high-gain vector multipliers - maxim integrated · parameter conditions min typ max units current...

21
General Description The MAX2045/MAX2046/MAX2047 low-cost, fully inte- grated vector multipliers alter the magnitude and phase of an RF signal. Each device is optimized for the UMTS (MAX2045), DCS/PCS (MAX2046), or cellular/GSM (MAX2047) frequency bands. These devices feature differential RF inputs and outputs. The MAX2045/MAX2046/MAX2047 provide vector adjustment through the differential I/Q amplifiers. The I/Q amplifiers can interface with voltage and/or current digital-to-analog converters (DACs). The voltage inputs are designed to interface to a voltage-mode DAC, while the current inputs are designed to interface to a current- mode DAC. An internal 2.5V reference voltage is provid- ed for applications using single-ended voltage DACs. The MAX2045/MAX2046/MAX2047 operate from a 4.75V to 5.25V single supply. All devices are offered in a com- pact 5mm 5mm, 32-lead thin QFN exposed-paddle packages. The MAX2045/MAX2046/MAX2047 evaluation kits are available, contact factory for availability. Applications UMTS/PCS/DCS/Cellular/GSM Base Station Feed-Forward and Predistortion Power Amplifiers RF Magnitude and Phase Adjustment RF Cancellation Loops Beam-Forming Applications Features Multiple RF Frequency Bands of Operation 2040MHz to 2240MHz (MAX2045) 1740MHz to 2060MHz (MAX2046) 790MHz to 1005MHz (MAX2047) ±0.2dB Gain Flatness ±1° Phase Flatness 3dB Control Bandwidth: 260MHz 15dBm Input IP3 15dB Gain Control Range Continuous 360° Phase Control Range 6.5dB Maximum Gain for Continuous Phase On-Chip Reference for Single-Ended Voltage-Mode Operation 800mW Power Consumption Space-Saving 5mm x 5mm Thin QFN Package Single 5V supply MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers ________________________________________________________________ Maxim Integrated Products 1 Ordering Information 19-2728; Rev 0; 1/03 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. PART TEMP RANGE PIN-PACKAGE MAX2045ETJ-T -40°C to +85°C 32 Thin QFN-EP* MAX2046ETJ-T -40°C to +85°C 32 Thin QFN-EP* MAX2047ETJ-T -40°C to +85°C 32 Thin QFN-EP* MAX2045 MAX2046 MAX2047 2 1 3 4 5 6 7 8 23 24 22 21 20 19 18 17 10 9 11 12 13 14 15 16 31 32 30 29 28 27 26 25 VI1 VI2 VQ1 VQ2 II1 II2 IQ1 IQ2 REFOUT V CC GND RFOUT1 RFOUT2 GND GND GND GND V CC GND GND GND RBIAS GND GND GND GND GND GND GND GND RFIN1 RFIN2 90° PHASE SHIFTER OUTPUT STAGE CONTROL AMPLIFIER I CONTROL AMPLIFIER Q VECTOR MULTIPLIER 2.5V REFERENCE QFN Pin Configuration/Block Diagram *EP = Exposed paddle.

Upload: others

Post on 17-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

General DescriptionThe MAX2045/MAX2046/MAX2047 low-cost, fully inte-grated vector multipliers alter the magnitude and phaseof an RF signal. Each device is optimized for the UMTS(MAX2045), DCS/PCS (MAX2046), or cellular/GSM(MAX2047) frequency bands. These devices featuredifferential RF inputs and outputs.

The MAX2045/MAX2046/MAX2047 provide vectoradjustment through the differential I/Q amplifiers. TheI/Q amplifiers can interface with voltage and/or currentdigital-to-analog converters (DACs). The voltage inputsare designed to interface to a voltage-mode DAC, whilethe current inputs are designed to interface to a current-mode DAC. An internal 2.5V reference voltage is provid-ed for applications using single-ended voltage DACs.

The MAX2045/MAX2046/MAX2047 operate from a 4.75Vto 5.25V single supply. All devices are offered in a com-pact 5mm 5mm, 32-lead thin QFN exposed-paddlepackages.

The MAX2045/MAX2046/MAX2047 evaluation kits areavailable, contact factory for availability.

ApplicationsUMTS/PCS/DCS/Cellular/GSM Base StationFeed-Forward and Predistortion Power Amplifiers

RF Magnitude and Phase Adjustment

RF Cancellation Loops

Beam-Forming Applications

Features Multiple RF Frequency Bands of Operation

2040MHz to 2240MHz (MAX2045)1740MHz to 2060MHz (MAX2046)790MHz to 1005MHz (MAX2047)

±0.2dB Gain Flatness

±1° Phase Flatness

3dB Control Bandwidth: 260MHz

15dBm Input IP3

15dB Gain Control Range

Continuous 360° Phase Control Range

6.5dB Maximum Gain for Continuous Phase

On-Chip Reference for Single-EndedVoltage-Mode Operation

800mW Power Consumption

Space-Saving 5mm x 5mm Thin QFN Package

Single 5V supply

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

________________________________________________________________ Maxim Integrated Products 1

Ordering Information

19-2728; Rev 0; 1/03

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

PART TEMP RANGE PIN-PACKAGE

MAX2045ETJ-T -40°C to +85°C 32 Thin QFN-EP*

MAX2046ETJ-T -40°C to +85°C 32 Thin QFN-EP*

MAX2047ETJ-T -40°C to +85°C 32 Thin QFN-EP*

MAX2045MAX2046MAX2047

2

1

3

4

5

6

7

8

23

24

22

21

20

19

18

17

109 11 12 13 14 15 16

3132 30 29 28 27 26 25

VI1

VI2

VQ1

VQ2

II1

II2

IQ1

IQ2

REFO

UT

VCC

GND

RFOU

T1

RFOU

T2

GND

GND

GND

GND

VCC

GND

GND

GND

RBIAS

GND

GND

GND

GND

GND

GND

GND

GND

RFIN

1

RFIN

2

90°PHASE

SHIFTER

OUTPUTSTAGE

CONTROLAMPLIFIER I

CONTROLAMPLIFIER Q

VECTORMULTIPLIER

2.5VREFERENCE

QFN

Pin Configuration/Block Diagram

*EP = Exposed paddle.

