higgs vacuum stability & physics beyond the standard modelpacific-2014 moorea, sept 2014 a....

25
Higgs Vacuum Stability & Physics Beyond the Standard Model Archil Kobakhidze AK & A. Spencer-Smith, Phys Lett B 722 (2013) 130 [arXiv:1301.2846] AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arXiv:1305.7283] AK & A. Spencer-Smith, arXiv:1404.4709 PASIFIC 2014 A UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental InteraCtions September 15 - 20, 2014, Moorea, French Polynesia

Upload: others

Post on 22-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Higgs Vacuum Stability & Physics Beyond the Standard Model

    Archil Kobakhidze

    AK & A. Spencer-Smith, Phys Lett B 722 (2013) 130 [arXiv:1301.2846] AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arXiv:1305.7283] AK & A. Spencer-Smith, arXiv:1404.4709

    PASIFIC 2014 A UCLA Symposium on Particle Astrophysics and Cosmology Including

    Fundamental InteraCtions September 15 - 20, 2014, Moorea, French Polynesia

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Combined 2012-13 data: It is a Higgs boson, maybe even the Higgs boson

    2

  • The SM Higgs with MH=125.9± 0.4 GeV !  Naturalness problem: somewhat heavy than typical

    prediction of the supersymmetric models and somewhat light than typical prediction of technicolour models.

    !  More notably, the Standard Model vacuum state

    is a false (local) vacuum. The true vacuum state and it carries large negative energy density ~ - (MP)4.

    !  How long does the electroweak vacuum live?

    EW h0|h|0iEW = vEW ⇡ 246 GeV

    |0iEW

    h0|h|0i ⇠ MP ⇡ 1018GeV ,

    PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney) 3

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum lifetime: effective Higgs potential !  Electroweak Higgs doublet (in the unitary gauge):

    !  Effective (quantum-corrected) potential

    4

    H =

    ✓0

    h(x)/p2

    �(h) = �(µ) + �� ln(h/µ)

    (4⇡)2�� = �6y4t + 24�2 + . . .

    V (0)H (h) =�

    8

    �h2 � vEW

    �2

    V (1�loop)H (h) =�(h)

    8

    �h2 � vEW

    �2,

    yt(mt) ⇡ 1 , �(mh) ⇡ 0.13 �! �� < 0

  • EW vacuum lifetime: RG extrapolation of SM parameters !  Previous calculations: F. Bezrukov, M. Y. .Kalmykov, B. A. Kniehl and M. Shaposhnikov, JHEP 1210, 140 (2012) [arXiv:1205.2893 [hep-ph]];

    G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia, JHEP 1208, 098 (2012) [arXiv:1205.6497 [hep-ph]]; D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP 1312, 089 (2013) [arXiv:1307.3536].

    3-loop RGE’s in mass-independent MSbar scheme; full 2-loop matching condition !  Our calculations: AK & A. Spencer-Smith, arXiv:1404.4709; A. Spencer-Smith, arXiv:1405.1975 1-loop RGE in mass-dependent scheme, 2 – and 3 – loop RGE’s in MSbar + corresponding matching condition

    PACIFIC-2014 Moorea, Sept 2014 A. Kobakhidze (U. of Sydney) 5

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum lifetime: RG running of λ in a mass- dependent scheme Instability scale:

    6

    [�(µi) = 0] log10

    ⇣ µiGeV

    ⌘⇡ 9.19± 0.65Mt ± 0.19Mh ± 0.13↵3 ± 0.02th

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum lifetime: flat spacetime estimate !  Large field limit:

    !  Using Coleman’s prescription, one can calculate that the decay of electroweak vacuum is dominated by small size Lee-Wick bounce solution,

    7

    VH =�̄� ln(h/µi)

    4h4 , �̄� = ��|µ=µi

    h⇤ = µie�1/4

    R ⇠ 1/µm ⇡ 10�17/GeV, ��|µ=µm = 0

    SLW =8⇡2

    3|�(µm)|, |�(µm)| ⇡ 0.01� 0.02

    PEW = e�p ⇡ 1, p = (µm/H0)4 exp (�SLW)

