high energy materials · 2 explosive explosive explosion products (co 2, co, h 2o, n 2, etc.) heat...

38
High Energy Materials Vlad Bacauanu MacMillan Research Group Group Meeting July 25 th , 2019 NO 2 NO 2 NO 2 O 2 N O 2 N O 2 N O 2 N NO 2 N N N NO 2 NO 2 O 2 N N N N N N 3

Upload: others

Post on 05-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

High Energy Materials

Vlad BacauanuMacMillan Research Group

Group MeetingJuly 25th, 2019

NO2

NO2

NO2O2NO2N

O2NO2N

NO2

N

N

N

NO2

NO2O2N

N

NN

NN3

Page 2: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

What Are High Energy Materials?

high energy material(HEM)

compound that stores chemical energyand which upon stimulation undergoes

rapid decomposition with release of energy and gas

explosives propellants pyrotechnics

Page 3: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Applications of High Energy Materials

Civil and scientific applications

The obvious – military applications

mining civil engineering oil industry space exploration

Page 4: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

High Energy Materials – Outline

Generals aspects of high energy materials

Synthesis of high energy materials

Very brief history

Fundamental properties

Decomposition via deflagration or detonation

Primary vs secondary explosives

Oxygen balance

Safety precautions in HEM labs

Explosophore functional groups

Examples of synthetic approaches

Recent avenues within the field

Nitrogen-rich molecules

Strained energetic materials: HNIW and ONC

Exploring stereochemistry of materials

Page 5: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Book References for High Energy Materials

High Energy MaterialsJai P. Agrawal1st ed. (2010)

Chemistry of High-Energy MaterialsThomas M. Klapötke

4th ed. (2017)

Organic Chemistry of ExplosivesJai P. Agrawal & Robert D. Hodgson

1st ed. (2007)

Page 6: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

in Radical Chemistry, 1st ed.;, C., Wiley-VCH: Weinheim, Germany, 2004.

1950 present

gunpowder(KNO3 + C + S)

800 1000 1850 1900

O

ONO2

OO2NO

ONO2 nnitrocellulose

1855

O2NOONO2

ONO2

nitroglycerin

1863

dynamite1867

OHNO2O2N

NO2

picric acid1885

TNT1880

CH3NO2O2N

NO2

N

N N

NNO2

NO2O2N

O2N

1943

HMX

N

N

NNO2O2N

NO2

1930’s

RDX

NN

N NNN

NO2

NO2O2NO2N

NO2O2N CL-201987

History of Development of High Energy Materials

PETN

1894O2NO

ONO2O2NO

ONO2

Page 7: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Fundamental Properties of High Energy Materials

C + H2 + N2 + O2 explosive

explosion products (CO2, CO, H2O, N2, etc.)explosive

heat of formation (ΔHf)ΔHf

heat of explosion (Q)

volume of gases released (V)

Q

specific impulse (Isp)total impulse delivered by a unit of propellant

velocity of detonation (VOD) speed with which detonation wave propagates

brisance ~ ρ x VOD2 shattering power of an explosive

detonation pressure (DP)peak pressure in detonation wave

explosive power = Q x V “ability of explosive to do useful work”

density of material (ρ)

sensitivityto heat, shock, friction, electrical discharge, etc.

Page 8: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Deflagration vs. Detonation in High Energy Materials

deflagration to

detonation

transition

(always for explosives;

avoid for propellants)

Deflagration – propellants

very rapid burning

subsonic propagation wave

controlled, regular process

Detonation – explosives

extremely rapid decomposition

supersonic propagation wave

uncontrollable past initiation

Page 9: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Deflagration vs. Detonation in High Energy Materials

how does a detonation wave propagate?

hot gases released

high pressure shock front

material iscompressed

materialheats up

material decomposeswith release of gas

Detonation – explosives

extremely rapid decomposition

supersonic propagation wave

uncontrollable past initiation

Page 10: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Classification of High Energy Materials

N NNNNN

N N

N

NO2N

NO2

K+

K+

Pb(N3)2Primary

explosives

very sensitive to stimuli

rapid detonation

inititate decomposition of2º explosive or propellant

Secondary (high)explosives

relatively insensitive

high performance

main load ofexplosive ensemble

OHNO2O2N

NO2

N

N N

NNO2

NO2O2N

O2N

Hg(CNO)2

Page 11: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Classification of High Energy Materials