Page 2: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

DC ELECTRICAL CHARACTERISTICS(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, no RF inputs applied, RFinput and output ports are terminated with 50Ω. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

VCC to GND .............................................................-0.3V to +6VVI1, V12, VQ1, VQ2, RFIN1, RFIN2,

RFOUT1, RFOUT2 ....................................-0.3V to VCC + 0.3VRFOUT1, RFOUT2 Sink Current..........................................35mAREFOUT Source Current.......................................................4mAII1, II2, IQ1, IQ2 ........................................................-0.3V to +1VII1, II2, IQ1, IQ2 Sink Current ...........................................+10mA

Continuous RF Input Power (CW)...................................+15dBmContinuous Power Dissipation (TA = +70°C)

32-Pin Thin QFN (derate 21.3mW/°C above +70°C) .......1.7WOperating Temperature Range ...........................-40°C to +85°CJunction Temperature ......................................................+150°CStorage Temperature Range .............................-40°C to +150°CLead Temperature (soldering, 10s) .................................+300°C

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Supply Voltage Range VCC 4.75 5 5.25 V

MAX2045 120 160 200

MAX2046 120 160 200Operating Supply Current ICC

MAX2047 120 160 200

mA

Differential Input Resistance,VI1 to VI2, VQ1 to VQ2

Input resistance between VI1 and VI2 orVQ1 and VQ2

6.5 9 11.5 kΩ

Common-Mode Input Voltage,VI1, VI2, VQ1, VQ2

VCM 2.5 V

Input Resistance, II1, II2, IQ1,IQ2

Single-ended resistance to ground 150 200 250 Ω

Reference Voltage VREFOUT REFOUT unloaded 2.3 2.45 2.6 V

AC ELECTRICAL CHARACTERISTICS(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz(MAX2045), fIN = 1.9GHz (MAX2046), fIN = 915MHz (MAX2047), input current range = 0 to 4mA (if using a current-mode DAC), anddifferential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputsare left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA =+25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

RF Differential Input Impedance 50 ΩRF Differential Output Impedance 300 ΩRF Differential Load Impedance 200 ΩContinuous Phase Range 0 360 Degrees

Page 3: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

_______________________________________________________________________________________ 3

MAX2045 ELECTRICAL CHARACTERISTICS(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Frequency Range 2040 2240 MHz

RF Input Return Loss -14 dB

RF Output Return Loss -16.4 dB

VOLTAGE MODE

VI = VQ = 0.707V (radius = 1V) 7

VI = VQ = 0.5V (radius = 0.707V) 3.4

VI = VQ = 0.25V (radius = 0.35V) -3Power Gain

VI = VQ = 0.125V (radius = 0.175V) -8.7

dB

Power-Gain RangeDifference in gain between VI = VQ = 0.707V andVI = VQ = 0.125V

15.7 dB

Reverse Isolation Over entire control range -74 dB

Maximum Power Gain forContinuous Coverage of PhaseChange

0 to 360° (radius = 1V) 6.1 dB

Maximum Power Gain withReduced Phase Coverage

0 to 360° (radius = 1V) 7 dB

Group Delay VI = VQ = 0.707V (radius = 1V) 1.38 ns

Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.027 dB/°C

Gain Flatness Over FrequencyVI = VQ = 0.707V (radius = 1V); UMTS,fIN = 2140MHz ±100MHz

±0.21 dB

Phase Flatness Over FrequencyElectrical delay removed, VI = VQ = 0.707V(radius = 1V), UMTS, fIN = 2140MHz ±100MHz

±0.2 Degrees

VI = VQ = 0.707V (radius = 1V) -147.7

VI = VQ = 0.5V (radius = 0.707V) -148.3

VI = VQ = 0.25V (radius = 0.35V) -148.2Output Noise Power

VI = VQ = 0.125V (radius = 0.175V) -148.1

dBm/Hz

VI = VQ = 0.707V (radius = 1V) 6.7IP1dB

VI = VQ = 0.125V (radius = 0.175V) 9.3dBm

VI = VQ = 0.707V (radius = 1V) 15.2IIP3

VI = VQ = 0.125V (radius = 0.175V) 14.7dBm

Page 4: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

4 _______________________________________________________________________________________

MAX2046 ELECTRICAL CHARACTERISTICS(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Frequency Range 1740 2060 MHz

RF Input Return Loss -21.1 dB

RF Output Return Loss -21.7 dB

VOLTAGE MODE

VI = VQ = 0.707V (radius = 1V) 7.4

VI = VQ = 0.5V (radius = 0.707V) 3.8

VI = VQ = 0.25V (radius = 0.35V) -2.5Power Gain

VI = VQ = 0.125V (radius = 0.175V) -8.2

dB

Power-Gain RangeDifference in gain between VI = VQ = 0.707V andVI = VQ = 0.125V

15.6 dB

Reverse Isolation Over entire control range -76 dB

Maximum Power Gain forContinuous Coverage of PhaseChange

0 to 360° (radius = 1V) 6.5 dB

Maximum Power Gain withReduced Phase Coverage

0 to 360° (radius = 1V) 7.4 dB

Group Delay VI = VQ = 0.707V (radius = 1V) 1.54 ns

Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.026 dB/°C

PCS, fIN = 1960MHz±100MHz

±0.14

Gain Flatness Over FrequencyVI = VQ = 0.707V(radius = 1V) DCS, fIN = 1842.5MHz

±100MHz±0.3

dB

MAX2045 ELECTRICAL CHARACTERISTICS (continued)(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

CURRENT MODE

II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2Power Gain (Note 4)

II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -8.7dB

Power-Gain RangeDifference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA

14.9 dB

Gain Flatness Over FrequencyII1 = IQ1 = 4mA, II2 = IQ2 = 0mA; UMTS,fIN = 2140MHz ±100MHz

±0.27 dB

Phase Flatness Over FrequencyElectrical delay removed, II1 = IQ1 = 4mA,II2 = IQ2 = 0mA

±0.8 Degrees

Page 5: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

_______________________________________________________________________________________ 5

MAX2046 ELECTRICAL CHARACTERISTICS (continued)(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

PCS, fIN = 1960MHz±100MHz

±1.3

Phase Flatness Over FrequencyElectrical delay removed,VI = VQ = 0.707V (radius = 1V) DCS, fIN = 1842.5MHz