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in flat spacetime: stability bound Stability bound:

    Absolute stability of the electroweak vacuum is excluded now at 99.98% CL [AK & A. Spencer-Smith, arXiv:1404.4709, A. Spencer-Smith, arXiv:1405.1975]

    8

    Mt < 170.16± 0.22↵3 ± 0.13Mh ± 0.06th GeVM expt = 173.34± 0.76↵3 ± 0.3QCD GeV

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in an inflationary universe !  Electroweak vacuum decay may qualitatively differ in cosmological

    spacetimes:

    (i) Thermal activation of a decay process,

    (ii) Production of large amplitude Higgs perturbations during inflation,

    [J.R. Espinosa, G.F. Giudice, A. Riotto, JCAP 0805 (2008) 002] The bound that follows from the above consideration can be avoided, e.g., in curvaton models, or when

    !  Actually, the dominant decay processes are due to instantons, (Hawking-Moss, or CdL-type) [AK & A. Spencer-Smith, Phys Lett B 722 (2013) 130 [arXiv:1301.2846]]

    9

    Hinf < µi

    Tr < µi

    me↵h > Hinf

    V (h,�) = VH(h) + Vinf(�) + VH�inf

    Vinf(�) = Vinf + V 0⇤(�� �inf) + 1/2V 00⇤ (�� �inf)2 + ...

    ✏ =M2P2

    ✓V 0⇤Vinf

    ◆2

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe !  Fixed background approximation:

    !  EoM for Higgs field:

    10

    � = �inf , ds2 = d�2 + ⇢2(�)d⌦3,

    ⇢(�) = H�1inf sin(Hinf�), � = t2 + r2, � 2 [0,⇡/Hinf ], H2inf = Vinf/3M2P

    ḣ(0) = ḣ(⇡/Hinf) = 0

    hL(x⇤) = hR(x⇤)

    ¨h+ 3Hinf cot(Hinf�) ˙h =@V (�inf , h)

    @h

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe !  Hawking-Moss instanton:

    !  For ,

    HM transition dominates

    11

    @V

    @h

    = 0 , h(x) = h⇤,

    VH�inf(�inf , h⇤)

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe HM transition generates a fast decay of the electroweak vacuum, unless

    !  Together with , this implies that only small-field inflationary models are allowed with a negligible tensor/scalar:

    !  This seems now is excluded by the BICEP2 results:

    ,

    12

    Hinf < 109(1012) GeV

    mh = 126 GeV, mt = 174(172) GeV

    ns < 1

    r < 10�11(10�5)

    r = 0.2+0.07�0.05

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe

    !  Consider, [O. Lebedev & A. Westphal Phys.Lett. B719 (2013) 415]

    [similar consideration applies ]

    !  Large-field chaotic inflation , with

    !  Naturalness constraint:

    Tuning is needed!

    13

    VH�inf =↵

    2h2�2 (↵ > 0), me↵h = ↵

    1/2�inf > Hinf

    h⇤ = (�↵/�)1/2�inf > µi, (�(h⇤) < 0)

    ⇥Vinf = 1/2m

    2��

    2, m� = 10�5MP

    ↵ < 64⇡2 (m�/mh)2 ⇡ 2 · 10�20

    2R2h2

    10�6 > ↵ > 1.4p|�| (Hinf/�inf)2 > 6 · 10�12 .

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe

    !  In the limit

    EW vacuum is unstable!

    14

    h(x) =

    8><

    >:8hR

    ✓8 +

    ⇣hRh⇤

    ⌘2x

    2

    ◆�1, 0 x < x⇤

    x⇤h⇤x(J1(ix⇤)+iY1(�ix⇤)) (J1(ix) + iY1(�ix)) , x⇤ < x < 1

    ,

    x⇤ =2p2h⇤

    hR

    ✓hR

    h⇤� 1

    ◆1/2.

    me↵h >> Hinf

    h

    00 + 3h0� =@V (�inf , h)

    @h

    , [x = me↵h �]

    BCdL = �2⇡2

    I < 0, I =

    Z 1

    0x

    3dx

    h

    2(x)

    ✓1� h

    2(x)

    2h2⇤

    ◆�< 0, �(µ > µi) < 0.

    p _ exp{�BCdL} >> 1

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    EW vacuum in inflationary universe !  Fast decay of EW ceases inflation globally (no eternal inflation)

    !  The above considerations applies to models with curvaton

    In light of BICEP2 the electroweak vacuum within the Standard Model is unstable! New physics must enter at energies < 109 GeV.

