %

0.00 – 10.00 %

0.00 – 10.00 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.0 – 100.0 %

0.001 – 9.999 s

0 – 999 V

0.000 – 5.000

0.000 – 5.000

0.010 – 5.000

0.000 – 5.000

0.1 – 1.0 – 20.0

0.5 – 1.0 – 100.0 ms

100 – 1024 – 60000

0 – 1 – 3

0 – 2

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.5 – 75.0 min

0.00 – 900.0kW (F60=0)

0.00 – 1200.0HP (F60=1)

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

80 – 999 V

80 – 999 V

50 – 1500 – 24000 r/min

50 – 1500 – 24000 r/min

2 – 4 – 12 (poles)

0.00 – 30.00 %

0.00 – 50.00 %

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

-20.000 – 0.000 – 5.000

0.1

1

1

1

0.001

0.01

0.001

1

1

1

0.1

1

1

1

1

0.01

1

1

1

1

0.1

0.01

1

1

1

1

1

1

0.01

0.01

0.001

0.001

0.001

0.001

1

1

1

1

1

1

1

0.1

0.01

0.01

0.001

0.01

1

1

1

1

1

1

0.01

0.01

0.1

1

1

1

1

2

0.01

0.01

0.01

0.1

1

0.01

0.1

1

0.001

0.001

0.01

0.01

0.01

0.1

0.1

0.1

0.1

0.1

0.001

1

0.001

0.001

0.001

0.001

0.1

0.1

1

1

1

0.01

0.1

1

0.1

0.01

0.01

0.1

1

1

1

1

1

2

0.01

0.01

0.01

0.1

1

0.001

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

indicates the factory setting.

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

Page 28: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

O:Optional Functions

S:Serial Communication Functions

M:Monitoring Functions

Function setting

28

52Eh

52Fh

530h

531h

532h

240(F0h)

241(F1h)

242(F2h)

243(F3h)

244(F4h)

M3 torque boost

M3 thermistor selection

M3 electronic thermal overload relay (Select)

M3 electronic thermal overload relay (Level)

M3 electronic thermal overload relay (Thermal time constant)

601h

602h

603h

604h

605h

606h

607h

608h

609h

60Ah

60Bh

60Ch

60Dh

60Eh

60Fh

610h

611h

612h

613h

61Eh

61Fh

620h

621h

622h

623h

624h

625h

626h

627h

628h

245(F5h)

246(F6h)

247(F7h)

248(F8h)

249(F9h)

250(FAh)

253(FDh)

DIA function selection

DIB function selection

DIA BCD input setting

DIB BCD input setting

Feedback pulse selection

Digital line speed detection definition (PG pulse number)

Digital line speed detection definition (Detected pulse correction 1)

Digital line speed detection definition (Detected pulse correction 2)

ABS signal input definition (Synchronization)

Magnetic pole position offset (Synchronization)

Salient pole ratio (%Xq/%Xd)

Reference pulse selection

Pulse train input form selection

Reference pulse correction 1

Reference pulse correction 2

APR gain

F/F gain

Deviation excess range

Deviation zero range

Action on communication error

Action time on communication error

Communication format

Multiwinding system

Multiwinding system slave station number

Link station adress

Link system slave station number

Communication definition setting

UPAC start/stop

UPAC memory mode

UPAC Address

701h

702h

703h

704h

705h

706h

707h

708h

709h

70Ah

70Bh

70Ch

1(1h)

2(2h)

3(3h)

4(4h)

5(5h)

6(6h)

7(7h)

8(8h)

9(9h)

10(Ah)

11(Bh)

12(Ch)

Frequency/speed reference (Setting 1)

Torque reference

Torque current reference

Magnetic-flux reference

Orientation position reference

Operation method 1

Universal Do

Acceleration time

Deceleration time

Torque limiter level 1

Torque limiter level 2

Operation method 2

Function codes "S" and "M" are codes to access the inverter through links (RS485, T-Link, SX communication, field bus , etc). You cannot use them with the KEYPAD panel.Though you can access the codes "F", "E", and "C" through these links, these links are specifically designed to access the code "S" for operation and control and the "M" for data monitoring.

-24000 – 24000 r/min

0.01% / 1d

0.01% / 1d

0.01% / 1d

0000 – FFFF

0000 – FFFF

0000 – FFFF

0.0 – 3600.0 s

0.0 – 3600.0 s

0.01% / 1d

0.01% / 1d

0000 – FFFF

801h

802h

803h

804h

805h

806h

807h

808h

809h

80Ah

80Bh

80Ch

80Dh

80Eh

80Fh

810h

811h

812h

813h

814h

815h

816h

817h

818h

819h

81Ah

81Bh

81Ch

81Dh

81Eh

81Fh

820h

821h

822h

15(Fh)

16(10h)

17(11h)

18(12h)

19(13h)

20(14h)

21(15h)

22(16h)

23(17h)

24(18h)

25(19h)

26(1Ah)

27(1Bh)

28(1Ch)

29(1Dh)

30(1Eh)

31(1Fh)

32(20h)

33(21h)

34(22h)

35(23h)

36(24h)

37(25h)

38(26h)

39(27h)

40(28h)

41(29h)

42(2Ah)

43(2Bh)

44(2Ch)

45(2Dh)

46(2Eh)

47(2Fh)

48(30h)

Speed setting 4 (ASR input)

Torque reference

Toque current reference

Magnetic-flux reference

Output frequency reference

Detected speed value

Calculated torque value

Calculated torque current value

Output frequency

Motor output

Output current rms value

Output voltage rms value

Operation method (final command)

Operation status

Output terminals Y1 - Y18

Latest alarm data

Last alarm data

Second last alarm data

Third last alarm data

Accumulated operation time

DC link circuit voltage

Motor temperature

Type code

Capacity code

Inverter ROM (main control) version

Communication error code

Speed setting on alarm

Torque reference on alarm

Torque current reference on alarm

Magnetic-flux reference on alarm

Output frequency reference on alarm

Detected speed on alarm

Calculated torque on alarm

Calculated torque current on alarm

-24000 – 24000 r/min

0.01% / 1d

0.01% / 1d

0.01% / 1d

0.1Hz / 1d

-24000 – 24000 r/min

0.01% / 1d

0.01% / 1d

0.1Hz / 1d

0.1kW / 1d

0.1A / 1d

0.1V / 1d

0000 – FFFF

0000 – FFFF

0000 – FFFF

0 – 48

0 – 48

0 – 48

0 – 48

0 – 65535 h

1V / 1d

1°C / 1d

0000 – FFFF

0 – 29

0000 – FFFF

0 – 65535

-24000 – 24000 r/min

0.01% / 1d

0.01% / 1d

0.01% / 1d

0.1Hz / 1d

-24000 – 24000 r/min

0.01% / 1d

0.01% / 1d

S01S02S03S04S05S06S07S08S09S10S11S12

M01M02M03M04M05M06M07M08M09M10M11M12M13M14M15M16M17M18M19M20M21M22M23M24M25M26M27M28M29M30M31M32M33M34

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

indicates the factory setting.

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

0.0 – 20.0

0 – 1 – 3

0 – 2

0.01 – 99.99A

100.0 – 999.9A

1000 – 2000A

0.5 – 75.0 min

0 – 1

0 – 1

99 – 1000 – 7999

99 – 1000 – 7999

0 – 1

100 – 1024 – 60000 (P/R)

0 – 1000 – 9999

0 – 1000 – 9999

0 – 16

0000 – FFFF

1.000 – 3.000

0 – 1

0 – 2

0 – 1000 – 9999

0 – 1000 – 9999

0.1 – 999.9 (times)

0.0 – 1.5 (times)

0 – 65535 (pulses)

0 – 20 – 1000 (pulses)

0 – 3

0.01 – 0.10 – 20.00 s

0 – 1

0 – 1

1 – 5

0 – 255

1 – 155

0000 – 0010 – 0124

0 – 2

00 – 1F

100 – 255

0.1

1

1

0.01

0.1

1

0.1

1

0.01

0.01

0.01

1

1

1

0.1

0.1

0.01

0.01

1

1

0.01

0.01

0.01

0.1

1

0.01

0.01

0.1

0.1

0.1

0.1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.01

0.01

0.01

0.1

1

0.01

0.01

1

1

1

1

1

1

1

1

1

1

0.001

1

1

1

1

0.1

0.1

1

1

1

0.01

1

1

1

1

1

1

1

1

1

Page 29: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

U:User Functions(UPAC)

29

M35M36M37M38M39M40M41M42M43M44M45M46M47M48M49M50M51M52M53M54M55M56M57M58M59M60

823h

824h

825h

826h

827h

828h

829h

82Ah

82Bh

82Ch

82Dh

82Eh

82Fh

830h

831h

832h

833h

834h

835h

836h

837h

838h

839h

83Ah

83Bh

83Ch

49(31h)

50(32h)

51(33h)

52(34h)

53(35h)

54(36h)

55(37h)

56(38h)

57(39h)

58(3Ah)

59(3Bh)

60(3Ch)

61(3Dh)

62(3Eh)

63(3Fh)

64(40h)

65(41h)

66(42h)

67(43h)

68(44h)

69(45h)

70(46h)

71(47h)

72(48h)

73(49h)

74(4Ah)

Output frequency on alarm

Motor output on alarm

Output current rms value on alarm

Output voltage rms value on alarm

Operation method on alarm

Operation status on alarm

Output terminal on alarm

Accumulated operation time on alarm

DC link circuit voltage on alarm

Inverter internal temperature on alarm

Heat sink temperature on alarm

Main circuit capacitor life on alarm

PC board capacitor life on alarm

Cooling fan life

Speed setting 1 (before multistep speed command)

Speed setting 2 (before calculation of accel./decel.)

Speed setting 3 (after speed limit)

Control output 1

Control output 2

Control output 3

Option monitor 1

Option monitor 2

Option monitor 3

Option monitor 4

Option monitor 5

Option monitor 6

0.1Hz / 1d

0.1kW / 1d

0.1A / 1d

0.1V / 1d

0000 – FFFF

0000 – FFFF

0000 – FFFF

0 – 65535 h

1V / 1d

1°C / 1d

1°C / 1d

0 – 100%

0 – 65535 h

0 – 65535 h

-24000 – 24000 r/min

-24000 – 24000 r/min

-24000 – 24000 r/min

0000 – FFFF

0000 – FFFF

0000 – FFFF

0000 – FFFF

0000 – FFFF

0 – 65535

0 – 65535

-32768 – 32767

-32768 – 32767

0.1

0.1

0.1

0.1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

Name Setting rangeLinkNo.

485No.

Function code

Min.unit

B1Ch

B1Dh

B1Eh

B1Fh

B20h

B21h

B22h

B23h

B24h

B25h

B26h

B27h

B28h

B29h

B2Ah

B2Bh

B2Ch

B2Dh

B2Eh

B2Fh

B30h

B31h

B32h

B33h

B34h

B35h

B36h

B37h

B38h

B39h

B3Ah

B3Bh

B3Ch

B3Dh

B3Eh

B3Fh

B40h

USER P28

USER P29

USER P30

USER P31

USER P32

USER P33

USER P34

USER P35

USER P36

USER P37

USER P38

USER P39

USER P40

USER P41

USER P42

USER P43

USER P44

USER P45

USER P46

USER P47

USER P48

USER P49

USER P50

USER P51

USER P52

USER P53

USER P54

USER P55

USER P56

USER P57

USER P58

USER P59

USER P60

USER P61/U-Ai1

USER P62/U-Ai2

USER P63/U-Ai3

USER P64/U-Ai4

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

B01h

B02h

B03h

B04h

B05h

B06h

B07h

B08h

B09h

B0Ah

B0Bh

B0Ch

B0Dh

B0Eh

B0Fh

B10h

B11h

B12h

B13h

B14h

B15h

B16h

B17h

B18h

B19h

B1Ah

B1Bh

219(DBh)

220(DCh)

221(DDh)

222(DEh)

223(DFh)

224(E0h)

225(E1h)

226(E2h)

227(E3h)

228(E4h)

USER P1

USER P2

USER P3

USER P4

USER P5

USER P6

USER P7

USER P8

USER P9

USER P10

USER P11

USER P12

USER P13

USER P14

USER P15

USER P16

USER P17

USER P18

USER P19

USER P20

USER P21

USER P22

USER P23

USER P24

USER P25

USER P26

USER P27

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

-32768 – 32767

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

You can change the setting of the functions indicated with during operation. Stop the operation before

changing other functions.

75(4Bh)

76(4Ch)

77(4Dh)

78(4Eh)

Page 30: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Option guides

Options

30

Surge absorber (suppressor)

Arrester

Surge killer

Control option card

Communication option card

Extension cablefor KEYPAD

Absorbs surges and noises generated from the inverter to prevent malfunction of magnetic contactors, mini control relays, and timers.

Suppresses induced lightning surges from the power source to protect entire equipment connected to the power source.