N NNNNN

N N

N

NO2N

NO2

K+

K+

Pb(N3)2Primary

explosives

very sensitive to stimuli

rapid detonation

inititate decomposition of2º explosive or propellant

Secondary (high)explosives

relatively insensitive

high performance

main load ofexplosive ensemble

OHNO2O2N

NO2

N

N N

NNO2

NO2O2N

O2N

Hg(CNO)2

Page 12: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Traditional Approach To Explosives Design

MeO2N NO2

NO2

combustable fuel

C H O N

oxidant

+ +

(neither)

an explosive is a mixture of fuel and oxidant – balancing the two is ideal

H2O CO2N2

exothermic products

Ω = ΩCO2 =(d – 2a – b/2) x 1600

M

ΩCO =(d – a – b/2) x 1600

M

for generic CaHbNcOd

oxygen balanceΩ

Page 13: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Importance of Having Good Oxygen Balance for Secondary Explosives

MeO2N NO2

NO2

explosion

3 CO 3 C 1.5 H2

1 CO2 +

ΔHf,CO2 << ΔHf,CO < ΔHf,C = 0

ΔHf,H2O < ΔHf,H2 = 0

enthalpy of formationincomplete oxidation of C,H backbone

wasted potential energy of the fuel

1 H2O1.5 N2+

Ω = –74%

MeO2N NO2

NO2

5.25 O2

7 CO2 2.5 H2O 1.5 N2++

oxidizerdeficit

MeO2N NO2

NO2

O2NO

ONO2O2NO

ONO2

+

bad Ω good Ω

issues overcome by formulationwith others HEMs

How is oxygen balance important?

Ideal explosion for TNT

+

How do I fix my bad OB?

Page 14: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Most Commonly Used Explosives in Military

Me

NO2

NO2O2N N

N

N

NO2

NO2O2N

N

N N

NNO2

NO2O2N

O2N

TNT RDX HMX

trinitrotoluene (1880) research department explosive (1930’s) high melting explosive (1943)

stable, cheap, melt-castable stable, more expensive, very powerful

organic synthesis!

next generationhigh-performance explosive?

Page 15: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Safety Precautions for High Energy Materials

Kemsley, J. Chem. Eng. News 2008, 86, 22

Student in the Klapötke group

Safety precautions in HEM labs

z

first synthesis on 250 mg scale or less

keep distance from experiments (tongs, clamps)

protective equipment must be used

protective gloves

Kevlar wrist protectors

full-visor face shield

ear protectors

protective leather or Kevlar jacket

Safety is not a joke – refusing to follow the safety guidelines gets you fired!

Page 16: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Explosophores – Common Functional Groups in HEM

Kemsley, J. Chem. Eng. News 2008, 86, 22

ON

O

ON

O

ON

ON

N N N N

NF

F OCl

O

O

OCl

O

O

O

OO O

OO C C

NCl

Cl

C N O MM

nitro, nitrate, and nitroso azo and azide

N-haloamino chlorate and perchlorate

peroxide and ozonidefulminates metal acetylides

V. Plets’ theory of explosophores (1953) –– several common functional groups in explosives

Page 17: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of Nitrate Esters and Nitramines

O

OO

O

HO

OHHO

OH

O2N NO2

O2N

O2NNO2

+ source

alcohol substrate

100% HNO3conc. HNO3

w/ conc. H2SO4

N2O5

[NO2]+ [NO3]–NO2BF4 N

NO2

BF4–

N

N

N

NO2

CF3F3C

N

N

N

NO2

CF3F3CH H O2N NO2

Direct nitration of alcohols

Direct nitration of amines

100% HNO3

TFAA

acidic conditions work best for non-basic amines

HNO3ZnCl2

Ac2ONO2N

Me

O2NO

NH

Me

HO

proceeds via N-chloro intermediate (from AcOCl)

Page 18: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of Nitrate Esters and Nitramines

Tertiary amides undergo nitrolysis readily to form nitramines

N

N N

NAc

AcAc

AcN

N N

NNO2

NO2O2N

O2N

RN

O nitrolysisNO2N

HO R

O N2O5

NN

N

N HNO3, NH4NO3

Ac2O N

N N

NNO2

NO2O2N

O2N

N

N

NNO2O2N

NO2

HN

NH

NH N

N

N N

N

NON NO

NO

O2N NO2

NO2

NO+ NO2+

or [O]

HNO3

N-alkyl bonds can also undergo nitrolysis to form nitramine products

Nitrosation followed by oxidation or exchange nitration is also a viable strategy

Page 19: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of Aromatic and Aliphatic C–NO2 Compounds