±100MHz±1.2

Degrees

VI = VQ = 0.707V (radius = 1V) -146.8

VI = VQ = 0.5V (radius = 0.707V) -147.4

VI = VQ = 0.25V (radius = 0.35V) -147.4Output Noise Power

VI = VQ = 0.125V (radius = 0.175V) -147.3

dBm/Hz

VI = VQ = 0.707V (radius = 1V) 6.5IP1dB

VI = VQ = 0.125V (radius = 0.175V) 9.1dBm

VI = VQ = 0.707V (radius = 1V) 15.2IIP3

VI = VQ = 0.125V (radius = 0.175V) 14.8dBm

CURRENT MODE

II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.6Power Gain (Note 4)

II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -8.2dB

Power-Gain RangeDifference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA

14.8 dB

PCS, fIN = 1960MHz±100MHz

±0.14

Gain Flatness Over FrequencyII1 = IQ1 = 4mA, II2 = IQ2 =0mA DCS, fIN = 1842.5MHz

±100MHz±0.33

dB

PCS, fIN = 1960MHz±100MHz

±0.8

Phase Flatness Over FrequencyElectrical delay removed,II1 = IQ1 = 4mA,II2 = IQ2 = 0mA DCS, fIN = 1842.5MHz

±100MHz±1.6

Degrees

Page 6: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

6 _______________________________________________________________________________________

MAX2047 ELECTRICAL CHARACTERISTICS(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Frequency Range 790 1005 MHz

RF Input Return Loss -21.8 dB

RF Output Return Loss -11.7 dB

VOLTAGE MODE

VI = VQ = 0.707V (radius = 1V) 8.4

VI = VQ = 0.5V (radius = 0.707V) 5.1

VI = VQ = 0.25V (radius = 0.35V) -0.9Power Gain

VI = VQ = 0.125V (radius = 0.175V) -6.3

dB

Power-Gain RangeDifference in gain between VI = VQ = 0.707V andVI = VQ = 0.125V

14.7 dB

Reverse Isolation Over entire control range -75 dB

Maximum Power Gain forContinuous Coverage of PhaseChange

0 to 360° (radius = 1V) 7.1 dB

Maximum Power Gain withReduced Phase Coverage

0 to 360° (radius = 1V) 8.4 dB

Group Delay VI = VQ = 0.707V (radius = 1V) 2.02 ns

Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.024 dB/°C

GSM, fIN = 942.5MHz±62.5MHz

±0.25

US cell, fIN = 881.5MHz±62.5MHz

±0.13

JCDMA, fIN = 850MHz±60MHz

±0.1

Gain Flatness Over FrequencyVI = VQ = 0.707V(radius = 1V)

KDI/JDC/PDC, fIN = 820MHz±30MHz

±0.1

dB

GSM, fIN = 942.5MHz±62.5MHz

±0.9

US cell, fIN = 881.5MHz±62.5MHz

±1.1

JCDMA, fIN = 850MHz±60MHz

±1.2

Phase Flatness Over FrequencyE l ectr i cal d el ay r em oved ,V I = VQ = 0.707V (radius= 1V)

KDI/JDC/PDC, fIN = 820MHz±30MHz

±0.3

Degrees

Page 7: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

_______________________________________________________________________________________ 7

PARAMETER CONDITIONS MIN TYP MAX UNITS

VI = VQ = 0.707V (radius = 1V) -147.5

VI = VQ = 0.5V (radius = 0.707V) -148.4

VI = VQ = 0.25V (radius = 0.35V) -148.6Output Noise Power

VI = VQ = 0.125V (radius = 0.175V) -148.6

dBm/Hz

VI = VQ = 0.707V (radius = 1V) 6.1IP1dB

VI = VQ = 0.125V (radius = 0.175V) 6.9dBm

VI = VQ = 0.707V (radius = 1V) 15.6IIP3

VI = VQ = 0.125V (radius = 0.175V) 14.1dBm

CURRENT MODE

II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 8.1Power Gain (Note 4)

II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -6.2dB

Power-Gain RangeDifference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA

14.3 dB

GSM, fIN = 942.5MHz±62.5MHz

±0.25

US cell, fIN = 881.5MHz±62.5MHz

±0.12

JCDMA, fIN = 850MHz±60MHz

±0.1

Gain Flatness Over FrequencyII1 = IQ1 = 4mA,II2 = IQ2 = 0mA

KDI/JDC/PDC, fIN = 820MHz±30MHz

±0.1

dB

GSM, fIN = 942.5MHz±62.5MHz

±0.8

US cell, fIN = 881.5MHz±62.5MHz

±1.1

JCDMA, fIN = 850MHz±60MHz

±1.3

Phase Flatness Over FrequencyElectrical delay removed,II1 = IQ1 = 4mA,II2 = IQ2 = 0mA

KDI/JDC/PDC, fIN = 820MHz±30MHz

±0.4

Degrees

Note 1: Guaranteed by design and characterization.Note 2: All specifications reflect losses and delays of external components (matching components, baluns, and PC board traces).

Output measurements taken at the RF OUTPUT of the Typical Operating Circuit.Note 3: Radius is defined as (VI2 + VQ2)0.5. VI denotes the difference between VI1 and VI2. VQ denotes the difference between VQ1

and VQ2. For differential operation: VI1 = VREF + 0.5 VI, VI2 = VREF - 0.5 VI, VQ1 = VREF + 0.5 VQ, VQ2 = VREF - 0.5 VQ. For single-ended operation: VI1 = VREF + VI, VI2 = VREF, VQ1 = VREF + VQ, VQ2 = VREF.

Note 4: When using the I/Q current inputs, maximum gain occurs when one differential input current is zero and the other corre-sponding differential input is 5mA. Minimum gain occurs when both differential inputs are equal.

MAX2047 ELECTRICAL CHARACTERISTICS (continued)(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input cur-rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-modeDAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputsare left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)

Page 8: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

8 _______________________________________________________________________________________

Typical Operating Characteristics (MAX2045)(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

REFOUT AND SUPPLY CURRENTvs. TEMPERATURE AND SUPPLY VOLTAGE

MAX2045 toc01

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A)

603510-15

150

160

170

180

190

200

210

220

230

140

REFO

UT (V

)

2.46

2.45

2.44

2.47

2.48

2.49

2.50

2.51

2.52

2.43-40 85

REFOUT LOADED WITH V_2

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

SUPPLY CURRENT

INPUT RETURN LOSS vs. FREQUENCY

MAX

2045

toc0

2

FREQUENCY (MHz)

INPU

T RE

TURN

LOS

S (d

B)

22502200215021002050

19

18

17

16

15

14

13

12

11

10

202000 2300

V_1 = 2.55V TO 3.5V

OUTPUT RETURN LOSS vs. FREQUENCY

MAX

2045

toc0

3

FREQUENCY (MHz)