Absorbs surges and noises coming from outside to protect electronic devices inside the panel from malfunction.

Enables more precise operation, control and installation of different I/Os.

Facilitates system construction including PLCs and PCs.

Used for remote control between an inverter and the KEYPAD.

Braking resistor

Braking unit

Powerregenerative PMW converter, RHC series

Dedicated filterfor the RHC series

Increases braking capability for highly frequent stopping and large moment of inertia.

Used in combination with a braking resistor for units of 75kW or more for 200V and 132kW or more for 400V.

Used for suppressing power source harmonics of inverters. It is also equipped with a power supply regenerative function to drastically increase braking capability and reduce energy consumption. Use in combination with dedicated reactors for the RHC series.

Dedicated filter for the RHC series is used if the power supply impedance at the rated current of an inverter exceeds 1% and electronic equipment is connected to the same power supply. Use in combination with dedicated filter reactors, filter capacitors and filter resistors.

EMC compliance filter

Ferrite ring for reducing radio noise

AC reactor (ACR)

DC REACTOR (DCR)

Output circuit filter

Dedicated filter to comply with the European EMC Directive (Emission).

Used to reduce radio noise.Inserting it on the power supply side if the cable length between a motor and an inverter is short (roughly 20m or less) or on the output side if the cable length exceeds 20m is recommended.

Can be used to correct the power-factor and to normalize the power supply. We recommend more efficient, compact and light DC REACTOR. Use only when you require an especially stable power supply such as a DC bus connection (PN connection operation). Use DC REACTOR (DCR) for reducing harmonic.

[For power supply normalization]1Use if the power transformer

capacity is 500kVA or more and exceeds the inverter rated capacity by 10 times.

2Use if the inverter and a thyristor converter are connected with the same transformer.*Check if the thyristor converter uses a commutation reactor. If not, an AC reactor must be connected to the power supply side.

3Connect to prevent trips when trip occurs due to

opening/closing of the phase-advancing capacitor for the power supply lines.

4Use if the voltage unbalance exceeds 2%.

[For improving the input power-factor and reducing harmonics]- Used to reduce the input harmonic

current (correcting power-factor)

Connected to the output of a low-noise inverter to:• Suppress fluctuations of motor

terminal voltage.• Prevent damages to the motor

insulation due to surge voltage in 400V series inverter.

Motor

M

Power supply

L2/SL1/R

L1 L2(R S T)

L3

L1'(U V W)

L2'L3'

X1Y1Z1

X2Y2Z2

L3/T

U V W

P1

P (+)DB

P (+)

N(–)

MCCB or ELCB

(Max. voltage [V] - Min. voltage [V])Voltage

unbalance [%] =Three-phase average voltage [V]× 67[%]

(Conforming to IEC 61800-3 (5.2.3))

MotorM

Power transformer capacity

Main operations/applicationsName Main operations/applicationsName

Inve

rter

Inve

rter

Magnetic contactor

DC

RE

AC

TO

R

Com

mut

atio

nre

acto

r

Pow

er-fa

ctor

cor

rect

ing

capa

cito

r

Serie

s con

necte

d re

acto

rT

hyris

tor

conv

erte

r

Page 31: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Control option cards and support software

Maximum installable number of inverter built-in option cards (4)

Restrictions for installing built-in option cards(1) When you use OPC-VG7-PG for detecting motor speed, the input from the terminals (PA, PB) on the control PC board of the main unit is disabled.

(2) When you install OPC-VG7-PMPG, you should select terminals according to the control method. The terminals (PA, PB) on the control PC board of the

main unit are enabled if vector control is selected. The OPC-VG7-PMPG is enabled if vector control (for synchronous motors) is selected.

(3) You cannot use OPC-VG7-TL (T-Link interface), OPC-VG7-SX (SX bus interface) and the field bus interface unit simultaneously. If these are used at the

same time, the operation procedure error (Er6) will be issued.

(4) You can select how to use OPC-VG7-DI, OPC-VG7-PG with the switch setting on the control PC board.

You can install a pair of either OPC-VG7-DI, OPC-VG7-PG. If the setting of the switches selecting how to use them are the same, the operation procedure

error (Er6) will be issued.

Category

Cable

Name

Extension cable for

KEYPAD

RS-485 / RS232C converter with cable

CBIII-10R-2S

CBIII-10R-1C

CBIII-10R-2C

NP4H-CNV

Type

2m

1m

2m

2m

Standard length Max. length

2m

5m

10m

2m

Analog card

Digital card (for 8-bit bus)

Digital card (for 16-bit bus)

Field bus interface unit

1

1

1

1

Maximum installable number

Example 1

0

2

1

1

Example 2

Connection cable between an inverter

and the KEYPAD panel

Converter with cable for a personal computer loader

Specifications

Synchronized operation cardF/V converterAio extension cardAi extension cardDi interface card

Dio extension card

PG interface extension card

T-link interface cardHigh-speed serial card

RS-485 extension cardCC-Link interface cardPG card for synchronous motor driving

Magnet orientation cardUser ProgrammableApplication Card

SX bus interface cardPROFIBUS-DPDeviceNetSynchronized operation unitF/V converterDancer controllerPG signal switchInverter support loaderTension control softwareDancer control softwarePosition control software

OPC-VG7-SNOPC-VG7-FVOPC-VG7-AIOOPC-VG7-AIOPC-VG7-DI

OPC-VG7-DIO

OPC-VG7-PG

OPC-VG7-PGo

OPC-VG7-TLOPC-VG7-SIOPC-VG7-SIUOPC-VG7-RSOPC-VG7-CCL *OPC-VG7-PMPGOPC-VG7-PMPGoOPC-VG7-MGOPC-VG7-UPAC

OPC-VG7-SX *OPC-VG7-PDP *OPC-VG7-DEV *MCA-VG7-SNMCA-VG7-FVMCAII-PUMCA-VG7-CPGWPS-VG7-PCLWPS-VG7-TENWPS-VG7-DAN

Synchronizing interface circuits for dancer control.F/V converterExtension card of Ai: 2 points + Ao 2 points.Extension card of Ai: 2 points16-bit Di of binary or 4-digit BCD + sign.For setting the speed, torque and the torque current reference.Extension of Di(4 bits) and Do(8 bits) for function selecting.Dio option card for direct landing control. Di × 16 bit + Do × 10 bit

+5V line drivers type

Open collector type

T-link interface card for FUJI MICREX-F series PLC.Used for multiwinding motor drive system.Used for UPAC communication system.I/F option card for UPAC communication and RS-485.

+5V line drivers typeOpen collector type

Position control of controlled axis with the use of magnet sensor.Technology card

SX bus interface card for FUJI MICREX-SX series PLC. Used as interface between KEYPAD and inverter unit.

Synchronizing interface circuitsF/V converterDancer controllerSwitch between PG and NTC signal (2-signal switch)For Windows.For Windows.Supplied with inverter support loader CD-ROM.

Category

Analog card

Digital card (for 8-bit bus)

Digital card (for 16-bit bus)

Separate installation type

Loader

Package software

Fieldbus interface unit

Voltage output PGs (A, B and Z-phase signals). Used for detecting motor speed, line speed, position reference and position detection.

A, B + magnetic pole position (max. 4 bits).

Name Type Specifications

Category

31

NOTE: The items marked with * cannot be used for the VG7S of standard version. The VG7S equipped with these items will be of special version.     For details, please contact your FUJI sales representative.

Page 32: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

UPAC system application Cable connection

The option of built-in user-programmable functions is referred to as UPAC (User Programmable Application Card).

Users can alter part of the inverter control or control terminal functions to perform sequence control.

Software supporting UPAC is the same as the integrated programming support tool SES300 of MICREX-SX (upgrade for UPAC is necessary on installation).

High-speed serial card (option) enables master-slave configuration assigning a UPAC-installed inverter as a master.

Optional user-programmable functions installed on the inverter

Personal computer

Cable with an RS232C/485 converter

Host controller

Master inverter (UPAC installed)

Inter-inverter link: up to 12 inverters

Slave inverters

POD

UPAC supportInverter support loader

1500

UPAC user block diagram

InputFB

Speed settingCalculated acceleration/deceleration output

Calculated acceleration/deceleration FB

Reference valueSpeed FB

OutputFB

OutputFB

UPAC SW

Torque reference

UPAC

Speed Setting

Actual Speed

InputFB

VG7 InverterControl

Function

VG7 MotorControl

UPAC

out

Speed Actual

PID FB

SE300: Integrated programming environment SE3001. Programming support tool

SED300 (D300 WIN)2. Action specification

description system SEA300

32

Options

Page 33: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Below is an example of a winding up system with UPAC.

The inverter for a feed shaft is assigned as a master and UPAC is installed on it.The entire system is controlled by UPAC by linking it with three other inverters via optical communication.Speed control is applied to the feed shaft, tension control with tension pickups is applied to the feed-out shaft, and direct tension control without tension sensors is applied to the take-up shafts.Tension control is stabilized with simultaneous acceleration/deceleration compensation and mechanical loss compensation.A POD (Programmable Operation Display) is used for the entry of control data and control status display.A loader for the personal computer is provided as a programming support tool with UPAC. Easy programming is realized by loader functions such as defining original circuits of users as FBs (Function Blocks) and multiple windows.

An example of a System Configuration with UPAC

VG7SHigh-

speed serial card

M

VG7SHigh-

speed serial card

M

VG7SHigh-

speed serial card

M

RS-485

RS-485

PODRS-485

Loader

VG7S

High-speed serial card

RS 485

extension card

M

Opticalcommunication

Feeding out

WindingFeeding

Slitter

Winding

UPAC Card

Line speed reference

Tension pickup

Ratio setting

Ai input

Speed correction

33

Page 34: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

NOTES:

• Connectors are available for connecting to the inverter. Fuji's RS-485/232C converter cable (D-SUB 9 connector) is recommended.

• Though the minimum sampling interval for the real-time trace is 10ms, it may actually be longer due to the communication speed of your personal computer.

• Operation from the KEYPAD or the terminal block (external signal input) is disabled in loader trial operations. Operation from the loader is switched to the

personal computer, KEYPAD or terminal block automatically for real operations.

• Product technology names related to Windows95, 98, NT, XP, and 2000 are trademarks or registered trademarks of Microsoft Corporation.

Function code list editing Trial operation screen

Real-time trace System monitor

Inverter Support Loader

You can edit, compare and copy the function code data.

Operation monitoring, real-time/historical traces, fault monitoring and multiple monitoring are also available.

Trial operation and tuning are available. You can monitor the operational status of up to

31 inverters by executing multiple-scan from your personal computer.

You can choose the English or Japanese version on installation.

You can trace 100 points of data sampled at 1ms interval in the historical trace and use them for operation/fault analysis in combination with the trigger function.

Operation is compatible with Windows95/98/NT/ XP/2000.

Complete Functions

34

Options

Page 35: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

NOTES:• The braking time and duty cycle [%ED] are calculated as the constant-torque braking used for deceleration as described below.• Refer to the User's Manual for braking resistors other than those for 10%ED.

[Selection procedure] All three conditions listed below must be satisfied simultaneously.1 The maximum braking torque does not exceed the value shown on the table.2 The energy discharged in the resistor for each braking (the area of the triangle shown in the above figure) does not exceed the discharging capability [kWs] on the table.3 The average loss (energy discharged in the resistor divided by the braking interval) does not exceed the average loss [kW] shown on the table.