Cl Cl

Cl

Cl Cl

ClNO2O2N

NO2

H2SO4, HNO3

150 ºC

NH3

toluene, 150 ºC H2N NH2

NH2

NO2O2N

NO2

Aromatic C–NO2 products

electrophilic aromatic substitution is a staple subsequent SNAr is facile and enabling

Aliphatic C–NO2 products

NH3+Cl–

NH3+Cl–

–Cl+H3N

–Cl+H3N

DMDO

acetone

NO2

NO2

O2N

O2N

O

NO2O2N

NO2H

aq. MeOH

OO2N NO2

O2N NO2 O2N NO2

oxidation of amineswith various reagents

additions ofnitro nucleophiles

Page 20: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

SNAr iswidely employed

Synthesis of Nitrogen-Rich Compounds for HEM Development

N

N

N

Cl

ClCl

NH2

ClCl

N

N

N

NH

NH

HN

H2N

NH2

NH2

NH2

H2N NH2

NO2

O2N NO2 NO2

O2N NO2O2N

NO2O2N

H2NNH2

NN

NN

N

NN

NNH2

H2N

NN

NN

NH

NNHN

N

NO2N

NO2

NN N

N

Cl

Cl

NN

NN

H2N

Na+

NN N

N

N

N

NNN

H2N

NN N

NH2

2) H2SO4, HNO3

3) NH3, acetone

1) SNAr, DMF, 90 ºC

SNAr

cyanogen azidefor tetrazole synthesis

N3 CN

HNO3

Page 21: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Design of Novel Energetic Materials

maximize energy of material(per unit volume)

Higher performance materials

increased heat of explosion

higher detonation pressure

higher detonation velocity

Oxidation of C,H backbone

MeO2N NO2

NO2

energy from “combustion”

traditional approach

Inherent strain Nitrogen-rich molecules

NN

N NNN

NO2O2NNO2O2N

O2N NO2

strain release – extra energy

newer approach newer approach

energy from formation of N2

NN

N

N

NN N

NN

N

NH

NH

NHNH2H2N

H2N

2

Page 22: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Nitrogen-Rich Molecules as High Energy Materials

Klapötke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122

Nitrogen-rich molecules

NN

N

N

NN N

NN

N

good performance (Q, VOD, P)

candidates for “green” HEM

N-rich propellants lead to less erosion

very endothermic compounds (ΔHf >> 0)

N

NN

R

N N

NN

R

N NN

NN

R

R

stable too unstablerelatively stable

not endothermic enough high energyhigh energy

N=N N N

N N

BDEs normalized by bond order

Page 23: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of Family of Azidotetrazolate Salts

Klapotke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122

H2N NH2

NH+H2N

BrCN

2 NaN3 NN N

NN3

Na+

NN

HN

NN3

HCl base

H2O N

N N

NN3

M+

H2N NH3+ NH4

+H2N NH2

NH2+

Li+ Na+ K+

Cs+ Ca2+

several counterions were installed

“The aqueous solution was left for crystallization on a watch glass, and “fortunately” three single crystals could be isolated […] A few hours later the whole preparation exploded spontaneously.”

“Synthesis of rubidinium 5-azidotetrazole has been tried a few times. However, we never could observe any solid material, and the reaction mixture (left undisturbed in an explosive case and in

the dark) detonated spontaneously for each preparation”

N

N N

NN3

Cs+

N

N N

NN3

Rb+

MeOH

H2O

CsCN7

Page 24: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Properties of Azidoterazolates

Klapotke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122

Na+

H2N NH2

NH2+

H2N NH2

NH+H2N

NH4+

H2N NH3+

N

N N

NN3

M+Differential scanning

calorimetry (DSC)

“The compounds decompose/explode violently, most of them without melting.”

“In the measurement of 7 a violent explosion destroyed the setup.”

some experimental measurements hindered by sensitivity

thermodynamic parameters derived computationally instead

Page 25: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Properties of Azidoterazolates

Klapotke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122

“probably too sensitive for practical applications”

Page 26: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Other Publications on Highly Nitrogenous Compounds

N NNN N

N3

N3N3

Klapötke Angew. Chem. Int. Ed. 2011, 50, 4227 Shreeve J. Am. Chem. Soc. 2011, 132, 15081

OON

NNN

NO2N

NN N

N

N NO2

N NNNNN

N NO

O

Klapötke J. Mater. Chem. 2012, 22, 20418Hu & Lu Science 2017, 355, 374

NNN

NN isolated as

(N5)6(H3O)3(NH4)4Cl

Page 27: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Development of Strain and Caged Molecules for High Energy Materials

Nielsen, A. T. et al. Tetrahedron 1998, 54, 11793

N

NO2O2N

NO2

NN

N NNN

NO2O2NNO2O2N

O2N NO2

NN

O OOO

O2N NO2

NO2

NO2O2N

NO2

NO2O2N

NO2NO2

NO2

O2N

NO2O2N

O2N NO2

NO2NO2

Strained and caged structures

high crystal density

additional energy as strain

very high energy density!