OUTP

UT R

ETUR

N LO

SS (d

B)

22502200215021002050

19

18

17

16

15

14

13

12

20

21

222000 2300

V_1 = 2.55V TO 3.5V

GAIN vs. FREQUENCY

MAX

2045

toc0

4

FREQUENCY (MHz)

GAIN

(dB)

22502200215021002050

-15

-10

-5

0

5

10

15

20

-20

-25

-302000 2300

V_1 = 3.5VV_1 = 3.0V

V_1 = 2.75V

V_1 = 2.625V

V_1 = 2.55V

GAIN vs. FREQUENCY

MAX

2045

toc0

5

FREQUENCY (MHz)

GAIN

(dB)

22502200215021002050

-15

-10

-5

0

5

10

15

-20

-25

-302000 2300

I_1 = 3mA

I_1 = 2mA

I_1 = 4mAI_1 = 5mA

I_1 = 0I_1 = 1mA

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc0

6

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75

-25

-20

-15

-10

-5

0

5

10

15

-302.50 4.00

VCC = 4.75V TO 5.25V

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc0

7

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75

-45-40-35-30-25-20-15-10-505

101520

-502.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

REVERSE ISOLATION vs. FREQUENCY

MAX

2045

toc0

8

FREQUENCY (MHz)

ISOL

ATIO

N (d

B)

22502200215021002050

110

100

90

80

70

60

50

40

30

1202000 2300

V_1 = 2.55V TO 3.5V

OUTPUT NOISE POWER vs. FREQUENCYM

AX20

45 to

c09

FREQUENCY (MHz)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

22502200215021002050

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.02000 2300

V_1 = 2.625V

V_1 = 3.5V

V_1 = 2.55V

V_1 = 3V V_1 = 2.75V

Page 9: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

_______________________________________________________________________________________ 9

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc1

0

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.02.50 4.00

TA = +-40°C

TA = +85°C

TA = +25°C

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc1

1

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.02.50 4.00

VCC = 4.75V

VCC = 5.0V

VCC = 5.25V

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2045

toc1

2

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

225022002050 2100 2150

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.02000 2300

V_1 = 3.2V

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2045

toc1

3

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

225022002050 2100 2150

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.02000 2300

V_1 = 3.2V

TA = +25°C

TA = +85°C

TA = -40°C

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc1

4

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.75

6

7

8

9

10

11

12

13

14

15

16

52.50 4.00

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2045

toc1

5

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.75

6

7

8

9

10

11

12

13

14

15

16

52.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

IIP3 vs. FREQUENCY

MAX

2045

toc1

6

FREQUENCY (MHz)

IIP3

(dBm

)

22502200215021002050

13.5

14.0

14.5

15.0

15.5

16.0

13.02000 2300

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

V_1 = 3.2V

IIP3 vs. FREQUENCY

MAX

2045

toc1

7

FREQUENCY (MHz)

IIP3

(dBm

)

22502200215021002050

13.5

14.0

14.5

15.0

15.5

16.0

13.02000 2300

TA = +85°C

TA = +25°CTA = -40°C

V_1 = 3.2V

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

45 to

c18

CONTROL VOLTAGE VI1 , VQ1, (V)

IIP3

(dBm

)

3.753.503.253.002.75

6789

10111213141516171819

52.50 4.00

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

Typical Operating Characteristics (MAX2045) (continued)(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

Page 10: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

10 ______________________________________________________________________________________

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

45 to

c19

CONTROL VOLTAGE VI1 , VQ1, (V)

IIP3

(dBm

)

3.753.503.253.002.75

6789

10111213141516171819

52.50 4.00

TA = +85°C

TA = -40°CTA = +25°C

GAIN vs. PHASE

MAX

2045

toc2

0

PHASE (DEGREES)

GAIN

(dB)

315270180 22590 13545

-14-12-10-8-6-4-202468

10

-160 360

RADIUS = 0.875RADIUS = 1

RADIUS = 0.75

RADIUS = 0.625RADIUS = 0.5

RADIUS = 0.375

RADIUS = 0.25RADIUS = 0.125

S21 PHASE vs. FREQUENCY

MAX

2045

toc2

1

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

22502200215021002050

80.581.081.582.082.583.083.584.084.585.085.586.0

80.02000 2300

VCC = 5.25V

VCC = 5.V

VCC = 4.75V

V_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCY

MAX

2045

toc2

2

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

22502200215021002050

74.575.075.576.076.577.077.578.078.579.079.580.0

74.02000 2300

VCC = 5.25V

VCC = 5V

VCC = 4.75V

V_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCYM

AX20

45 to

c23

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

22502200215021002050

70

75

80

85

90

95

100

652000 2300

TA = +25°C

TA = +85°C

TA = -40°CV_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT +25°C

S21 PHASE vs. FREQUENCY

MAX

2045

toc2

4

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

22502200215021002050

65

70

75

80

85

90

602000 2300

TA = +25°C

TA = +85°C

TA = -40°CV_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT +25°C

GROUP DELAY vs. FREQUENCY

MAX

2045

toc2

5

FREQUENCY (MHz)

GROU

P DE

LAY

(ns)

22502200215021002050

1.101.05

1.151.201.251.301.351.40

1.501.45

1.551.601.65

1.751.70

1.801.851.90

1.002000 2300

V_1 = 2.55V TO 3.5V

SWITCHING SPEED

MAX

2045

toc2

6

SWITCHING SPEED (1ns/div)

DIFF

EREN

TIAL

CON

TROL

SI

GNAL

GAIN

SEE SWITCHING SPEED SECTION IN THEAPPLICATIONS INFORMATION

-0.7V +0.7V

MIN GAIN,ORIGIN

MAX GAIN, Q3 MAX GAIN, Q1

Typical Operating Characteristics (MAX2045) (continued)(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

Page 11: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

______________________________________________________________________________________ 11

REFOUT AND SUPPLY CURRENTvs. TEMPERATURE AND SUPPLY VOLTAGE

MAX2046 toc27

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A)

603510-15

150

160

170

180

190

200

210

220

140

REFO

UT (V

)

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.44-40 85

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

SUPPLY CURRENT

REFOUT LOADED WITH V_2

INPUT RETURN LOSS vs. FREQUENCY

MAX

2046

toc2

8

FREQUENCY (MHz)

INPU

T RE

TURN

LOS

S (d

B)