Braking resistor, braking unit (max. 150% torque, 10%ED)

Braking timeT1

0 Time

150%

Braking intervalT0

Braking timeT1

Braking power

• Duty cycle %ED = × 100[%]T1T0

Braking timeT12

0 Time

150%

Braking intervalT0

Braking timeT12

Braking power

Power

supply

voltage

Nominal applied motor [kW]

Type Ohmic value

Average loss [kW]

Duty cycle [%ED]

Discharging capability [kWs]

Braking time [s]

Max. braking torque [%]

Inverter type

Braking unit

Built-in inverter

Built-in inverter

Braking resistor

Type Q'ty Q'ty

Continuous braking (100% torque conversion value) Repetitive braking (100s or less cycle)

200V

400V

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4

BU55-2C

BU90-2C

BU220-4C

BU220-4C

BU220-4C

DB2.2V-21B

DB3.7V-21B

DB5.5V-21B

DB7.5V-21B

DB11V-21B

DB15V-21B

DB18.5V-21B

DB22V-21B

DB30V-21B

DB37V-21B

DB45V-21B

DB55V-21C

DB75V-21C

DB90V-21C

DB3.7V-41B

DB5.5V-41B

DB7.5V-41B

DB11V-41B

DB15V-41B

DB18.5V-41B

DB22V-41B

DB30V-41B

DB37V-41B

DB45V-41B

DB55V-41C

DB75V-41C

DB90V-41C

DB110V-41C

DB132V-41C

DB160V-41C

DB200V-41C

DB220V-41C

DB160V-41C

DB160V-41C

DB132V-41C

DB132V-41C

DB132V-41C

DB160V-41C

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

500

630

2

2

1

2

3

4

30

24

16

12

8

6

4.5

4

2.5

2.25

2

1.6

2.4/2

2/2

96

64

48

32

24

18

16

10

9

8

6.5

4.7

3.9

3.2

2.6

2.2

3.5/2

3.2/2

2.2/2

2.2/2

2.6/3

2.6/3

2.6/4

2.2/4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

3

3

4

4

150%

150%

10s

10s

16.5

27.75

41.25

56.25

82.5

112.5

138.75

165

225

277.5

337.5

412.5

562.5

675

27.75

41.25

56.25

82.5

112.5

138.75

165

225

277.5

337.5

412.5

562.5

675

825

990

1200

1500

1650

2100

2363

2663

3000

3750

4725

10%ED

10%ED

0.165

0.2775

0.4125

0.5625

0.825

1.125

1.3875

1.65

2.25

2.775

3.375

4.125

5.625

6.75

0.2775

0.4125

0.5625

0.825

1.125

1.3875

1.65

2.25

2.775

3.375

4.125

5.625

6.75

8.25

9.9

12.0

15.0

16.5

21.0

23.6

26.6

30.0

37.5

47.3

35

Page 36: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Braking resistor

Braking unit

H2

H1

H

W 6W1

15 D1.2

7.5

Voltage TypeDimensions [mm] Mass

[kg]W W1 H H1 H2 D

400Vseries

200Vseries

BU55-2C

BU90-2C

BU220-4C

230

250

250

130

150

150

240

370

450

225

355

435

210

340

420

160

160

6

9

13

TypeDimensions [mm]

W W1 H H1 H2 D

DB2.2V-21B

DB3.7V-21B

DB5.5V-21B

DB7.5V-21B

DB11V-21B

DB15V-21B

DB18.5V-21B

DB22V-21B

DB30V-21B

DB37V-21B

DB45V-21B

DB55V-21C

DB75V-21C

DB90V-21C

Fig.

A

B

330

400

400

400

400

400

400

400

400

405

405

450

600

700

298

368

368

368

368

368

368

368

368

368

368

420

570

670

242

280

280

480

480

660

660

660

660

750

750

440

440

440

210

248

248

448

448

628

628

628

628

718

718

430

430

430

165

203

203

377

377

557

557

557

557

647

647

250

250

250

140

140

140

140

140

140

140

240

240

240

340

283

283

283

D1

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

CMass [kg]

4

5

5

6

7

10

10

13

18

22

26

35

33

43

8

8

8

10

10

10

10

10

10

10

10

12

12

12

Type

200V Series 400V Series

Dimensions [mm]

W W1 H H1 H2 D

DB3.7V-41B

DB5.5V-41B

DB7.5V-41B

DB11V-41B

DB15V-41B

DB18.5V-41B

DB22V-41B

DB30V-41B

DB37V-41B

DB45V-41B

DB55V-41C

DB75V-41C

DB90V-41C

DB110V-41C

DB132V-41C

DB160V-41C

DB200V-41C

DB220V-41C

420

420

420

420

420

420

420

420

425

425

550

550

650

750

750

600

725

725

388

388

388

388

388

388

388

388

388

388

520

520

620

720

720

570

695

695

280

480

480

480

660

660

660

660

750

750

440

440

440

440

440

440

440

440

248

448

448

448

628

628

628

628

718

718

430

430

430

430

430

430

430

430

203

377

377

377

557

557

557

557

647

647

250

250

250

250

250

250

250

250

140

140

140

140

140

140

240

240

240

340

283

283

283

283

283

283

283

283

D1

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

CMass [kg]

5

7

7

8

11

11

14

19

21

26

26

30

41

57

43

74

50(x2)

51(x2)

8

10

10

10

10

10

10

10

10

10

12

12

12

12

12

12

12

12

HH1

WW1

DD

1

NP

H2

4-øC

Fig. A

NP

H

H14-øC

Fig. B

H2WW1

240

43D

Fig.

A

B

2-ø6

Fan unit for braking unit (BU-F)

Braking unit + Fan unit

TypeDimensions [mm]

BU55-2C+BU-FBU90-2C+BU-F

BU220-4C+BU-F

230250

250

W2

135

135

W3

47.557.5

57.5

W4

240370

450

H2

30

30

H3

270400

480

H4

160

160

D2

1.2

1.2

D4D3

64

64

200Vseries

400Vseries

Voltage

[Braking unit + Fan unit]

DBUnitWARNING 危険

H2

H3

H4

W3W4W2

D4 D3D2

Fan unit

TypeDimensions [mm]

BU-F 149

W1

44 76

H1 D1

320

[Fan unit]

W1

H1

D1

(Fan power supply cable)

36

Options

Page 37: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

DC REACTOR (DCR-)

*The DC REACTOR is provided as standard (supplied for external installation) in inverters of 75kW or more.

200V

series

400V

series

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN315VG7S-4

FRN355VG7S-4

FRN400VG7S-4

FRN500VG7S-4

FRN630VG7S-4

DCR2-0.75

DCR2-1.5

DCR2-2.2

DCR2-3.7

DCR2-5.5

DCR2-7.5

DCR2-11

DCR2-15

DCR2-18.5

DCR2-22A

DCR2-30B

DCR2-37B

DCR2-45B

DCR2-55B

DCR2-75B

DCR2-90B

DCR2-110B

DCR4-3.7

DCR4-5.5

DCR4-7.5

DCR4-11

DCR4-15

DCR4-18.5

DCR4-22A

DCR4-30B

DCR4-37B

DCR4-45B

DCR4-55B

DCR4-75B

DCR4-90B

DCR4-110B

DCR4-132B

DCR4-160B

DCR4-200B

DCR4-220B

DCR4-280B

DCR4-315B

DCR4-355B

DCR4-400B

DCR4-500B

DCR4-630B

DCR4-710B

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

500

630

710

A

A

A

A

A

A

A

A

A

A

B

B

B

C

C

C

C

A

A

A

A

A

A

A

B

B

B

B

C

C

C

C

C

C

C

C

D

D

D

D

D

D

66

66

86

86

111

111

111

146

146

146

152

171

171

190

200

180

190

86

86

111

111

146

146

146

152

171

171

171

190

190

190

200

210

210

220

220

220

220

240

260

300

310

56

56

71

71

95

95

95

124

124

124

90

110

110

160

170

150

160

71

71

95

95

124

124

124

90

110

110

110

160

160

160

170

180

180

190

190

190

190

210

225

245

255

72

72

80

80

80

80

80

96

96

96

116

110

125

90

100

110

120

80

80

80

80

96

96

96

115

110

125

130

115

125

125

135

135

135

135

145

145

145

145

145

170

170

90

90

100

100

100

100

100

120

120

120

156

151

166

131

141

151

161

100

100

100

100

120

120

120

157

150

165

170

151

161

161

171

171

171

171

181

181

181

181

181

211

211

20

20

10

20

20

23

24

15

25

25

115

115

120

100

110

140

150

20

20

24

24

15

25

25

100

100

110

110

100

120

120

120

120

140

140

150

150

160

170

185

195

205

78

75

86

65

70

75

80

78

75

82

85

75

80

80

85

85

90

90

95

95

95

95

100

110

115

5.2x8

5.2x8

6x11

6x11

7x11

7x11

7x11

7x11

7x11

7x11

8

8

8

8

10

10

10

6x9

6x9

7x11

7x11

7x11

7x11

7x11

8

8

8

8

10

10

10

10

12

12

12

12

12

12

12

12

12

12

94

94

110

110

130

130

137

171

180

180

130

150

150

210

210

240

270

110

110

130

130

171

171

171

130

150

150

150

240

250

250

260

290

295

300

320

320

320

340

340

390

405

M4

M4

M4

M4

M5

M5

M6

M6

M8

M8

M8

M8

M10

M12

M12

ø15

ø15

M4

M4

M5

M5

M5

M6

M6

M8

M8

M8

M8

M10

ø12

ø12

ø12

ø12

ø12

ø15

ø15

ø15

ø15

ø15

ø15

ø15

ø15

1.4

1.6

1.8

2.6

3.6

3.8

4.3

5.9

7.4

7.5

12

14

16

16

18

20

25

2.6

2.6

4.2

4.3

5.9

7.2

7.2

13

15

18

20

20

23

25

28

32

35

40

45

52

55

60

70

80

88

The DC REACTORS in are provided as standard (separately installed).

VoltageNominal applied

motor [kW]

REACTOR type Fig.

Inverter typeCT use [150%] VT use [110%]

Dimensions [mm] Mass[kg]A B C D E F G H Terminal size

Fig. BTerminal hole

4-øGMounting hole

B±1

Max

.H

A±3C±2

Max.E F±5

D±3

Fig. A

E

HC D

BA

4-øG Mounting hole

Fig. CTerminal hole

4-øGMounting hole

B±1

MA

X.H

A±3C±2

MAX.E F±5

D±3

Fig. D

4-øGx20 elongated holeMounting hole

B±1

MA

X.H

A±3

C±2

MAX.FE±5

D±320

37

Page 38: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

200V

series

400V

series

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

FRN0.75VG7S-2

FRN1.5VG7S-2

FRN2.2VG7S-2

FRN3.7VG7S-2

FRN5.5VG7S-2

FRN7.5VG7S-2

FRN11VG7S-2

FRN15VG7S-2

FRN18.5VG7S-2

FRN22VG7S-2

FRN30VG7S-2

FRN37VG7S-2

FRN45VG7S-2

FRN55VG7S-2

FRN75VG7S-2

FRN90VG7S-2

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

ACR2-0.75A

ACR2-1.5A

ACR2-2.2A

ACR2-3.7A

ACR2-5.5A

ACR2-7.5A

ACR2-11A

ACR2-15A

ACR2-18.5A

ACR2-22A

ACR2-37

ACR2-55

ACR2-75

ACR2-90

ACR2-110

ACR4-3.7A

ACR4-5.5A

ACR4-7.5A

ACR4-11A

ACR4-15A

ACR4-18.5A

ACR4-22A

ACR4-37

ACR4-55

ACR4-75

ACR4-110

ACR4-132

ACR4-220

ACR4-280

0.75

1.5

2.2

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

3.7

5.5

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

A

A

A

A

A

B

B

B

B

B

B

C

C

C

C

B

B

B

B

B

B

C

C

C

C

C

C

120

120

120

125

125

125

125

180

180

180

190

190

250

285

280

125

125

125

180

180

190

190

190

250

250

320

380

40

40

40

40

40

40

40

60

60

60

60

60

100

190

150

40

40

40

60

60

60

60

60

100

100

120

130

75

75

75

75

90

90

100

85

85

85

90

90

90

120

110

75

90

90

85

85

90

90

90

105

115

110

110

100

100

100

100

115

115

125

110

110

110

120

120

120

158

138

100

115

115

110

110

120

120

126

136

146

150

150

90

90

90

90

90

170

200

200

190

200

90

90

90

90

90

170

200

197

202

210

240

260

6x10

6x10

6x10

6x10

6x10

6x10

6x10

7x11

7x11

7x11

7x11

7x10

9x14

12x20

10x20

6x10

6x10

6x10

7x11

7x11

7x10

7x10

7x10

9.5x18

9.5x18

12x20

12x20

125

125

125

125

125

95

95

115

115

115

190

190

250

210

270

95

95

95

115

137

190

190

190

245

250

300

300

M4

M4

M4

M4

M4

M5

M6

M6

M6

M6

8.4

13

13

13

13

M4

M5

M5

M6

M6

8.4

10.5

11

13

13

13

13

2.5

2.5

2.5

2.5

3.1

3.1

3.7

4.8

5.1

5.1

11

12

25

26

30

2.4

3.1

3.7

4.3

5.4

5.7

5.9

11

12

12

24

32

40

52

AC REACTOR (ACR-)

Fig. A Fig. B Fig. CTerminal hole

H

DC

Mounting hole4-G

AB

E

H

Mounting hole4-G

AB

Terminal hole

DC

ETerminal block

Mounting hole4-G

H

A DCB

VoltageNominal applied

motor [kW]

REACTOR type Fig.

Inverter type Dimensions [mm] Mass[kg]A B C D E G H Terminal sizeCT use [150%] VT use [110%]

38

Options

Page 39: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Ferrite ring for reducing radio noise (ACL-40B, ACL-74B)

Recommended wire size

NOTE: *) Use a 600V HIV insulation cable (Allowable temp. 75˚C).