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane

HNIW (CL–20)

synthesized in 1987 at Naval Air Warfare Center

2.04 g/mL

100 kcal/mol

228 ºC

density

enthalpy of formation

decomp T

9400 m/sdetonation velocity

already produced on 100 kg scale

Page 28: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Syntheses of HNIW

Nielsen, A. T. et al. Tetrahedron 1998, 54, 11793

NN

N NNN

BnBnBnBn

Bn Bn

NH2

H

O H+

MeCN

6 equiv. 3 equiv.

O

H

75% yield

H2, Pd/C

Ac2O, PhBr NN

N NNN

AcAcAcAc

Bn Bn

60% yield

NN

N NNN

AcAcAcAc

Bn Bn

NOBF4 (3 eq.)

sulfolane NN

N NNN

AcAcAcAc

ON NO

NO2BF4 (12 eq.)

sulfolane NN

N NNN

NO2O2NNO2O2N

O2N NO290% yield

NN

N NNN

AcAcAcAc

Bn Bn

N2O4 (excess)

NN

N NNN

AcAcAcAc

ON NO

99% HNO3

96% H2SO4 NN

N NNN

NO2O2NNO2O2N

O2N NO2

93% yield92% yield

Page 29: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Co-Crystallization of HNIW with TNT

Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50, 8960

NN

N NNN

NO2O2NNO2O2N

O2N NO2

impact sensitivity:

friction sensitivity:

4 J

48 N

O2N NO2

NO2

Me

15 J

> 353 N

7.5 J

120 N

N

N

N

NO2

NO2O2N

NN

N NNN

NO2O2NNO2O2N

O2N NO2

O2N NO2

NO2

Me

HNIW:TNT 1:1 cocrystal

+

density drops by 5–10%

sensitivity improved two fold!

Disadvantage of HNIW: sensitivity

Page 30: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Octanitrocubane – Idealistic Dream or Tangible Reality?

Synthesis of a 1,3,5,7-substituted precursor

NH2

NH2

COCl COClClOC

ClOCCOCl

COClCOCl

ClOCClOC

COClCOClClOC

ClOC

(COCl)2

70% selectivity 8% selectivity 22% selectivity

31% yield(recrystalization)

undesired regioisomersKharasch-Brown

reaction

UV light, 3 h

Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain, J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591

NO2

NO2

NO2O2NO2N

O2NO2N

NO2

NH2

NO

O

NH2

NO

O

[O]

predicted properties

high energyhigh density

kinetically stable

Octanitrocubane Caveat in synthesis

push-pull intermediateswill lead to

opening of the cube

must avoid1,2-diamino precursors

Page 31: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of Tetranitrocubane

COClClOC

ClOCCOCl

TMSN3

CON3

N3OC

N3OCCON3

NCOOCN

OCNNCO

heat

NO2

O2N

O2NNO2

NHCO2HHO2CHN

HO2CHNNHCO2H

NCOOCN

OCNNCO

wet acetone

O O

Me Me

NH2

H2N

H2NNH2

H2OO O

Me Me

45% yield (overall from acyl chloride)

– CO2

Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain, J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591

Page 32: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Synthesis of More Highly Substituted Nitrocubanes

NO2

NO2

NO2O2NO2N

O2NO2N

NO2

Zhang, M.-X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Ed. 2000, 39, 401

NO2

O2N

O2NNO2

density = 1.81 g/mLstable up to 300 ºC

NaHMDS NO2

O2N

O2NNO2

pKa ~ 21 (THF)

HNa+

NO2

NO2

O2N

O2NNO2

40% yield(chromatography)“Despite the predictions of naysayers,

pentanitrocubane is stable […], showing no obvious shock sensitivity or special thermal sensitivity.”