2000 205019501850 190018001750

22

20

18

16

14

12

10

241700 2100

V_1 = 2.55V TO 3.5V

OUTPUT RETURN LOSS vs. FREQUENCY

MAX

2046

toc2

9

FREQUENCY (MHz)

OUTP

UT R

ETUR

N LO

SS (d

B)

2050200019501850 190018001750

19

18

17

16

15

14

13

12

20

21

221700 2100

V_1 = 2.55V TO 3.5V

GAIN vs. FREQUENCY

MAX

2046

toc3

0

FREQUENCY (MHz)

GAIN

(dB)

2050200019501900185018001750

-15

-10

-5

0

5

10

15

20

-20

-25

-301700 2100

V_1 = 3.5VV_1 = 3.0V

V_1 = 2.75V

V_1 = 2.625V

V_1 = 2.55V

GAIN vs. FREQUENCYM

AX20

46 to

c31

FREQUENCY (MHz)

GAIN

(dB)

2050200019501850 190018001750

-15

-10

-5

0

5

10

15

-20

-25

-301700 2100

I_1 = 3mA

I_1 = 2mA

I_1 = 4mAI_1 = 5mA

I_1 = 0

I_1 = 1mA

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc3

2

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75

-25

-20

-15

-10

-5

0

5

10

20

15

-302.50 4.00

VCC = 4.75V TO 5.25V

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc3

3

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75

-45-40-35-30-25-20-15-10-505

101520

-502.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

REVERSE ISOLATION vs. FREQUENCY

MAX

2046

toc3

4

FREQUENCY (MHz)

ISOL

ATIO

N (d

B)

2050200019501900185018001750

110

100

90

80

70

60

50

40

30

1201700 2100

V_1 = 2.55V TO 3.5V

OUTPUT NOISE POWER vs. FREQUENCYM

AX20

46 to

c35

FREQUENCY (MHz)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

205020001950190018501750 1800

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.01700 2100

V_1 = 3.5V

V_1 = 2.55V V_1 = 2.625V

V_1 = 3V V_1 = 2.75V

Typical Operating Characteristics (MAX2046)(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

Page 12: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

12 ______________________________________________________________________________________

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc3

7

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.02.50 4.00

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2046

toc3

8

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

2050200019501750 1800 19001850

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.01700 2100

V_1 = 3.2V

VCC = 5.25VVCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2046

toc3

9

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

205020001750 1800 1900 19501850

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.01700 2100

V_1 = 3.2V

TA = +25°C TA = +85°C

TA = -40°C

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc4

0

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.75

6

7

8

9

10

11

12

13

14

15

16

52.50 4.00

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc4

1

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.75

6

7

8

9

10

11

12

13

14

15

16

52.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

IIP3 vs. FREQUENCY

MAX

2046

toc4

2

FREQUENCY (MHz)

IIP3

(dBm

)

20001900185018001750

13.5

14.0

14.5

15.0

16.0

15.5

17.0

16.5

13.01700 21001950 2050

VCC = 5.25V

VCC = 5.0VVCC = 4.75V

V_1 = 3.2V

IIP3 vs. FREQUENCY

MAX

2046

toc4

3

FREQUENCY (MHz)

IIP3

(dBm

)

20001900185018001750

13.5

14.0

14.5

15.0

15.5

17.0

16.5

16.0

13.01700 21001950 2050

TA = +85°C

TA = +25°CTA = -40°C

V_1 = 3.2V

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

46 to

c44

CONTROL VOLTAGE VI1 , VQ1, (V)

IIP3

(dBm

)

3.753.503.253.002.75

6789

10111213141516171819

52.50 4.00

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

Typical Operating Characteristics (MAX2046) (continued)(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2046

toc3

6

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-144.5

-144.0

-149.02.50 4.00

TA = -40°C

TA = +85°C

TA = +25°C

Page 13: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

______________________________________________________________________________________ 13

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

46 to

c45

CONTROL VOLTAGE VI1 , VQ1, (V)

IIP3

(dBm

)

3.753.503.253.002.75

6789

10111213141516171819

52.50 4.00

TA = +85°C

TA = -40°CTA = +25°C

GAIN vs. PHASE

MAX

2046

toc4

6

PHASE (DEGREES)

GAIN

(dB)

315270180 22590 13545

-14-12-10-8-6-4-202468

10

-160 360

RADIUS = 1

RADIUS = 0.75

RADIUS = 0.625RADIUS = 0.5

RADIUS = 0.375

RADIUS = 0.25

RADIUS = 0.125

RADIUS = 0.875

S21 PHASE vs. FREQUENCY

MAX

2046

toc4

7

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

2050200019501900185018001750

-154-153-152-151-150-149-148-147-146-145-144-143-142-141-140

-1551700 2100

VCC = 5.25V

VCC = 5.V

VCC = 4.75V

V_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCY

MAX

2046

toc4

8

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

2050200019501900185018001750

-169-168-167-166-165-164-163-162-161-160-159-158-157-156-155

-1701700 2100

VCC = 5.25V

VCC = 5.V

VCC = 4.75V

V_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCYM

AX20

46 to

c49

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

200019501900185018001750

-180-185

-175-170-165-160-155-150-145-140-135-130

-1901700 21002050

TA = +25°C

TA = +85°C

TA = -40°C

V_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT +25°C

S21 PHASE vs. FREQUENCY

MAX

2046

toc5

0

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

20001900185018001750

-180-185

-170-175

-155-160-165

-150

-135-140-145

-130

-1901700 21001950 2050

TA = +25°C

TA = +85°C

TA = -40°C

V_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT +25°C

GROUP DELAY vs. FREQUENCY

MAX

2046

toc5

1

FREQUENCY (MHz)

GROU

P DE

LAY

(ns)

20001900185018001750

1.351.401.451.501.551.601.651.701.751.801.851.90

1.301700 21001950 2050

V_1 = 2.55V TO 3.5V

SWITCHING SPEED

MAX

2045

toc5

2

SWITCHING SPEED (1ns/div)

DIFF

EREN

TIAL

CON

TROL

SI

GNAL

GAIN

SEE SWITCHING SPEED SECTION IN THEAPPLICATIONS INFORMATION

-0.7V +0.7V

MIN GAIN,ORIGIN

MAX GAIN, Q3 MAX GAIN, Q1

Typical Operating Characteristics (MAX2046) (continued)(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

Page 14: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

14 ______________________________________________________________________________________