EMC compliant filter (RF3-F11) [400V series]

ACL-40B ACL-74B

80

26 M

AX

13±0

.3

2- 5.5

95 MAX

39.5

MIN

35

78 M

AX

181 MAX

74 M

IN

61

131

MA

X

ContactorFerrite ring Inverter

MotorPower supply

L1/RL2/SL3/T

UVW

M

MCCBor

ELCB

1464 4

26 M

AX

13±0

.3

4-R4

NP NP

Ferrite ring types for reducing radio noise Q'ty No. of turns Recommended wire size [mm2] *)

ACL-40B

ACL-74B

1

2

1

2

4

4

2

4

2

1

2.0, 3.5, 5.5

8, 14

8, 14

22, 38, 60, 5.5x2, 8x2, 14x2, 22x2

100, 150, 200, 250, 325, 38x2, 60x2, 100x2, 150x2

H

W1W

H1

D

Fig. A

W

HH1

D

W1

Fig. B

W

HH1

D

W1

Fig. C

480

EMC filter type

FS5941-40-47

FS5941-60-52

FS5941-86-52

RF3100-F11

RF3180-F11

RF3280-F11

RF3400-F11

RF3880-F11

480

40

60

86

100

180

280

400

880

25

0.5

1.5

176

130

270

A

B

C

FRN3.7 to 7.5VG7S-4

FRN11 to 15VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37 to 90VG7S-4

FRN110 to 132VG7S-4

FRN160 to 220VG7S-4

FRN280 to 400VG7S-4

70

80

80

200

200

250

250

364

45

55

55

166

166

170

170

300

290

329

329

435

495

587

587

688

275

314

314

408

468

560

560

648

185

185

185

130

160

205

205

180

M5

M6

M6

M6

M6

M6

M6

M8

W W1 H H1 D Mtg. screwNormal Open

phase

Ratedcurrent

[A]

Leakage current[mA]Rated voltage

[V]Fig.Inverter type

Dimensions [mm]

39

Page 40: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Output circuit filter (OFL--4A) [400V series]

FRN3.7VG7S-4

FRN5.5VG7S-4

FRN7.5VG7S-4

FRN11VG7S-4

FRN15VG7S-4

FRN18.5VG7S-4

FRN22VG7S-4

FRN30VG7S-4

FRN37VG7S-4

FRN45VG7S-4

FRN55VG7S-4

FRN75VG7S-4

FRN90VG7S-4

FRN110VG7S-4

FRN132VG7S-4

FRN160VG7S-4

FRN200VG7S-4

FRN220VG7S-4

FRN280VG7S-4

14

22

35

45

12

15

17

22

25

28

38

42

48

60

70

78

Filter type Fig.Dimensions [mm]

A B C D E F

OFL-3.7-4A

OFL-7.5-4A

OFL-15-4A

OFL-22-4A

OFL-30-4A

OFL-37-4A

OFL-45-4A

OFL-55-4A

OFL-75-4A

OFL-90-4A

OFL-110-4A

OFL-132-4A

OFL-160-4A

OFL-200-4A

OFL-220-4A

OFL-280-4A

A

B

C

D

E

220

290

330

210

220

260

300

320

340

350

225

290

275

300

175

190

195

200

210

230

240

270

300

220

230

310

330

210

220

265

275

290

330

340

350

390

430

200

260

300

70

75

70

85

100

105

115

115

160

145

170

140

150

155

160

170

190

200

220

250

90

95

140

150

155

170

180

190

200

I

160

233

333

Groundingscrew

M4

M5

M6

Terminalscrew H

Mountingscrew G

M4

M5

M6

6.4

8.4

10.5

13

M5

M6

M8

8

10

12

15

UVWXYZ

D±2

MAX A MAX B

E±3

MA

X C

Mounting hole

Grounding

Terminal NP

Terminal screw

Rating NP

Caution NP

CautionNP

UVWXYZ

D±2

MAX A MAX B

E±3

MA

X C

35

Mounting hole

Grounding

Terminal NP

Terminal screw

Rating NP

Caution NP

CautionNP

D

6-ø H

NP

E

B

F

MA

X.C

100

4-øG

Z1 Z2Y1 Y2X1 X2

A

D

6-ø H NP

E

B

F

MA

X.C

4-øG

Z1

Z2

Y1

Y2

X1

X2

A

Filter

Fig. A Fig. B

Fig. C Fig. D

4-ø10

430

460

I

385

417

34

30

Resistor/capacitor

Fig. E

Applicable inverterApprox.

mass[kg]

The capacitor and resistor for filter OFL-30-4A or larger have to be installed separately (the capacitor and resistor masses are not included in the filter mass on the table below).

40

Options

Page 41: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Power regenerative PWM converter, RHC series

Possible to reduce power supply facility capacityIts power-factor control realizes the same phase current as the power-supply phase-voltage. The equipment, thus, can be operated with the power-factor of almost "1."This makes it possible to reduce the power transformer capacity and downsize the other devices, compared with those required without the converter.

Upgraded braking performanceRegenerated energy occurring at highly frequent accelerating and decelerating operation and elevating machine operation is entirely returned to power supply side.Thus, energy saving during regenerative operation is possible.As the current waveform is sinusoidal during regenerative operation, no troubles are caused to the power supply system.

Rated continuous regeneration : 100%Rated regeneration for 1 min 150% (CT use )

120% (VT use )

Enhanced maintenance/protective functions•Failure can be easily analyzed with the trace back function (option).

The past 10 alarms can be displayed with the 7-segment LEDs.This helps you analyze the alarm causes and take countermeasures.

Even if the wiring on phase sequence at power supply side is wrong, correction is automatically made, so that normal operation is assured.

When momentary power failure occurs, the converter shuts out the gate to enable continuous operation after recovery.

The converter can issue warning signals like overload, heat sink overheating, or the end of service life prior to converter tripping.

Enhanced network support•The converter can be connected to MICREX-SX, F series and CC-Link master devices (using option).The RS-485 interface is provided as standard.

Features

Example of waveform at power supply side during regenerative operation

Allowable characteristics of the RHC unit

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

170340

200400

250500

Power supply voltage

Allo

wab

le re

gen

erat

ive

pow

er

[V]

[%]

Max. allowable regenerative power (150%, 1min.)

Continuous allowable regenerative power (100%, continuous) No unbalance

Power supply interphase voltage unbalance ratio: 3%

41

Page 42: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

42

Standard specifications・Common specificationsStandard specifications 200V series

400V series

Item Standard specification

Type RHC-2C

 Applicable inverter capacity[kW]Continuous capacity[kW]Overload ratingVoltage 200VRated input current

 Required power supply capacity[kVA] Carrier frequency Applicable inverter capacity[kW]

Continuous capacity[kW]Overload capabilityVoltage 200VRated input current

 Required power supply capacity[kVA] Carrier frequency Number of phase/Voltage/Frequency Voltage/Frequency variation

Output

Output

200V series

150% of rated current for 1min.DC320 to 355V (Variable with input power supply voltage) (*3)

Standard 15kHz Standard 10kHz

120% of rated current for 1min.DC320 to 355V (Variable with input power supply voltage) (*3)

Standard 10kHz Standard 6kHz3-phase 3-wire, 200 to 220V 50Hz,220 to 230V 50Hz(*1),200 to 230V 60HzVoltage+10 to -15%, Frequency +-5%, Voltage unbalance: 3% or less

7.57.58.8

279.5

1113

4014

111113

4014

1518

5519

151518

5519

18.522

6724

18.518.522

6724

2226

8029

222226

8029

3036

10938

303036

10938

3744

13547

373744

13547

4553

16456

454553

16456

5565

20069

555565

20069

7588

26793

757588

26793

90103

321111

9090103

321111

110126

392137

CT use

VT use

Power supply voltage

(*1) 220 to 230/50Hz model available on request.(*2) The tap in the converter must be switched when the power supply voltage is 380 to 398V/50Hz or 380 to 430/60Hz. The capacity must be reduced when the power supply voltage is less than 400V.(*3) The intermediate power supply voltage is 320/640 VDC, 340/680 VDC, 350/700 VDC when the power supply voltage is 200/400V, 220/440V and 230/460V, respectively.

7.57.58.8

149.5

1113

2014

111113

2014

1518

2719

222226

4029

3036

5538

303036

5538

3744

6747

373744

6747

4553

8257

454553

8257

5565

10070

555565

10070

7588

13493

757588

13493

90103

160111

9090103

160111

110126

196136

110110126

196136

132150

233161

132132150

233161

160182

282196

160160182

282196

200227

353244

200200227

353244

220247

384267

220220247

384267

280314

489341

280280314

489341

315353

550383

315315353

550383

355400

619433

355355400

619433

400448

698488

400400448

698488

500560

873610

151518

2719

18.522

3424

18.518.522

3424

2226

4029

400V series

150% of rated current for 1min.DC640 to 710V (Variable with input power supply voltage) (*3)

Standard 15kHz Standard 10kHz

120% of rated current for 1min.DC640 to 710V (Variable with input power supply voltage) (*3)

Standard 10kHz Standard 6kHz3-phase 3-wire, 380 to 440V 50Hz,380 to 460V 60Hz(*2) Voltage+10 to -15%, Frequency +-5%, Voltage unbalance: 3% or less

Item Standard specification

Type RHC-4C

 Applicable inverter capacity[kW]Continuous capacity[kW]Overload ratingVoltage 400VRated input current

 Required power supply capacity(kVA) Carrier frequency Applicable inverter capacity[kW]

Continuous capacity[kW]Overload capabilityVoltage 400VRated input current

 Required power supply capacity(kVA) Carrier frequency Number of phase/Voltage/Frequency Voltage/Frequency variation

Output

Output

CT use

VT use

Power supply voltage

Control method

Running

Running status signalCT/VT switchingCarrier frequencyInput power factorInput high-frequency current Restart mode after momentary power failurePower limit control

Alarm display(protective functions)

Alarm history

MonitorLoad factorDisplay languageCharge lamp

Control

Display

Item specification

AVR constant control with DC ACR minorRectification starts with power ON after connected.Pressurization starts with the running signal (RUN-CM short-circuit or running command from communications). Then, preparation for operation is completed.Running, driving, regenerating, operation ready, alarm relay output (for any fault), etc.Selecting from CT: Overload rating 150% (1min.) and VT: Overload rating 120% (1min.)Fixed to high carrier frequencyAbove 0.99According to the guideline for suppressing harmonics issued by the Ministry of Economy, Trade and Industry, the converter factor (Ki) can be set to 0. Shields the gate when the voltage level reaches undervoltage level if momentary power failure occurs, and the converter can automatically restart after the power recovers.Controls the power not to exceed the preset limit value.AC fuse blown, AC overvoltage, AC undervoltage, AC overcurrent, AC input current error, Input phase loss, Synchronous power supply frequency error, DC fuse blown, DC overvoltage, DC undervoltage, Charge circuit error, Heat sink overheat, External alarm, Converter overheat, Overload, Memory error, Keypad communication error, CPU error, Network device error, Operation procedure error, A/D converter error, Optical network error, IPM errorRecords and displays the last 10 alarms.The detailed information of the trip cause for the previous alarm is stored and displayed.Displays input power, input effective current, input effective voltage, DC intermediate current and power supply frequency.The load rate can be measured by using the keypad.Function codes can be set or referred to in Japanese, English and Chinese (3 languages).Lights when the main circuit condenser is charged.