NO2

O2N

O2NNO2

i) NaHMDS (4 eq.), –78 ºCii) N2O4, –125 ºC

iii) H+, –30 ºC NO2

HNO2O2N

O2N

O2NO2N

NO2

i) LiHMDS, –78 ºCii) NOCl, –78 ºC

iii) O3, –78 ºC

74% yield ~50% yield

Synthesis of octanitrocubane is achieved in 2000

Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain, J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591

N2O4

–196 ºC

Page 33: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

Properties of Heptanitrocubane and Octanitrocubane

Zhang, M.-X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Ed. 2000, 39, 401

NO2

HNO2O2N

O2N

O2NO2N

NO2

NO2

NO2

NO2O2NO2N

O2NO2N

NO2

heptanitrocubane octanitrocubane

“Beautiful, colorless, solvent-free crystals formed when its solution in fuming nitric acid

was diluted with sulfuric acid.”

stable up to 200 ºC

perfect oxygen balance

“smokefree” detonation

NO2

NO2

NO2O2NO2N

O2NO2N

NO2

octanitrocubane

Me

NO2

NO2O2N N

N

N

NO2

NO2O2N

N

N N

NNO2

NO2O2N

O2N

TNT

detonation velocity

detonation pressure

1.6 g/mL

–74%

7000 m/s

190 kbar

1.8 g/mL

–22%

8800 m/s

338 kbar

1.9 g/mL

–22%

9100 m/s

390 kbar

2.0 g/mL

0%

10100 m/s

500 kbar

predicted ormeasured properties

density

oxygen balance

RDX HMX

Page 34: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

New Avenues in HEM Development – Stereo- and Regiochemistry?

Baran, P. S. et al. ChemRxiv 2019 DOI 10.26434/chemrxiv.8521955

generic candidate

ONO2

ONO2

ONO2

O2NO

ONO2

ONO2

ONO2

O2NO

ONO2

ONO2

ONO2

O2NO

ONO2

ONO2

ONO2

O2NO

ONO2

ONO2

ONO2

O2NO

Stereochemistry – traditionally ignored aspect within HEM design

desirable properties predicted(ΔHf, density, detonation pressure

detonation velocity, etc.)

synthesizecandidate

computation

Page 35: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

New Avenues in HEM Development – Stereo- and Regiochemistry?

Baran, P. S. et al. ChemRxiv 2019 DOI 10.26434/chemrxiv.8521955

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2ONO2

ONO2

O2NO

O2NO

ONO2

O2NO

ONO2

ONO2

similar detonation velocities: 7500 m/s similar detonation pressures: 23 GPa

similar specific impulse: 240 s similar enthalpy of formation: –500 kJ/mol

Page 36: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

New Avenues in HEM Development – Stereo- and Regiochemistry?

Baran, P. S. et al. ChemRxiv 2019 DOI 10.26434/chemrxiv.8521955

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2ONO2

ONO2

O2NO

O2NO

ONO2

O2NO

ONO2

ONO2

melting T

decomp T

(ºC)

(ºC)

106

199

48

200

< –40

187

melting T

decomp T

(ºC)

(ºC)

101

194

86

193

147

196

Range of melting points across family of stereo- and regioisomers

Page 37: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

New Avenues in HEM Development – Stereo- and Regiochemistry?

Baran, P. S. et al. ChemRxiv 2019 DOI 10.26434/chemrxiv.8521955

propellant plasticizer

Me

NO2

NO2O2N

melt-castableexplosive

density (g/mL)

detonation velocity (m/s)

80

295

1.65

6950

106

199

1.64

7438

< –40

187

1.54

7577

–3

182

1.27

7050

predicted ormeasured properties

melting T (ºC)

decomp T (ºC)

detonation pressure (GPa) 19.3 24.5 24.5 23.7

specific impulse (s) –– 241 240 247

ONO2O2NO

O2NO ONO2

ONO2O2NO

O2NO ONO2O2NO ONO2

Me ONO2

candidate candidate

Page 38: High Energy Materials · 2 explosive explosive explosion products (CO 2, CO, H 2O, N 2, etc.) heat of formation (ΔHf) ΔHf heat of explosion (Q) volume of gases released (V) Q specific

High Energy Materials – Outline

Generals aspects of high energy materials

Synthesis of high energy materials

Very brief history

Fundamental properties

Decomposition via deflagration or detonation

Primary vs secondary explosives

Oxygen balance

Safety precautions in HEM labs

Explosophore functional groups

Examples of synthetic approaches

Recent avenues within the field

Nitrogen-rich molecules

Strained energetic materials: HNIW and ONC

Exploring stereochemistry of materials