OUTPUT RETURN LOSS vs. FREQUENCY

MAX

2047

toc5

5

FREQUENCY (MHz)

OUTP

UT R

ETUR

N LO

SS (d

B)

10501000950850 900800750

14

13

12

11

10

9

8

15

16700 1100

V_1 = 2.55V TO 3.5V

GAIN vs. FREQUENCY

MAX

2047

toc5

6

FREQUENCY (MHz)

GAIN

(dB)

10501000950900850800750

-15

-10

-5

0

5

10

15

20

-20700 1100

V_1 = 3.5VV_1 = 3.0V

V_1 = 2.75V

V_1 = 2.625VV_1 = 2.55V

GAIN vs. FREQUENCYM

AX20

47 to

c57

FREQUENCY (MHz)

GAIN

(dB)

10501000950850 900800750

-15

-10

-5

0

5

10

15

-20700 1100

I_1 = 3mAI_1 = 2mA

I_1 = 4mAI_1 = 5mA

I_1 = 0I_1 =1mA

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc5

8

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75

-25

-20

-15

-10

-5

0

5

10

20

15

-302.50 4.00

VCC = 4.75V TO 5.25V

GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc5

9

CONTROL VOLTAGE VI1, VQ1 (V)

GAIN

(dB)

3.753.503.253.002.75-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

2.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

REVERSE ISOLATION vs. FREQUENCY

MAX

2047

toc6

0

FREQUENCY (MHz)

ISOL

ATIO

N (d

B)

10501000950900850800750

110

100

90

80

70

60

50

40

30

120700 1100

V_1 = 2.55V TO 3.5V

OUTPUT NOISE POWER vs. FREQUENCYM

AX20

47 to

c61

FREQUENCY (MHz)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

1000900850800750

-150

-149

-148

-147

-146

-145

-144

-151700 1100950 1050

V_1 = 2.625V

V_1 = 3.5V

V_1 = 3V V_1 = 2.75V

V_1 = 2.55V

Typical Operating Characteristics (MAX2047)(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

REFOUT AND SUPPLY CURRENTvs. TEMPERATURE AND SUPPLY VOLTAGE

MAX2047 toc53

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A)

603510-15

150

160

170

180

190

200

210

140

REFO

UT (V

)

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.45-40 85

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

SUPPLY CURRENT

REFOUT LOADED WITH V_2

INPUT RETURN LOSS vs. FREQUENCY

MAX

2047

toc5

4

FREQUENCY (MHz)

INPU

T RE

TURN

LOS

S (d

B)

1000 1050950850 900800750

22

20

18

16

14

12

10

32

24

26

28

30

700 1100

V_1 = 2.55V TO 3.5V

Page 15: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

______________________________________________________________________________________ 15

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2047

toc6

4

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

10501000950750 800 900850

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.0700 1100

V_1 = 3.2V

VCC = 5.25VVCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. FREQUENCY

MAX

2047

toc6

5

FREQUENCY (MHz)

INPU

T P1

-dB

(dBm

)

10501000750 800 900 950850

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

5.0700 1100

V_1 = 3.2V

TA = +25°C TA = +85°C

TA = -40°C

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc6

6

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.75

4.55.05.56.06.57.07.58.08.59.09.5

10.0

4.02.50 4.00

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

INPUT P1-dB COMPRESSIONvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc6

7

CONTROL VOLTAGE VI1, VQ1 (V)

INPU

T P1

-dB

(dBm

)

3.753.503.253.002.754.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

2.50 4.00

TA = +85°C

TA = +25°C

TA = -40°C

IIP3 vs. FREQUENCY

MAX

2047

toc6

8

FREQUENCY (MHz)

IIP3

(dBm

)

1000900850800750

14.5

15.5

15.0

16.0

16.5

17.0

18.0

17.5

19.0

18.5

14.0700 1100950 1050

VCC = 5.25V

VCC = 5.0VVCC = 4.75V

V_1 = 3.2V

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

47 to

c70

CONTROL VOLTAGE VI1 , VQ1 (V)

IIP3

(dBm

)

3.753.503.253.002.75789

10111213141516171819

2.50 4.00

VCC = 4.75VVCC = 5.0V

VCC = 5.25V

Typical Operating Characteristics (MAX2047) (continued)(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

IIP3 vs. FREQUENCY

MAX

2047

toc6

9

FREQUENCY (MHz)

IIP3

(dBm

)

1000900850800750

15.0

15.5

16.0

16.5

17.0

18.5

18.0

17.5

14.5700 1100950 1050

TA = +85°C

TA = +25°C

TA = -40°C

V_1 = 3.2V

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc6

2

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-149.0

-149.5

-150.02.50 4.00

TA = -40°C

TA = +85°C

TA = +25°C

OUTPUT NOISE POWERvs. CONTROL VOLTAGE (VI1 = VQ1)

MAX

2047

toc6

3

CONTROL VOLTAGE VI1, VQ1 (V)

OUTP

UT N

OISE

POW

ER (d

Bm/H

z)

3.753.503.253.002.75

-148.5

-148.0

-147.5

-147.0

-146.5

-146.0

-145.5

-145.0

-149.0

-149.5

-150.02.50 4.00

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

Page 16: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

16 ______________________________________________________________________________________

S21 PHASE vs. FREQUENCY

MAX

2047

toc7

3

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

10501000950900850800750

115

120

125

130

135

140

145

150

110700 1100

VCC = 5.25V

VCC = 5.V

VCC = 4.75V

V_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCY

MAX

2047

toc7

4

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

10501000950900850800750

105

110

115

120

125

130

135

140

145

150

100700 1100

VCC = 5.25V

VCC = 5.V

VCC = 4.75V

V_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT 5V

S21 PHASE vs. FREQUENCYM

AX20

47 to

c75

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

1000950900850800750

110

120

130

140

150

160

100700 11001050

TA = +25°C

TA = +85°C

TA = -40°C

V_1 = 3.2VONE ELECTRICAL DELAYREMOVED AT +25°C

S21 PHASE vs. FREQUENCY

MAX

2047

toc7

6

FREQUENCY (MHz)

PHAS

E (D

EGRE

ES)

1000900850800750

110

100

120

150

140

130

160

90700 1100950 1050

TA = +25°C

TA = +85°C

TA = -40°C

V_1 = 2.65VONE ELECTRICAL DELAYREMOVED AT +25°C

GROUP DELAY vs. FREQUENCY

MAX

2047

toc7

7

FREQUENCY (MHz)