Common specifications

Page 43: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

43

Terminal FunctionsTerminal Functions

Division Symbol Terminal name FunctionsL1/R, L2/S, L3/TP (+), N (-)E (G)R0, T0R1, S1, T1

R2, T2RUNRST

X1

CMPLC30A, 30B, 30C

Y1, Y2, Y3, Y11 to Y18

CMEY5A, Y5CA01, A04, A05

M73A, 73C

Connects with a three-phase power supply via the dedicated reactor.Connects with the inverter power supply input terminal P (+), N (-).Ground terminal for inverter chassis (housing).Connects with the same power circuit as that for the control power backup terminal and the main power circuit.Voltage detection terminals for controlling the inside of the converter. These are connected with the power supply side of the dedicated reactor and filter.Terminals that connect with the circuit for detecting disconnection caused by blown AC fuse.The converter starts running when this command is ON between RUN and CM, and stops when OFF.In case of alarm stop, eliminate the cause and turn on this command between RST and CM. The protective function is disabled and the alarm state is released.0: External fault [THR], 1: Current limit cancel [LMT-CCL], 2: 73 answerback [73ANS], 3: Current limit switching [1-LIM], 4: Optional DI [OPY-DI]Common terminal for digital input signals.Connects with the PLC output signal power supply. (Rated voltage: 24V (22 to 27V) DC)Outputs a signal when a protective function is activated to stop the converter.(Contact at 1C, Circuit between 30A and 30C comes ON when an alarm occurs) (Contact capacity: 250V AC, max 50mA.)0: Inverter running [RUN] 1: Operation ready output [RDY] 2: Power supply current limiting [IL] 3: Lifetime alarm [LIFE] 4: Cooling fin overload [PRE-OH] 5: Overload alarm [PRE-OL] 6: Driving [DRV] 7: Regenerating [REG] 8: Current limit alarm [CUR] 9: Under restart [U-RES] 10: Power supply frequency synchronizing [SY-HZ] 11: Alarm indication [AL1] 12: Alarm indication 2 [AL2] 13: Alarm indication 4 [AL4] 14: Optional DO [OPT-DO]* With OPC-VG-AO option, 8-point expanded functions become available (DI function is not available.)0: Input power [PWR] 1: Input current rms [I-AC] 2: Input voltage rms [V-AC] 3: DC link circuit voltage [V-DC] 4: Power supply frequency [FREQ] 5: +10V output test [P10] -10V output test [N10]* With OPC-VG-AO option, 2-point expanded functions become available (Ai function is not usable.)Common terminal for analog input signals.Control output for the input relay of the external charging resistance (73)

Power inputConverter outputGroundingAuxiliary control power supplySynchronous power supply input for voltage detection Control monitor inputRUN commandAlarm reset command

General-purpose transistor inputDigital input commonPLC signal power supplyAlarm relay output (for any fault)General-purpose transistor output

Digital output commonRelay outputGeneral-purpose analog output

Analog output commonCharging resistance input relay output

Main circuit

Voltage detection

Input signal

Output signal

Item SpecificationsGeneral specifications for communication

RS-485 (standard)T-link (optional)SX bus (optional)CC-Link (optional)PROFIBUS-DP (optional)DeviceNet (optional)Trace back (optional)

Optical communication (optional)

Enables to show running information and running status, and to monitor the function code (polling), and to control (selecting) RUN, RST, and X1.* No function code can be written.Communicates with the PC or PLC (Fuji protocol and RTU are supported.)OPC-VG7-TL option allows T-link communication with the T-link module in the MICREX-F or MICREX-SX.OPC-VG7-SX option allows connection between SX bus and MICREX-SX.OPC-VG7-SX option allows connection with the CC link master device.These options will be supported soon.

OPC-RHC-TR option allows trace-back of the converter operation status data.The software (WPS-LD-TR) is required.WPS-RHC-TR software allows collecting the trace back data on the PC.OPC-VGS-SI option allows sharing the load of the concurrent multitasking system.Therefore, the capacity of up to 2400kW can be supported.

Communi-cation specification

Communication Specifications

Hardware

Software

Protective Functions

Item Structure, environment and standard

Structure specifications

Installed in the panel and cooled by external deviceIP00Forced air coolingVertical installationSame color as inverter FRENIC 5000VG7S series (Munsell 5Y3/0.5 half-burnished)Structure designed for easy parts changeIndoor, location free from corrosive gas, flammable gas, dust and direct light-10 to 505 to 95%RH Without condensingLess than 3000m (output reduction may occur if the altitude is in the range between 1001 and 3000m)2 to 9Hz: Amplitude=3mm, 9 to 20Hz: 9.8m/s2, 20 to 55Hz: 2m/s2

(9 to 55Hz: 2m/s2 is used if the power is higher than 90kW.)-20 to 555 to 95%RH

StructureProtective structureCooling systemInstallation methodColorMaintainabilityLocationAmbient temperatureHumidityAltitudeVibration

Storage temperatureStorage humidity

Structure and environment

Function code Name

F00F01F02

F03F04F05F06F07F08E01E02 to 13E14E15E16E17

E18 to 20E21 to 23E24 to 26E27S01S02, 03H01H02H03H04H05H06H07H08H09H10H11H12H13H14H15, 16H17, 18H19, 20M09M10M11M12M13M14M15

Data protectionHigh-frequency filter selectionRestart mode after momentary power failure (operation selection)Current rating switchingLED monitor (Display selection)LCD monitor (Display selection)LCD monitor (Language selection)LCD monitor (Contrast adjusting)Carrier frequencyX1 function selectionY1, Y2, Y3, Y5, Y11 to 18 function selectionI/O function normally open/normally closedRHC overload early warning levelCooling fan ON-OFF controlOutput while limiting the current (hysteresis width)A01, A04, A05 function selectionA01, A04, A05 gain settingA01, A04, A05 bias settingA01 to 5 filter settingOperation methodPower supply current limit (drive/ control)Station addressCommunication error processingTimer operation timeBaud rateData length selectionParity checkStop bit checkNo-response error detection timeResponse intervalProtocol selectionTL transmission formatParallel systemNumber of slave stations in parallel systemAlarm data deletionPower supply current limit (drive 1/2)Power supply current limit (control 1/2)Current limit early warning (level/ timer)Power supply frequencyInput powerEffective input currentEffective input voltageRun commandRunning statusOutput terminals Y1 to Y18

Function Settings

Environment

ACFAOVALVAOC

ACELPVFrE

dCFdOV

dLV

PbF

OH1OH2OH3OLU

Er1

Er2

Er3Er4

Er6Er8Erb

IPE

When the AC fuse is blown (only R and T phases), the converter stops running.The converter stops running on detection of AC overvoltage.The converter stops running on detection of AC undervoltage.The converter stops running if the input current peak value exceeds the overcurrent level.The converter stops running on detection of excessive deviation between AC input and ACR.The converter stops running if the input phase loss occurs in the power supply.The power supply frequency is checked after “73” is input. If a frequency error is detected, the converter stops running. Error during converter running (such as momentary power failure) triggers no alarm.The converter stops running if the AC fuse is blown (P side).The converter stops running on detection of DC overvoltage.If the power failure takes long and the control power goes out, the converter is automatically reset.The converter stops running on detection of DC undervoltage.If the power failure takes long and the control power goes out, the converter is automatically reset.When the charge circuit error is detected while the answerback signal usage at input of 73 is specified, the converter stops running.The converter stops running if the cooling fin overheat is detected.The converter stops running if an external signal (THR) is input.When overheat is detected in the inverter, the converter stops running.When the output current exceeds the overload characteristic of the inverse time characteristic, the converter stops running.When a fault such as “write error” occurs in the memory (checksum values in EEPROM and RAM do not match), the converter stops running.Activated if an error is detected during initial communication.The converter continues operating.Activated if an error is detected in the CPU.The converter stops running if a fatal error is detected in the master network device (including unconnected power supply). When an error is detected in operation procedure, the converter stops running.When an error is detected in the A/D converter circuit, the converter stops running.The converter stops running if the optical cable is disconnected or a fatal error is detected in an optical device (optional)Activated if IPM self-shutoff function is triggered by excessive current or overheat.

Above 18.5kW200V series: Above 400V±3V400V series: Above 800V±5V

200V series: Runs at 185V and restarts at 208V400V series: Runs at 371V and restarts at 417V

Condition: X1 “73 Answerback” is selected.

Condition: X1 “External alarm” is selected.

Start point: 105%, 150% 1 minute

Applicable to T-Link, SX and CC-Link

Less than 15kW

AC fuse blownAC overvoltageAC undervoltageAC overcurrent

AC input current errorInput phase lossSynchronous power supply frequency error DC fuse blownDC overvoltage

DC undervoltage

Charge circuit error

Cooling fin overheatExternal alarmConverter internal overheatConverter overload

Memory error

Keypad communication errorCPU errorNetwork device error

Operation procedure errorA/D converter errorOptical network error

IPM error

Item LED monitor Function Remarks

Page 44: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

44

CT use

Equipment Configuration List

VT use

Nominalapplied

motor[kw]Voltage

200Vseries

400Vseries

200Vseries

400Vseries

PWMconverter

type (Lr) Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty(Rf)(Lf) (Cf) (F)(R0) (73) (52) (6F)

Reactor for filterReactor for pressurizing Capacitor for filter FuseCharging resistance Charging circuit contactor Filtering circuit contactorContactor for powersourceResistance for filter

Nominalapplied

motor[kw]Voltage

PWMconverter

type

Reactor for pressurizing

(Lr) Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty Q'ty(Rf)(Lf) (Cf) (F)(R0) (73) (52) (6F)

Reactor for filter Capacitor for filter FuseCharging resistance Charging circuit contactor Filtering circuit contactorContactor for powersourceResistance for filter

7.5

11

15

18.5

22

30

37

45

55

75

90

7.5

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

RHC7.5-2C

RHC11-2C

RHC15-2C

RHC18.5-2C

RHC22-2C

RHC30-2C

RHC37-2C

RHC45-2C

RHC55-2C

RHC75-2C

RHC90-2C

RHC7.5-4C

RHC11-4C

RHC15-4C

RHC18.5-4C

RHC22-4C

RHC30-4C

RHC37-4C

RHC45-4C

RHC55-4C

RHC75-4C

RHC90-4C

RHC110-4C

RHC132-4C

RHC160-4C

RHC200-4C

RHC220-4C

RHC280-4C

RHC315-4C

RHC355-4C

RHC400-4C

LR2-7.5C

LR2-15C

LR2-22C

LR2-37C

LR2-55C

LR2-75C

LR2-110C

LR4-7.5C

LR4-15C

LR4-22C

LR4-37C

LR4-55C

LR4-75C

LR4-110C

LR4-160C

LR4-220C

LR4-280C

LR4-315C

LR4-355C

LR4-400C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GRZG80 0.42Ω

GRZG150 0.2Ω

GRZG200 0.13Ω

GRZG400 0.1Ω

GRZG400 0.1Ω

GRZG400 0.1Ω

GRZG400 0.12Ω (2 parallels)

GRZG80 1.74Ω

GRZG150 0.79Ω

GRZG200 0.53Ω

GRZG400 0.38Ω

GRZG400 0.26Ω

GRZG400 0.38Ω

GRZG400 0.53Ω (2 parallels)

RF4-160C

RF4-220C

RF4-280C

RF4-315C

RF4-355C

RF4-400C

3

3

3

3

3

3

6

3

3

3

3

3

3

6

1

1

1

1

1

1

LFC2-7.5C

LFC2-15C

LFC2-22C

LFC2-37C

LFC2-55C

LFC2-75C

LFC2-110C

LFC4-7.5C

LFC4-15C

LFC4-22C

LFC4-37C

LFC4-55C

LFC4-75C

LFC4-110C

LFC4-160C

LFC4-220C

LFC4-280C

LFC4-315C

LFC4-355C

LFC4-400C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CF2-7.5C

CF2-15C

CF2-22C

CF2-37C

CF2-55C

CF2-75C

CF2-110C

CF4-7.5C

CF4-15C

CF4-22C

CF4-37C

CF4-55C

CF4-75C

CF4-110C

CF4-160C

CF4-220C

CF4-280C

CF4-315C

CF4-355C

CF4-400C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SC-5-1

SC-N1

SC-N2

SC-N3

SC-N4

SC-N5

SC-N7

SC-N8

SC-N11

SC-05

SC-4-0

SC-5-1

SC-N1

SC-N2

SC-N2S

SC-N3

SC-N4

SC-N5

SC-N7

SC-N8

SC-N11

SC-N12

SC-N3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 SC-N4

1SC-N14

SC-N16

1

1

CR2LS-50/UL

CR2LS-75/UL

CR2LS-100/UL

CR2L-150/UL

CR2L-200/UL

CR2L-260/UL

CR2L-400/UL

A50P600-4

CR6L-30/UL

CR6L-50/UL

CR6L-75/UL

CR6L-100/UL

CR6L-150/UL

CR6L-200/UL

CR6L-300/UL

A50P400-4

A50P600-4

A70QS800-4

A70P1600-4TA

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

80W7.5Ω(HF5C5504)

GRZG120 2Ω

GRZG400 1Ω

TK50B 30ΩJ(HF5B0416)

80W 7.5Ω(HF5C5504)

GRZG120 2Ω

GRZG400 1Ω

GRZG400 1Ω

(2 parallels)

3

3

3

3

3

3

3

6

11

15

18.5

22

30

37

45

55

75

90

110

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

280

315

355

400

500

RHC7.5-2C

RHC11-2C

RHC15-2C

RHC18.5-2C

RHC22-2C

RHC30-2C

RHC37-2C

RHC45-2C

RHC55-2C

RHC75-2C

RHC90-2C

RHC7.5-4C

RHC11-4C

RHC15-4C

RHC18.5-4C

RHC22-4C

RHC30-4C

RHC37-4C

RHC45-4C

RHC55-4C

RHC75-4C

RHC90-4C

RHC110-4C

RHC132-4C

RHC160-4C

RHC200-4C

RHC220-4C

RHC280-4C

RHC315-4C

RHC355-4C

RHC400-4C

LR2-15C

LR2-22C

LR2-37C

LR2-55C

LR2-75C

LR2-110C

LR4-15C

LR4-22C

LR4-37C

LR4-55C

LR4-75C

LR4-110C

LR4-160C

LR4-220C

LR4-280C

LR4-315C

LR4-355C

LR4-400C

LR4-500C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

GRZG150 0.2Ω

GRZG200 0.13Ω

GRZG400 0.1Ω

GRZG400 0.1Ω

GRZG400 0.1Ω

GRZG400 0.12Ω (2 parallels)