    15

    e3Hinf⌧e�(⌧Hinf )4p

    ⌧stop

    ⇡ (3/p)1/3H�1inf

    < 1.4H�1inf

    A0s =

    s

    A2s +g2(X)H2inf8⇡2M2P

    , r0 =16✏

    1 + ✏g2(X)

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Neutrino masses and vacuum stability AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arXiv:1305.7283]

    ①  Extension of the electroweak gauge sector ②  Extension of a scalar sector ③  Extension of the fermionic sector

    !  Working with MS-bar couplings: ①  Modification of beta-functions above the particle mass threshold ②  Finite threshold correction due to the matching of low and high

    energy theories

    !  Neutrino oscillations (= masses) provide the most compelling evidence for the physics beyond the Standard Model.

    16

    �(1)� = 24�2 � 6y4t +

    3

    4g42 +

    3

    8

    �g21 + g

    22

    �2+ �

    ��9g22 � 3g21 + 12y2t

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Neutrino masses and vacuum stability AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arXiv:1305.7283]

    !  Type I see-saw models: additional massive sterile neutrinos – not capable to solve the vacuum stability problem

    !  Type III see-saw models: additional electroweak-triplet fermions – may solve the problem for very specific range of parameters

    More promising candidates:

    !  Type II see-saw: additional electroweak-triplet scalar

    !  Left-right symmetric models: additional gauge bosons, scalars and fermions

    17

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Type II see-saw models and vacuum stability Scalar potential:

    Neutrino masses:

    18

    V (�,�) = �m2��†�+ �(�†�)2 +m2�tr(�†�) +�12(tr(�†�))2

    +�22

    ⇥(tr(�†�))2 � tr(�†�)2

    ⇤+ �4(�

    †�)tr(�†�) + �5�†[�†,�]�+

    �6p2�T i�2�

    †�+ h.c.

    �.

    1p2(y�)fgl

    TfL Ci�2�l

    gL + h.c.

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Type II see-saw models and vacuum stability Stability conditions:

    Avoiding tachyonic instabilities:

    Tree level matching condition:

    19

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Type II see-saw models and vacuum stability

    20

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Type II see-saw models and vacuum stability

    21

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Alternating LR-symmetric model with universal see- saw for all fermion masses Scalar sector: New fermions:

    22

    �L 2 (1,1,2, 1/2), �R 2 (1,2,1, 1/2).

    V (�L,�R) = �m2⇣�†L�L + �

    †R�R

    ⌘+

    2

    ⇣�†L�L + �

    †R�R

    ⌘2+ ��†L�L�

    †R�R.

    NL, NR 2 (1,1,1, 0),EL, ER 2 (1,1,1,�1),

    UiL, UiR 2 (3,1,1, 2/3),DiL, DiR 2 (3,1,1,�1/3),

    SU(2)L ⇥ SU(2)R ⇥ U(1)B�L

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Alternating LR-symmetric model with universal see- saw for all fermion masses Tree-level matching: One-loop matching:

    23

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Alternating LR-symmetric model with universal see- saw for all fermion masses

    24

  • PACIFIC-2014 Moorea, Sept 2014

    A. Kobakhidze (U. of Sydney)

    Conclusions: !  The absolute stability of the electroweak vacuum is

    excluded at 99.98% CL

    !  In light of BICEP2 discovery of B-modes the electroweak vacuum within the Standard model is unstable. New physics, stabilizing the electroweak vacuum, must enter the game at scales < 109 GeV.

    !  The most promising models of neutrino masses with a stable electroweak vacuum are: type II see-saw and LR models. They may potentially be tested at LHC.

    25