GROU

P DE

LAY

(ns)

10009008508007501.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

700 1100950 1050

V_1 = 2.55V TO 3.5V

SWITCHING SPEED

MAX

2045

toc7

8

SWITCHING SPEED (1ns/div)

DIFF

EREN

TIAL

CON

TROL

SI

GNAL

GAIN

SEE SWITCHING SPEED SECTION IN THEAPPLICATIONS INFORMATION

-0.7V+0.7V

MIN GAIN,ORIGIN

MAX GAIN, Q3MAX GAIN, Q1

Typical Operating Characteristics (MAX2047) (continued)(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)

IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)M

AX20

47 to

c71

CONTROL VOLTAGE VI1 , VQ1 (V)

IIP3

(dBm

)

3.753.503.253.002.75789

101112131415161718192021

2.50 4.00

TA = +85°C

TA = -40°C

TA = +25°C

GAIN vs. PHASE

MAX

2047

toc7

2

PHASE (DEGREES)

GAIN

(dB)

315270180 22590 13545

-13-11-9-7-5-3-113579

11

-150 360

RADIUS = 1

RADIUS = 0.75RADIUS = 0.625

RADIUS = 0.5

RADIUS = 0.375

RADIUS = 0.25RADIUS = 0.125

RADIUS = 0.875

Page 17: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

Detailed DescriptionThe MAX2045/MAX2046/MAX2047 provide vectoradjustment through the differential I/Q amplifiers. Eachpart is optimized for separate frequency ranges:MAX2045 for fIN = 2040MHz to 2240MHz, MAX2046 forfIN = 1740MHz to 2060MHz, and MAX2047 for fIN =790MHz to 1005MHz. All three devices can be inter-faced using current- and/or voltage-mode DACs.

The MAX2045/MAX2046/MAX2047 accept differentialRF inputs, which are internally phase shifted 90degrees to produce differential I/Q signals. The phaseand magnitude of each signal can then be adjustedusing the voltage- and/or current-control inputs. Figure 1 shows a typical operating circuit when usingboth current- and voltage-mode DACs. When usingonly one of the two, leave the unused I/Q inputs open.

RF PortsThe RF input and output ports require external matchingfor optimal performance. See Figures 1 and 2 for appro-priate component values. The output ports requireexternal biasing. In Figures 1 and 2, the outputs arebiased through the balun (T2). The RF input ports canbe driven differentially or single ended (Figures 1, 2)using a balun. The matching values for the MAX2045/MAX2046 were set to be the same during characteriza-tion. An optimized set of values can be found in theMAX2045/MAX2046/MAX2047 Evaluation Kit datasheet.

I/Q InputsThe control amplifiers convert a voltage, current, orvoltage and current input to a predistorted voltage thatcontrols the multipliers. The I/Q voltage-mode inputscan be operated differentially (Figure 1) or singleended (Figure 2). A 2.5V reference is provided on-chipfor single-ended operation.

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

______________________________________________________________________________________ 17

Pin Description

PIN NAME FUNCTION

1 VI1 Noninverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).

2 VI2 Inverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).

3 VQ1 Noninverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).

4 VQ2 Inverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).

5 II1 Noninverting in-phase current-control input. This pin can only sink current. It cannot source current.

6 II2 Inverting in-phase current-control input. This pin can only sink current. It cannot source current.

7 IQ1 Noninverting quadrature current-control input. This pin can only sink current. It cannot source current.

8 IQ2 Inverting quadrature current-control input. This pin can only sink current. It cannot source current.

9 REFOUT2.5V Reference Output. Integrated reference voltage provides a 2.5V output for single-ended voltage-control applications. For single-ended operation, connect REFOUT to the inverting voltage inputs (VI2,VQ2).

10, 11, 14,15, 16, 19,

20, 21,23–27, 30,

31, 32

GND Ground

12 RFOUT1 Noninverting RF Output

13 RFOUT2 Inverting RF Output

17, 18 VCC Supply Voltage

22 RBIASBias Setting Resistor. Connect a 280Ω (±1%) resistor from this pin to ground to set the bias current forthe IC.

28 RFIN1 Noninverting RF Input

29 RFIN2 Inverting RF Input

ExposedPad

—Exposed Pad. Exposed pad on the bottom of the IC should be soldered to the ground plane for properheat dissipation and RF grounding.

Page 18: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

18 ______________________________________________________________________________________

MAX2045MAX2046MAX2047

2

1

3

4

5

6

7

8

23

24

22

21

20

19

18

17

109 11 12 13 14 15 16

3132 30 29 28 27 26 25

VI1

VI2

VQ1

VQ2

II1

II2

IQ1

IQ2

REFO

UT

VCC

VCC

GND

RFOU

T1

RFOU

T2

GND

GND

GND

GND

VCC

GND

GND

GND

RBIAS

GND

GND

GND

GND

GND

GND

GND

GND

RFIN

1

RFIN

2

90°PHASE

SHIFTER

OUTPUTSTAGE

CONTROLAMPLIFIER I

CONTROLAMPLIFIER Q

VECTORMULTIPLIER

2.5VREFERENCE

C4

C5

C6

C7

VOLTAGE-MODE DAC

C8

C9

C10

C11

CURRENT-MODE DAC

RF OUTPUT

*POPULATED WITH AN INDUCTOR OR CAPACITOR, DEPENDING ON THE VERSION.

C14

C13 T2

C15

C16 C17

L2

R1

C1

L1*

T1 C2 C3

RF INPUT

DESIGNATIONMAX2045 MAX2046

DESCRIPTIONMAX2047

3.3pFC1C2, C3

C4–C16C17L1*L2R1T1T2

3.3pF 47pF220pF 220pF 47pF22pF 47pF

0.01µF 0.01µF1.6pF CAP 15nH

10nH 39nH280Ω 280Ω

1:1 balun 1:1 balun4:1 balun

22pF0.01µF

1.6pF CAP10nH280Ω

1:1 balun4:1 balun 4:1 balun

Figure 1. Typical Operating Circuit Using Differential Current- and Voltage-Mode DACs