GRZG150 0.79Ω

GRZG200 0.53Ω

GRZG400 0.38Ω

GRZG400 0.26Ω

GRZG400 0.38Ω

GRZG400 0.53Ω (2 parallels)

RF4-160C

RF4-220C

RF4-280C

RF4-315C

RF4-355C

RF4-400C

RF4-500C

3

3

3

3

3

6

3

3

3

3

3

6

1

1

1

1

1

1

1

LFC2-15C

LFC2-22C

LFC2-37C

LFC2-55C

LFC2-75C

LFC2-110C

LFC4-15C

LFC4-22C

LFC4-37C

LFC4-55C

LFC4-75C

LFC4-110C

LFC4-160C

LFC4-220C

LFC4-280C

LFC4-315C

LFC4-355C

LFC4-400C

LFC4-500C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CF2-15C

CF2-22C

CF2-37C

CF2-55C

CF2-75C

CF2-110C

CF4-15C

CF4-22C

CF4-37C

CF4-55C

CF4-75C

CF4-110C

CF4-160C

CF4-220C

CF4-280C

CF4-315C

CF4-355C

CF4-400C

CF4-500C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SC-N1

SC-N2

SC-N3

SC-N4

SC-N5

SC-N7

SC-N8

SC-N11

SC-N12

SC-4-0

SC-5-1

SC-N1

SC-N2

SC-N2S

SC-N3

SC-N4

SC-N5

SC-N7

SC-N8

SC-N11

SC-N12

SC-N14

SC-N3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 SC-N4

1SC-N14

SC-N16

610CM-3FS

1

1

1

CR2LS-50/UL

CR2LS-75/UL

CR2LS-100/UL

CR2L-150/UL

CR2L-200/UL

CR2L-260/UL

CR2L-400/UL

A50P600-4

CR6L-30/UL

CR6L-50/UL

CR6L-75/UL

CR6L-100/UL

CR6L-150/UL

CR6L-200/UL

CR6L-300/UL

A50P400-4

A50P600-4

A70QS800-4

A70P1600-4TA

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

80W7.5Ω(HF5C5504)

GRZG120 2Ω

GRZG400 1Ω

TK50B 30ΩJ(HF5B0416)

80W 7.5Ω(HF5C5504)

GRZG120 2Ω

GRZG400 1Ω

GRZG400 1Ω

(2 parallels)

3

3

3

3

3

3

3

6

Page 45: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

45

PMW converter main body

External Dimensions

Basic Wiring Diagram

Fig.A

WW1 D1

C

D

H1 H

2-φB

Fig.BWW1

H1

H

D

D1

C

n-φB 4-φ18Lifting hole

Fig.CW D

D1W1

H1 H

C

n-φB

200VSeries

400VSeries

PWM convertertype

Dimensions[mm]

W W1 H H1 D D1 n B CMass[kg]Fig.

RHC7.5-2C

RHC11-2C

RHC15-2C

RHC18.5-2C

RHC22-2C

RHC30-2C

RHC37-2C

RHC45-2C

RHC55-2C

RHC75-2C

RHC90-2C

RHC7.5-4C

RHC11-4C

RHC15-4C

RHC18.5-4C

RHC22-4C

RHC30-4C

RHC37-4C

RHC45-4C

RHC55-4C

RHC75-4C

RHC90-4C

RHC110-4C

RHC132-4C

RHC160-4C

RHC200-4C

RHC220-4C

RHC280-4C

RHC315-4C

RHC355-4C

RHC400-4C

A

B

B

B

B

B

C

C

A

B

B

B

B

B

C

C

C

C

C

(*1) If the main power supply is 400V series, connect the step-down transformer to limit the voltage of the sequence circuit lower than 220V.

(*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact “b” of the electromagnetic contactor for charge circuit (73 or MC).

If 73 is SC-05, SC-4-0, or SC-5-1, use the auxiliary contact unit for the contact “b” of MC or 73.(*3) If the inverter is G11S or P11S with a capacity less than 22kW or VG7S with less than 15kW,

the auxiliary power supply input of the inverter must be connected to the main power supply via the contact “b” of the electromagnetic contactor for charging (73 or MC). If the inverter has larger capacity, connect the inverter without passing the contact b of 73 or MC.

(*4) Use the sequence that a running signal is input in the inverter after the PWM converter becomes ready.

(*5) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

RHC7.5-2C to RHC90-2C

RHC7.5-4C to RHC220-4C (400V series, inverter with a capacity of less than 220kW)

MC Lf Lr

R0

Power supply F

F

L1/R P(+)

L2/S

L3/T N(–)

P(+)

N(–)

R2

T2

R1

S1

T1

R0

T0

73A

73C

RUN

RST

CM

U

V

W

FWD

CM

13

12

11

Y5A

Y5C

30B

30C

G

30A

e

c

d

f

R0

T0

X9(THR)

CM

30A

30B

30C

(*4)

Converter Inverter

(*5)

(*1)

(*3)

dFX

G

IM

73

a

bRUN

RUNMC

e

f

ab

73

MC RUN FX 73

e

f

RUN,READY

73 or MC (*2)

Rf

Cfc

Symbol Part namePressurization reactor

Filter reactorFilter condenserFilter resistance

Charge resistanceFuse

Electromagnetic contactor for charge circuit

LrLfCfRfR0F73

RHC280-4C to RHC400-4C (400V series, inverter with above 280kW)

Lf Lr F

F

L1/R

L2/S

L3/T

R2

T2

R1

S1

T1

R0

T0

73A

73C

RUN

RST

CM

U

V

W

FWD

CM

13

12

11

30B

30C

G

30A

Y5A

Y5C

g

e

f

h

R0

T0

X9(THR)

CM

30A

30B

30C

(*4)

(*6)

(*1)

(*3)

(* 5)

(*2)

fRUN

G

IM

a

b

RUNRDY RDY

ab

52T

RDY 73 52A

52A

52

52

6F

6F

RUN

h

g

Rf

Cf

52T

RDY

52

52X

52T

cd

52X

RUN

STOP

52X

73

52

R0

6F

52

c

d

e

Symbol Part namePressurization reactor

Filter reactorFilter condenserFilter resistance

Charge resistanceFuse

Electromagnetic contactor for charge circuitElectromagnetic contactor for power supplyElectromagnetic contactor for filter circuit

LrLfCfRfR0F73526F

(*1) If the main power supply is 400V series, connect the step-down transformer to limit the voltage of the sequence circuit lower tan 220V.

(*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact “b” of the electromagnetic contactor for charge circuit (52).

If 73 is SC-05, SC-4.0, or SC-5-1, use the auxiliary contact unit for the contact “b” of MC or 73.(*3) Since the AC fan power supply receives power from R0 and T0 terminals, the power supply

must be connected without passing the contact b of 52.(*4) Use the sequence that a running signal is input in the inverter after the PWM converter

becomes ready.(*5) The 52T timer must be set to 1sec.(*6) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

250

340

340

375

375

375

530

680

250

340

340

375

375

375

530

530

680

680

880

226

240

240

275

275

275

430

580

226

240

240

275

275

275

430

430

580

580

780

380

480

550

615

740

740

750

880

380

480

550

550

675

740

740

1000

1000

1400

1400

358

460

530

595

720

720

720

850

358

460

530

530

655

720

710

970

970

1370

1370

245

255

255

270

270

270

285

360

245

255

255

270

270

270

315

360

360

450

450

125

145

145

145

145

145

145

220

125

145

145

145

145

145

175

220

220

285

285

2

2

2

2

2

2

2

3

2

2

2

2

2

2

2

2

3

3

4

10

10

10

10

10

10

15

15

10

10

10

10

10

10

15

15

15

15

15

10

10

10

10

10

10

15

15

10

10

10

10

10

10

15

15

15

15

15

12.5

24

29

36

42

44

70

115

8

24

29

34

38

48

70

100

140

320

410

Power supply

Converter Inverter

RUN,READY

Page 46: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

46

〈Reactor for step-up〉 〈Reactor for filter〉

〈Capacitor for filter〉

〈Fuse〉

〈Resistor for filter〉

〈Charging resistor〉

Dimensions[mm]

180

195

240

285

285

330

345

180

195

240

285

285

330

345

380

450

480

480

480

480

525

A

B

C

C

C

C

C

B

A

C

C

C

C

C

C

C

C

C

C

C

C

W

75

75

80

95

95

110

115

75

75

80

95

95

110

115

125

150

160

160

160

160

175

W1

205

215

340

420

420

440

500

205

215

340

405

415

440

490

550

620

740

760

830

890

960

H

105

131

215

240

250

255

280

105

131

215

240

250

255

280

300

330

330

340

355

380

410

D

85

110

180

205

215

220

245

85

110

180

205

215

220

245

260

290

290

300

315

330

360

D1

95

130

145

150

160

165

185

90

120

120

130

145

150

170

185

230

240

250

255

260

290

D2

7

7

10

12

12

12

12

7

7

10

12

12

12

12

15

15

15

15

15

19

19

K

M5

M8

M8

M10

M12

M12

M12

M4

M5

M6

M8

M10

M10

M12

M12

M12

M16

M16

M16

M16

M16

12

18

33

50

58

70

100

12

18

33

50

58

70

100

140

200

250

270

310

340

420

M

Mass[kg]

Fig.

LR2-7.5C

LR2-15C

LR2-22C

LR2-37C

LR2-55C

LR2-75C

LR2-110C

LR4-7.5C

LR4-15C

LR4-22C

LR4-37C

LR4-55C

LR4-75C

LR4-110C

LR4-160C

LR4-220C

LR4-280C

LR4-315C

LR4-355C

LR4-400C

LR4-500C

200Vseries

400Vseries

Resistor for filter TypeDimensions[mm]

0.19

0.19

0.35

0.85

0.85

0.19

0.19

0.35

0.85

0.85

0.85

22

25

31

35

36

38

41

Mass[kg]

3

3

3

3

3

3

3

3

3

3

6

1

1

1

1

1

1

1

個数

167

247

306

411

411

167

247

306

411

411

411

400

655

A

A

A

A

A

A

A

A

A

A

A

B

C

W

148

228

287

385

385

148

228

287

385

385

385

370

625

W1

115

195

254

330

330

115

195

254

330

330

330

W2

22

22

22

40

40

22

22

22

40

40

40

240

240

H1

32

32

32

39

39

32

32

32

39

39

39

55

55

H2

33

33

33

47

47

33

33

33

47

47

47

470

470

D

26

26

26

40

40

26

26

26

40

40

40

460

460

D1

6

6

6

9.5

9.5

6

6

6

9.5

9.5

9.5

320

320

D2

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

CFig.

GRZG80 0.42Ω

GRZG150 0.2Ω

GRZG200 0.13Ω

GRZG400 0.1Ω

GRZG400 0.12Ω

GRZG80 1.74Ω

GRZG150 0.79Ω

GRZG200 0.53Ω

GRZG400 0.38Ω

GRZG400 0.26Ω

GRZG400 0.53Ω

RF4-160C

RF4-220C

RF4-280C

RF4-315C

RF4-355C

RF4-400C

RF4-500C

200Vseries

400Vseries

Fuse TypeDimensions[mm] Mass

[g]

56

80

85

95

113.5

76

95

107

110

113.5

180.2

A

A

A

A

B

A

A

A

B

B

B

C

W

42

58

60

70

81.75

62

70

82

78.6

81.75

129.4

W1

26

29.5

30

31

56.4

47

40

43

53.1

56.4

72.2

W2

18.5

30.5

33.5

42

18.5

34

42

H

17.5

27

30

37

50.8

17.5

30

37

38.1

50.8

63.5

D

12

20

25

30

38.1

12

25

30

25.4

38.1

50.8

D1

2

3

3.2

4

6.4

2

3.2

4

6.4

6.4

9.5

G

6.5x8.5

9x11

11x13

11x13

10.3x18.2

6.5x8.5

11x13

11x13

10.3x18.4

10.3x18.4

13.5x18.3

28

100

130

230

540

42

150

246

290

540

1080

7400

EFig.

CR2LS-50/UL

CR2LS-75/UL

CR2LS-100/UL

CR2L-150/UL

CR2L-200/UL

CR2L-260/UL

CR2L-400/UL

A50P600-4

CR6L-30/UL

CR6L-50/UL

CR6L-75/UL

CR6L-100/UL

CR6L-150/UL

CR6L-200/UL

CR6L-300/UL

A50P400-4

A50P600-4

A70QS800-4

A70P1600-4TA

200Vseries

400Vseries

200Vseries

400Vseries

200Vseries

400Vseries

Capacitor for filter TypeDimensions[mm]

1.9

3.5

6.0

7.0

8.5

7.0

8.5

1.3

2.3

2.5

2.9

3.5

2.9

3.5

6.0

13.0

15.0

20.0

23.0

27.0

13.0

Mass[kg]

165

205

280

280

280

280

280

165

165

205

205

205

205

205

280

435

435

435

435

435

435

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

W

150

173

265

265

265

265

265

150

150

190

190

190

190

190

265

400

400

400

400

400

400

W1

185

245

260

290

340

290

340

135

215

185

205

245

205

245

260

310

350

460

520

610

310

H

125

165

275

335

425

125

H1

70

70

90

90

90

90

90

70

70

70

70

70

70

70

90

100

100

100

100

100

100

D

40

40

55

55

55

55

55

40

40

40

40

40

40

40

55

D1

30

30

80

80

80

80

80

30

30

30

30

30

30

30

80

80

80

80

80

80

80

E

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

15x20 elongated hole

15x20 elongated hole

15x20 elongated hole

15x20 elongated hole

15x20 elongated hole

15x20 elongated hole

F

M5

M5

M5

M5

M8

M6

M8

M5

M5

M5

M5

M5

M5

M5

M6

M12

M12

M12

M12

M12

M12

IFig.

CF2-7.5C

CF2-15C

CF2-22C

CF2-37C

CF2-55C

CF2-75C

CF2-110C

CF4-7.5C

CF4-15C

CF4-22C

CF4-37C

CF4-55C

CF4-75C

CF4-110C

CF4-160C

CF4-220C

CF4-280C

CF4-315C

CF4-355C

CF4-400C

CF4-500C

Reactor for filter Type

Reactor forstep-up Type

Dimensions[mm]

125

125

125

150

175

195

255

125

125

125

150

175

195

255

255

300

330

315

315

345

345

B

B

B

B

B

B

C

A

A

A

B

B

B

C

C

D

D

D

D

D

D

W

40

40

40

60

60

80

85

40

40

40

60

60

80

85

85

100

110

105

105

115

115

W1

100

100

100

115

145

200

230

100

100

100

115

145

200

220

245

320

330

365

395

420

480

H

85

93

93

103

110

120

118

85

93

93

108

110

113

113

137

210

230

230

235

235

240

D

67

75

75

85

90

100

95

67

75

75

90

90

93

90

110

180

195

195

200

200

205

D1

85

90

105

125

140

150

165

75

90

95

110

120

130

145

150

170

195

200

210

235

240

D2

6

6

6

6

6

7

7

6

6

6

6

6

7

7

10

10

12

12

12

12

12

K

M5

M8

M8

M10

M12

M12

M12

M4

M5

M6

M8

M10

M10

M12

M12

M12

M16

M16

M16

M16

M16

2.2

2.5

3.0

5.0

8.0

13

20

2.2

2.5

3.0

5.0

8.0

12

19

22

35

43

48

53

60

72

M

Mass[kg]

Fig.

LFC2-7.5C

LFC2-15C

LFC2-22C

LFC2-37C

LFC2-55C

LFC2-75C

LFC2-110C

LFC4-7.5C

LFC4-15C

LFC4-22C

LFC4-37C

LFC4-55C

LFC4-75C

LFC4-110C

LFC4-160C

LFC4-220C

LFC4-280C

LFC4-315C

LFC4-355C

LFC4-400C

LFC4-500C

Charging resistor TypeDimensions[mm]

217

411

A

A

B

C

W

198

385

W1

165

330

W2

22

40

H1

32

39

H2

33

47

D

6

9.5

D2

26

40

D1

5.5

5.5

250

850

C

Mass[g]

Fig.

GRZG120 2Ω

GRZG400 1Ω

TK50B 30ΩJ (HF5B0416)

80W 7.5Ω (HF5C5504)

MAX.MAX. D2 NPFor terminal

For terminalMφ

For terminalMφ

For terminalMφ

For terminalMφ

For terminalMφ

For terminalMφ

D1D

MA

X. H

W1

X1 X2 Y1 Y2 Z1 Z2

WFig.A

MAX.D2

Y1 Z1X1

Y2 Z2X2

MAX. W

MA

X. H

W1

NP

D1

D

4-φK Elongated hole

4-φK Elongated hole

Fig.B

MAX. D2

D1

D

MAX. W

MA

X. H

X2 Y2 Z2

X1 Y1 Z1

W1

NP

Fig.C

4-φK

W1

W

DD1

4-φF

E E

H

3-I

Fig.A

W1

W

D

2-φF

W1

W

E E

H

3-I

H1

Fig.B

φC

W2

W1

W

D2D1

D

H2

H1

Fig.A

Fig.B

NP

320(D2)

460(D1)

470(D1)

W1

W 4-φ15

5.5(

H2)

240(

H1)

2-M12 EYE BOLTS 端子

Fig.A φC

W2W1

W

D2D1D

H2

H1

Fig.C

500±10

4.5

34

5 140150

φ4.5

80W 7.5Ω (HF5C5504)

120

Fig.B

10203080

4.5X8.5

712.5

32

500±10

TK50B 30ΩJ (HF5B0416)

120

Fig.A Fig.B Fig.C

W

W1

W2

2-E

DD1

G

H

8932

19.1

12711

19 10

3.2 237.3 3.2

12.7 12.7148.4

275.4

97.6

1.6

1.6

41.2

15.8

W

W1

W2

2-E

G

DD1

X1 X2 Y1 Y2 Z1 Z2

MAX.WFig.A

MA

X. H

W1

MAX.D2 NP

D1D

Y1 Z1X1

Y2 Z2X2

W1

MAX. WFig.B

MA

X. H

MAX.D2 NP

D1

D

X2 Y2 Z2

X1 Y1 Z1

MAX. W

NP

Fig.C

MA

X. H

W1 4-φK

MAX. D2

D1D

図D

X2 Y2 Z2

X1 Y1 Z1

MAX. WNP

MA

X. H

W1 4-φK

MAX. D2

D1

D

4-φK Elongated hole

4-φK Elongated hole

Page 47: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

47

5 10 10 20 30 40 50 75100100150

175

200250350400500

0.751.52.23.75.57.5

111518.52230

37

45557590

1103.75.57.5

111518.522303745557590

110132160200220280315355400500630710

SC-05

SC-5-1SC-N1SC-N2

SC-N2S

SC-N4

SC-N5

SC-N7SC-N8

SC-N11

SC-N12

SC-05

SC-N1

SC-N2S

SC-N3SC-N4

SC-N5

SC-N7SC-N8

SC-N11

SC-N12

2.0

3.55.58

14

38(*1)38

60

100

150200

2.0

3.5 5.5 8

14

22

38

60100

150

2.0

3.5814

22

38

60

100

150200

2.0

3.5814

22

38(*1)

60

100

150(*2)200250

2.0

3.5

5.5

81422

2.0

3.5

5.5

8

14

2.0

3.55.581422

38(*1)

60(*3)60

100

SC-05

SC-5-1SC-N1SC-N2SC-N2SSC-N3SC-N4SC-N5SC-N7

SC-N8

SC-N11

101520305075

100125150175200

250

300350

2.0

3.55.58

14

2238(*1)

38

60

100

150200

FRN0.75VG7S-2FRN1.5VG7S-2FRN2.2VG7S-2FRN3.7VG7S-2FRN5.5VG7S-2FRN7.5VG7S-2FRN11VG7S-2FRN15VG7S-2FRN18.5VG7S-2FRN22VG7S-2FRN30VG7S-2

FRN37VG7S-2FRN45VG7S-2FRN55VG7S-2FRN75VG7S-2FRN90VG7S-2

FRN0.75VG7S-2FRN1.5VG7S-2FRN2.2VG7S-2FRN3.7VG7S-2FRN5.5VG7S-2FRN7.5VG7S-2FRN11VG7S-2FRN15VG7S-2FRN18.5VG7S-2FRN22VG7S-2FRN30VG7S-2

FRN37VG7S-2FRN45VG7S-2FRN55VG7S-2FRN75VG7S-2FRN90VG7S-2

200V

1015203040405075

100100125175200250300350500500600700800

10001200

SC-05

SC-5-1

SC-N1

SC-N2SC-N2S

SC-N3

SC-N4

SC-N7

SC-N8SC-N11

SC-N12

SC-N14

SC-N16

SC-05

SC-4-0SC-5-1

SC-N1

SC-N2SC-N2SSC-N3SC-N4SC-N5SC-N7

SC-N8

SC-N11

SC-N12

SC-N14

SC-N16

2.0

3.5

5.5

814

22

38

60

100

150

200250

150×2

200×2

325×2

2.0

3.5

5.58

14

2238

60

100

150

200

150×2

200×2250×2

2.0

3.03.55.5814

22

38

60

100

150

250

200×2

250×2325×2

2.0

3.55.58

14

22

3860

SC-05SC-4-0SC-5-1

SC-N1

SC-N2SC-N2S

SC-N3

SC-N4

SC-N5

203040506075

100125125150200

2.0

3.5

5.58

14

2238

60

100

150

200

325150×2200×2250×2325×2

2.0

3.55.5814

22

38

60

100

150200250325

200×2250×2

325×2

2.0

3.5

5.5

8

14

22

38

60

2.0

3.5

5.58

14

22

38

60

FRN3.7VG7S-4FRN5.5VG7S-4FRN7.5VG7S-4FRN11VG7S-4FRN15VG7S-4FRN18.5VG7S-4FRN22VG7S-4FRN30VG7S-4FRN37VG7S-4FRN45VG7S-4FRN55VG7S-4FRN75VG7S-4FRN90VG7S-4FRN110VG7S-4FRN132VG7S-4FRN160VG7S-4FRN200VG7S-4FRN220VG7S-4FRN280VG7S-4FRN315VG7S-4FRN355VG7S-4FRN400VG7S-4FRN500VG7S-4FRN630VG7S-4

FRN3.7VG7S-4FRN5.5VG7S-4FRN7.5VG7S-4FRN11VG7S-4FRN15VG7S-4FRN18.5VG7S-4FRN22VG7S-4FRN30VG7S-4FRN37VG7S-4FRN45VG7S-4FRN55VG7S-4FRN75VG7S-4FRN90VG7S-4FRN110VG7S-4FRN132VG7S-4FRN160VG7S-4FRN200VG7S-4FRN220VG7S-4FRN280VG7S-4FRN315VG7S-4FRN355VG7S-4FRN400VG7S-4FRN500VG7S-4FRN630VG7S-4

400V

NOTES :• For molded-case circuit breakers (MCCBs) or earth-leakage circuit breakers (ELCBs), the required frame type and series depends on factors such as

the transformer capacity of the facility. Refer to catalogs and data sheets to select optimal ones. Also, refer to data sheets on ECLB for rated sensitivecurrent. The rated currents for MCCB and ELCB on the table above are for FUJI SAB/ and SAR/.

• The recommended wire sizes are based on a condition where the temperature inside the panel is 50˚C or less.• Data on the table above are obtained with 600V HIV insulation cables (Allowable temp. 75˚C).• Data on the table above may change under different conditions such as different ambient temperature or different power supply voltage.*1) Use the crimp terminal 38-S6 made by J.S.T. Mfg Co., Ltd.*2) Use the crimp terminal CB150-10 for low-voltage switch specified in JEM1399.

Inverter type Magnetic contactor type Recommended wire size [mm2]Input circuit

(L1/R, L2/S, L3/T)For the input

circuitCT/HT use

[150%]VT use [110%]

With DCR

Without reactor

WithDCR

Without reactor

CT/HT/VTuse

Withoutreactor

For the output circuit

MCCB or ELCB rated current [A]

WithDCR

Output circuit (U, V, W)

DC link circuit (P1, P(+))

Braking circuit(P(+), DB, N(-))

CT/HTuse

VTuse

VTuse

VTuse

CT/HTuse

CT/HTuse

Powersupplyvoltage

Nominalappliedmotor[kW]

Page 48: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

Guideline for Suppressing Harmonics

48

Nominal applied motor [kW]

Inputfundamentalcurrent [A]

0.4

1.620.8149

200V400V

200V400V

200V400V

0.75

2.741.3783

5.502.75167

1.5 2.2

7.923.96240

3.7

13.06.50394

5.5

19.19.55579

7.5

25.612.8776

11

36.918.51121

15

49.824.91509

18.5

61.430.71860

22

73.136.62220

Nominal applied motor [kW]

30

98.049.02970

37

12160.43660

45

14773.54450

55

18089.95450

75

2451237450

90

2931478910

110

35717910850

132

21613090

160

25815640

200

32319580

220

35521500

Nominal applied motor [kW] 250

40324400

280

45027300

315

50630700

355

57134600

400

64339000

450

72343800

500

80448700

530

85251600

560

90054500

630

101361400

6.6 kV converted value [mA]

Inputfundamentalcurrent [A]

6.6 kV converted value [mA]

Inputfundamentalcurrent [A]

6.6 kV converted value [mA]

Nominal applied motor [kW] 0.4

0.570.57

200V400V

0.75

0.970.97

1.951.95

1.5 2.2

2.812.81

3.7

4.614.61

5.5

6.776.77

7.5

9.079.07

11

13.113.1

15

17.617.6

18.5

21.821.8

22

25.925.9

Nominal applied motor [kW] 30

34.734.7

200V400V

37

42.842.8

45

52.152.1

55

63.763.7

75

87.287.2

90

104104

110

127127

132

153

160

183

200

229

220

252

Nominal applied motor [kW]

250

286200V400V

280

319

315

359

355

405

400

456

450

512

500

570

530

604

560

638

630

718

Pi[kVA]

Pi[kVA]

Pi[kVA]

Application to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage"

In principle, the guideline applies to the customers that meet the following two conditions:• The customer receives high voltage or special high voltage.• The "equivalent capacity" of the converter load exceeds the standard value for the receiving voltage (50kVA at a receiving voltage of 6.6kV).

(4) Degree of harmonics to be calculatedCalculate only the "5th and 7th" harmonic currents

• ACR: 3%• DCR: Accumulated energy equal to 0.08 to 0.15ms (100% load conversion)• Smoothing capacitor: Accumulated energy equal to 15 to 30ms (100% load conversion)• Load: 100%

Calculate the harmonic current of each degree using the following equation:

Our FRENIC-5000VG7 series are the products specified in the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage." When you enter into a new contract with an electric power company or update a contract, you are requested by the electric power company to submit an accounting statement form.

Receiving voltage

6.6kV

22kV

5th

3.5

1.8

7th

2.5

1.3

11th

1.6

0.82

13th

1.3

0.69

17th

1.0

0.53

19th

0.90

0.47

23th

0.76

0.39

Over 25th

0.70

0.36

Degree

Without a reactor

5th

65

7th

41

11th

8.5

13th

7.7

17th

4.3

19th

3.1

23th

2.6

25th

1.8

With a reactor (ACR) 38 14.5 7.4 3.4 3.2 1.9 1.7 1.3

With a reactor (DCR) 30 13 8.4 5.0 4.7 3.2 3.0 2.2

With reactors (ACR and DCR) 28 9.1 7.2 4.1 3.2 2.4 1.6 1.4

Table 1 Upper limits of harmonic outflow current per kW of contract demand [mA/kW]

Circuit category Circuit type Conversion factor Ki

Three-phase bridge 3(capacitor smoothing)

Without a reactor

With a reactor (DCR)3

With a reactor (ACR)

K31=3.4

K33=1.8

With reactors (ACR and DCR) K34=1.4

K32=1.8

Main applications

• General-purpose inverters• Elevators• Refrigerators, air conditioning systems• Other general appliances

Table 3 "Conversion factors Ki" for general-purpose inverters determined by reactors

Equipment type Inverter capacity category Single inverter availability factor

200kW or lessAir conditioning system

Sanitary pumpOver 200kW

0.550.60

--- 0.30Elevator --- 0.25

Refrigerator, freezer 50kW or less 0.60UPS (6-pulse) 200kVA 0.60

Table 6 Availability factors of inverters, etc. for building equipment (standard values)

Contract demand [kW] Correction coefficient b

300 1.00500 0.901000 0.852000 0.80

Table 7 Correction coefficient according to the building scale

(2) Calculation of harmonic currentTable 5 Generated harmonic current [%], 3-phase bridge (capacitor smoothing)

n nth harmonic current [A] = Fundamental current [A] xGenerated nth harmonic current [%]

100

*If the contract demand is between two specified values shown in Table 7, calculate the value by interpolation.

(1) Scope of regulation

The level (calculated value) of the harmonic current that flows from the customer's receiving point out to the system is subjected to the regulation. The regulation value is proportional to the contract demand. The regulation values specified in the guideline are shown in Table 1.

(2) Regulation method

(1) "Inverter rated capacity" corresponding to "Pi"

• For a load for elevators, which provides intermittent operation, or a load with a sufficient designed motor rating, reduce the current by multiplying the equation by the "maximum availability factor" of the load.

• The "maximum availability factor of an appliance" means the ratio of the capacity of the harmonic generator in operation at which the availability reaches the maximum, to its total capacity, and the capacity of the generator in operation is an average for 30 minutes.

• In general, the maximum availability factor is calculated according to this definition, but the standard values shown in Table 6 are recommended for inverters for building equipment.

(3) Maximum availability factor

ï Since the total availability factor decreases with increase in the building scale, calculating reduced harmonics with the correction coefficient s defined in Table 7 below is permitted.

[Correction coefficient according to contract demand level]

• Depending on whether an optional ACR (AC REACTOR) or DCR (DC REACTOR) is used, apply the appropriate conversion factor specified in the appendix to the guideline. The values of the converter factor are shown in Table 3.

(2) Values of "Ki (conversion factor)"

• Apply the appropriate value shown in Table 4 based on the kW rating of the motor, irrespective of the inverter type or whether a reactor is used.

* If the input voltage is different, calculate the input fundamental current in inverse proportion to the voltage.

(1) Value of "input fundamental current"

Although the equivalent capacity (Pi) is calculated using the equation of (input rated capacity) x (conversion factor), catalog of conventional inverters do not contain input rated capacities. A description of the input rated capacity is shown below:

1. Calculation of Equivalent Capacity (Pi)

• Calculate the input fundamental current l1 from the kW rating and efficiency of the load motor, as well as the efficiency of the inverter. Then, calculate the input rated capacity as shown below: Input rated capacity = 3 x (power supply voltage) x I1 x 1.0228/1000[kVA]Where 1.0228 is the 6-pulse converter's value obtained by (effective current) / (fundamental current).

• When a general-purpose motor or inverter motor is used, the appropriate value shown in Table 2 can be used. Select a value based on the kW rating of the motor used, irrespective of the inverter type.

Table 2 "Input rated capacities" of general-purpose inverters determined by the nominal applied motors

Table 4 "Input fundamental currents" of general-purpose inverters determined by the nominal applied motors

2. Calculation of Harmonic Current

Page 49: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

49

Variation

FRENIC-Multi (MEH652)

High performance, compact inverter(Three-phase 200V: 0.1 to 15kW, Single-phase 200V: 0.1 to 2.2kW, Three-phase 400V: 0.4 to 15kW)

The inverter featuring environment-friendly and long life design (10 years) complies with R0HS Directives (products manufactured beginning in the autumn of 2005).With expanded capacity range, abundant model variation, and simple and thorough maintenance, the Multi is usable for a wide range of applications.Equipped with the functions optimum for the operations specific to vertical and horizontal conveyance, such as hit-and-stop control, brake signal, torque limit, and current limit.

NEW

The rich lineup of the active Fuji inverter familyFeaturesSeries Name (Catalog No.) Applications

FRENIC5000G11S(MEH403 for JE)(MEH413 for EN)

FRENIC5000P11S(MEH403)

FRENIC-Eco (MEH442)

FRENIC-Lift (MEH426)

FRENIC5000MG5

FRENIC5000H11S

FRENIC5000MS5(MEH391)

High-performance, multi-function inverter(Three-phase 200V: 0.2 to 90kW, Three-phase 400V: 0.4 to 630kW)

Fuji's original dynamic torque vector control system delivers a starting torque of 200% at 0.5Hz.These inverters are packed with a full range of convenient functions, beginning with an auto tuning function.Compact, fully enclosed (22kW and below), and with a wide range of variations, from 0.2 to 400kW.

Fan, pump inverter (for variable torque load)(Three-phase 200V: 0.75 to 110kW, Three-phase 400V: 0.75 to 560kW)

Developed exclusively for controlling variable torque load like fans and pumps.Full of new functions such as auto energy saving, PID control, life warning, and switching sequence to the commercial power supply.Ideal for air conditioners, fans, pumps, etc. which were difficult to use with conventional general-purpose inverters because of cost or functions.

Inverter designed for elevator(Three-phase 400V: 5.5 to 22kW)

The inverter provides optimal control of passenger elevators.PG feedback provided as a standard functionOverload rating: 200% for 10sHigh performance vector controlCurrent response (ACR): 500Hz

FRENIC-Mini (MEH451 for EN)

Compact inverter(Three-phase 200V: 0.1 to 3.7kW, Three-phase 400V: 0.4 to 3.7kW, Single-phase 200V: 0.1 to 2.2kW, Single-phase 100V: 0.1 to 0.75kW)

A frequency setting device is standard-equipped, making operation simple.Loaded with auto torque boost, current limiting, and slip compensation functions, all of which are ideal for controlling traverse conveyors.Loaded with the functions for auto energy saving operation and PID control, which are ideal for controlling fans and pumps.

High frequency inverter(Three-phase 200V: 2.2 to18.5kW)

Fuji's original sine wave PWM control system delivers stable operation from the low speed range to the high speed range.Capable of handling output frequencies from 1 to 1667Hz.The desired V/f pattern can be set and polygonal line frequency can be set to match the motor characteristics.

Machine tool spindle drive system(Three-phase 200V: 0.75 to 45kW)

The separated converter allows you to configure a multi-axis system.Free combinations are made possible such as torque vector/high performance vector control and dynamic braking/power regeneration.Abundant option functions enable multitasking machining with a machine tool.

Inverter with the power supply regeneration function(Three-phase 200V: 3.7 to 45kW)

A separate converter is used, and up to 2 drive units can be connected to a single converter unit.The power regeneration function is standard-equipped in the converter unit.These inverters can be used for general-purpose motors.

Fan, pump inverter(Three-phase 200V: 5.5 to110kW, Three-phase 400V: 5.5 to 710kW)

Suitable for fans and pumps.The built-in automatic energy-saving function makes energy saving operation easy.An interactive keypad is standard-equipped for ease of operation.

General Industrial equipment

High frequency operation

Controlling machine tool

FRENIC5000VG7S(MEH405)

High performance, vector control inverter(Three-phase 200V: 0.75 to 90kW, Three-phase 400V: 3.7 to 630kW)

A high precision inverter with rapid control response and stable torque characteristics.Abundant functions and a full range of options make this inverter ideal for a broad range of general industrial systems.The auto tuning function makes vector control operation possible even for general-purpose motors.

Capacity range expanded

Capacity range expanded

Capacity range expanded

Capacity range expanded

Page 50: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

50

NOTE

Page 51: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

51

NOTE

Page 52: High Performance Vector Control Invertersrepmatel.es/directorio/Manuales/Fuji/frenic.pdf · FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's

NOTESWhen running general-purpose motors

• Driving a 400V general-purpose motorWhen driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

• Torque characteristics and temperature riseWhen the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

• VibrationWhen the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.* Study use of tier coupling or dampening rubber.* It is also recommended to use the inverter jump

frequency control to avoid resonance points.

• NoiseWhen an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

When running special motors

• High-speed motorsWhen driving a high-speed motor while setting the frequency higher than 120Hz, test the combination with another motor to confirm the safety of high-speed motors.

• Explosion-proof motorsWhen driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

• Submersible motors and pumpsThese motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

• Brake motorsFor motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.Do not use inverters for driving motors equipped with series-connected brakes.

• Geared motorsIf the power transmission mechanism uses an oil-

lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

• Synchronous motorsIt is necessary to use software suitable for this motor type. Contact Fuji for details.

• Single-phase motorsSingle-phase motors are not suitable for inverter-driven variable speed operation. Use three-phase motors.* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

• Installation locationUse the inverter in a location with an ambient temperature range of -10 to 50˚C.The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal.Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

• Installing a molded case circuit breaker (MCCB)Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

• Installing a magnetic contactor (MC) in the output (secondary) circuitIf a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

• Installing a magnetic contactor (MC) in the input (primary) circuitDo not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

• Protecting the motorThe electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

• Discontinuance of power-factor correcting capacitorDo not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do

not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

• Discontinuance of surge killerDo not mount surge killers in the inverter output (secondary) circuit.

• Reducing noiseUse of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

• Measures against surge currentsIf an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.We recommend connecting a DC REACTOR to the inverter.

• Megger testWhen checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

• Wiring distance of control circuitWhen performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20m.

• Wiring length between inverter and motorIf long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).When wiring is longer than 50m, and Dynamic torque-vector control or vector with PG is selected, execute off-line tuning.

• Wiring sizeSelect cables with a sufficient capacity by referring to the current value or recommended wire size.

• Wiring typeDo not use multicore cables that are normally used for connecting several inverters and motors.

• GroundingSecurely ground the inverter using the grounding terminal.

Selecting inverter capacity

• Driving general-purpose motorSelect an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

• Driving special motorsSelect an inverter that meets the following condition:Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Information in this catalog is subject to change without notice. Printed in Japan 2006-2(B06b/B00)CM 30 FIS

Printed on 100% recycled paper

Mitsui Sumitomo Bank Ningyo-cho Bldg.,5-7,Nihonbashi Odemma-cho,Chuo-ku,Tokyo 103-0011,JapanPhone: +81-3-5847-8011 Fax: +81-3-5847-8172