Page 19: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

______________________________________________________________________________________ 19

MAX2045MAX2046MAX2047

2

1

3

4

5

6

7

8

23

24

22

21

20

19

18

17

109 11 12 13 14 15 16

3132 30 29 28 27 26 25

VI1

VI2

VQ1

VQ2

II1

II2

IQ1

IQ2

REFO

UT

VCC

VCC

GND

RFOU

T1

RFOU

T2

GND

GND

GND

GND

VCC

GND

GND

GND

RBIAS

GND

GND

GND

GND

GND

GND

GND

GND

RFIN

1

RFIN

2

90°PHASE

SHIFTER

OUTPUTSTAGE

CONTROLAMPLIFIER I

CONTROLAMPLIFIER Q

VECTORMULTIPLIER

2.5VREFERENCE

VOLTAGE-MODE DAC

RF OUTPUT

C14

C13 T2

C15

C16 C17

L2

R1

C1

T1 C2 C3

RF INPUT

DESIGNATIONMAX2045 MAX2046

DESCRIPTIONMAX2047

3.3pFC1C2, C3

C4, C6, C12–C16

L1*L2R1T1T2

3.3pF 47pF220pF 220pF 47pF22pF 47pF

1.6pF CAP 15nH10nH 39nH280Ω 280Ω

1:1 balun 1:1 balun4:1 balun

22pFC17 0.01µF 0.01µF0.01µF

1.6pF CAP10nH280Ω

1:1 balun4:1 balun 4:1 balun

C6

C12

C4

L1*

*POPULATED WITH AN INDUCTOR OR CAPACITOR, DEPENDING ON THE VERSION.

Figure 2. Typical Operating Circuit Using Single-Ended Voltage Mode DACs

Page 20: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7 On-Chip Reference VoltageAn on-chip, 2.5V reference voltage is provided for single-ended control mode. Connect REFOUT to VI2and VQ2 to provide a stable reference voltage. Theequivalent output resistance of the REFOUT pin isapproximately 80Ω. REFOUT is capable of sourcing1mA of current, with <10mV drop-in voltage.

Applications InformationRF Single-Ended Operation

The RF input impedance is 50Ω differential into the IC.An external low-loss 1:1 balun can be used for single-ended operation. The RF output impedance is 300Ωdifferential into the IC. An external low-loss 4:1 baluntransforms this impedance down to 50Ω single-endedoutput (Figures 1 and 2).

Bias Resistor The bias resistor value (280Ω) was optimized duringcharacterization at the factory. This value should not beadjusted. If the 280Ω (±1%) resistor is not readily avail-able, substitute a standard 280Ω (±5%) resistor, whichmay result in more current part-to-part variation.

Switching SpeedThe control inputs have a typical 3dB BW of 260MHz.This BW provides the device with the ability to adjustgain/phase at a very rapid rate. The Switching Speedgraphs in the Typical Operating Characteristics try tocapture the control ability of the vector multipliers.These measurements were done by first removingcapacitors C4–C7 to reduce driving capacitance.

The test for gathering the curves shown, uses aMAX9602 differential output comparator to drive VI1,VI2, VQ1, and VQ2. One output of the comparator isconnected to VI1/VQ1, while the other is connected toVI2/VQ2. The input to the vector multiplier is driven byan RF source and the output is connected to a crystaldetector. The switching signal produces a waveformthat results in a ±0.7V differential input signal to thevector multiplier.

This signal switches the signal from quadrant 3 (-0.7Vcase), through the origin (maximum attenuation), andinto quadrant 1 (+0.7V case). The before-and-afteramplitude (S21) stays about the same between the twoquadrants but the phase changes by 180°.

As the differential control signal approaches zero, thegain approaches its minimum value. This appears asthe null in the Typical Operating Characteristics. Themeasurement results include rise-time errors from thecrystal detector (specified by manufacturing to beapproximately 8ns to 12ns), the comparator (approxi-mately 500ps), and the 500MHz BW oscilloscope (usedto measure the control and detector signals).

Layout IssuesA properly designed PC board is an essential part ofany RF/microwave circuit. Keep RF signal lines as shortas possible to reduce losses, radiation, and inductance.For best performance, route the ground pin tracesdirectly to the exposed pad underneath the package.This pad should be connected to the ground plane ofthe board by using multiple vias under the device toprovide the best RF/thermal conduction path. Solder theexposed pad on the bottom of the device package to aPC board exposed pad.

The MAX2045/MAX2046/MAX2047 Evaluation Kit canbe used as a reference for board layout. Gerber filesare available upon request at www.maxim-ic.com.

Power-Supply BypassingProper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass the VCC pins with10nF and 22pF (47pF for the MAX2047) capacitors.Connect the high-frequency capacitor as close to thedevice as possible.

Exposed Paddle RF ThermalConsiderations

The EP of the 32-lead thin QFN package provides a lowthermal-resistance path to the die. It is important that thePC board on which the IC is mounted be designed toconduct heat from this contact. In addition, the EP provides a low-inductance RF ground path for the device.

It is recommended that the EP be soldered to a groundplane on the PC board, either directly or through anarray of plated via holes.

Soldering the pad to ground is also critical for proper heatdissipation. Use a solid ground plane wherever possible.

Chip InformationTRANSISTOR COUNT: 599

High-Gain Vector Multipliers

20 ______________________________________________________________________________________

Page 21: High-Gain Vector Multipliers - Maxim Integrated · PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 Power Gain (Note 4) II1 = IQ1 = 1mA, II2

MA

X2

04

5/M

AX

20

46

/MA

X2

04

7

High-Gain Vector Multipliers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21

© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to www.maxim-ic.com/packages.)

QFN

TH

IN.E

PS

D2

(ND-1) X e

e

D

C

PIN # 1 I.D.

(NE-1) X e

E/2

E

0.08 C

0.10 C

A

A1 A3

DETAIL A

0.15 C B

0.15 C A

DOCUMENT CONTROL NO.

21-0140

PACKAGE OUTLINE16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm

PROPRIETARY INFORMATION

APPROVAL

TITLE:

CREV.

21

E2/2

E2

0.10 M C A B

PIN # 1 I.D.

b

0.35x45

L

D/2D2/2

LC

LC

e e

LCCL

k

k

LL

22

21-0140REV.DOCUMENT CONTROL NO.APPROVAL

PROPRIETARY INFORMATION

TITLE:

COMMON DIMENSIONS EXPOSED PAD VARIATIONS

1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.

2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

3. N IS THE TOTAL NUMBER OF TERMINALS.

4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.

5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.

6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.

8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

9. DRAWING CONFORMS TO JEDEC MO220.

NOTES:

10. WARPAGE SHALL NOT EXCEED 0.10 mm.

C

PACKAGE OUTLINE16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm