higgs production at the lhc - rwth aachen universitymkraemer/higgs... · introduction: the higgs...

81
Theorie-Seminar Universit ¨ at Bielefeld, Mai 2005 Higgs Production at the LHC Michael Kr ¨ amer (RWTH Aachen) Introduction: from WW -scattering to the Higgs boson Higgs-boson searches at the LHC Higher-order corrections to signal and background processes Michael Kr ¨ amer Page 1 Universit ¨ at Bielefeld, Mai 2005

Upload: others

Post on 26-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Theorie-Seminar Universitat Bielefeld, Mai 2005

Higgs Production at the LHC

Michael Kramer

(RWTH Aachen)

Introduction: from WW -scattering to the Higgs boson

Higgs-boson searches at the LHC

Higher-order corrections to signal and background processes

Michael Kramer Page 1 Universitat Bielefeld, Mai 2005

Page 2: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−νeνµ

L =GF√

2[νµγλ(1 − γ5)µ][eγλ(1 − γ5)νe]

with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

Fermi theory at high energies: M[νµe− → µ−νe] ∼ GF

2√

2πs

⇒ violates unitarity

Solution: interaction mediated by heavy vector boson W±

M[νµe− → µ−νe] →

GF s

2√

M2W

M2W − s

(with MW ≈ 100 GeV)

Michael Kramer Page 2 Universitat Bielefeld, Mai 2005

Page 3: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−νeνµ

L =GF√

2[νµγλ(1 − γ5)µ][eγλ(1 − γ5)νe]

with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

Fermi theory at high energies: M[νµe− → µ−νe] ∼ GF

2√

2πs

⇒ violates unitarity

Solution: interaction mediated by heavy vector boson W±

M[νµe− → µ−νe] →

GF s

2√

M2W

M2W − s

(with MW ≈ 100 GeV)

Michael Kramer Page 2 Universitat Bielefeld, Mai 2005

Page 4: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−νeνµ

L =GF√

2[νµγλ(1 − γ5)µ][eγλ(1 − γ5)νe]

with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

Fermi theory at high energies: M[νµe− → µ−νe] ∼ GF

2√

2πs

⇒ violates unitarity

Solution: interaction mediated by heavy vector boson W±

M[νµe− → µ−νe] →

GF s

2√

M2W

M2W − s

(with MW ≈ 100 GeV)

Michael Kramer Page 2 Universitat Bielefeld, Mai 2005

Page 5: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−νeνµ

L =GF√

2[νµγλ(1 − γ5)µ][eγλ(1 − γ5)νe]

with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

Fermi theory at high energies: M[νµe− → µ−νe] ∼ GF

2√

2πs

⇒ violates unitarity

Solution: interaction mediated by heavy vector boson W±

� ���� � �

� �� �

� ���� � �

� �

M[νµe− → µ−νe] →

GF s

2√

M2W

M2W − s

(with MW ≈ 100 GeV)

Michael Kramer Page 2 Universitat Bielefeld, Mai 2005

Page 6: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Consider WW → WW

�� �

� �

� ��

M[WLWL →WLWL] ∝ s ⇒ violates unitarity

Solution: − strong WW interaction at high energies or

− new scalar particle H with gWWH ∝ MW

M → GFM2H

4√

Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX

− MH ∼< 1 TeV

Michael Kramer Page 3 Universitat Bielefeld, Mai 2005

Page 7: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Consider WW → WW

�� �

� ��

� ��

M[WLWL →WLWL] ∝ s ⇒ violates unitarity

Solution: − strong WW interaction at high energies or

− new scalar particle H with gWWH ∝ MW

�� �

� M → GFM2H

4√

Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX

− MH ∼< 1 TeV

Michael Kramer Page 3 Universitat Bielefeld, Mai 2005

Page 8: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: from WW -scattering to the Higgs boson

Consider WW → WW

�� �

� ��

� ��

M[WLWL →WLWL] ∝ s ⇒ violates unitarity

Solution: − strong WW interaction at high energies or

− new scalar particle H with gWWH ∝ MW

�� �

� M → GFM2H

4√

Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX

− MH ∼< 1 TeV

Michael Kramer Page 3 Universitat Bielefeld, Mai 2005

Page 9: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: The ABEGHHK’tH Mechanism(Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, ’t Hooft)

Spontaneous symmetry breaking through scalar isodoublet φ

Lφ = |Dµφ|2 + gdf ψ

dLφf

dR + gu

f ψdLφf

uR − V (φ)

scalar potential V = µ2|φ|2 + λ|φ|4 � �� �

�� �

� �� �

introduce Higgs field H : φ →(

0(v+H)/

√2

)(unitary gauge)

Goldstone bosons → longitudinal components of W, Z

⇒ SM is renormalisable gauge field theory including W and Z boson masses

and a physical Higgs particle

Michael Kramer Page 4 Universitat Bielefeld, Mai 2005

Page 10: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: The Higgs boson

The Higgs mechanism is testable becauseall couplings are known:

− fermions: gffH =√

2mf/v

− gauge bosons: gV V H = 2MV /v

with vacuum expectation value

v2 = 1/√

2GF ≈ (246 GeV)2

The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,

cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

Michael Kramer Page 5 Universitat Bielefeld, Mai 2005

Page 11: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: The Higgs boson

The Higgs mechanism is testable becauseall couplings are known:

− fermions: gffH =√

2mf/v

− gauge bosons: gV V H = 2MV /v

with vacuum expectation value

v2 = 1/√

2GF ≈ (246 GeV)2

The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,

cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

Michael Kramer Page 5 Universitat Bielefeld, Mai 2005

Page 12: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Introduction: The Higgs boson

The Higgs mechanism is testable becauseall couplings are known:

− fermions: gffH =√

2mf/v

− gauge bosons: gV V H = 2MV /v

with vacuum expectation value

v2 = 1/√

2GF ≈ (246 GeV)2

The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,

cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

Michael Kramer Page 5 Universitat Bielefeld, Mai 2005

Page 13: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: indirect searches

Quantum corrections to precision observables

!

"�

∝ m2t ∝ logMH

140

160

180

200

10 102

103

mH [GeV]

mt

[GeV

]

Excluded Preliminary (a)

High Q2 except mt

68% CL

mt (TEVATRON)

⇒ Experimental data consistent with SM

⇒MH < 260 GeV (95% CL) (LEPEWWG)

Note:

− Precision data also consistent with SUSY models

− No evidence for ESWB through new strong

interactions (eg. technicolour)

Michael Kramer Page 6 Universitat Bielefeld, Mai 2005

Page 14: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: indirect searches

Quantum corrections to precision observables

#

$%

#

&#

∝ m2t ∝ logMH

140

160

180

200

10 102

103

mH [GeV]

mt

[GeV

]

Excluded Preliminary (a)

High Q2 except mt

68% CL

mt (TEVATRON)

⇒ Experimental data consistent with SM

⇒MH < 260 GeV (95% CL) (LEPEWWG)

Note:

− Precision data also consistent with SUSY models

− No evidence for ESWB through new strong

interactions (eg. technicolour)

Michael Kramer Page 6 Universitat Bielefeld, Mai 2005

Page 15: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: indirect searches

Quantum corrections to precision observables

'

()

'

*'

∝ m2t ∝ logMH

140

160

180

200

10 102

103

mH [GeV]

mt

[GeV

]

Excluded Preliminary (a)

High Q2 except mt

68% CL

mt (TEVATRON)

⇒ Experimental data consistent with SM

⇒MH < 260 GeV (95% CL) (LEPEWWG)

Note:

− Precision data also consistent with SUSY models

− No evidence for ESWB through new strong

interactions (eg. technicolour)

Michael Kramer Page 6 Universitat Bielefeld, Mai 2005

Page 16: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: indirect searches

Quantum corrections to precision observables

+

,-

+

.+

∝ m2t ∝ logMH

140

160

180

200

10 102

103

mH [GeV]

mt

[GeV

]

Excluded Preliminary (a)

High Q2 except mt

68% CL

mt (TEVATRON)

⇒ Experimental data consistent with SM

⇒MH < 260 GeV (95% CL) (LEPEWWG)

Note:

− Precision data also consistent with SUSY models

− No evidence for ESWB through new strong

interactions (eg. technicolour)

Michael Kramer Page 6 Universitat Bielefeld, Mai 2005

Page 17: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting

To establish the Higgs mechanism we need to

– discover the Higgs boson directly at a high-energy collider

– measure the couplings gXXφ ∝ MX

– reconstruct the Higgs potential

Michael Kramer Page 7 Universitat Bielefeld, Mai 2005

Page 18: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: collider searches

Higgs decay modes and branching ratios

[HDECAY: M. Spira et al.]

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

102

103

⇒ dominant decay into

bb for MH ∼< 130 GeV

WW, ZZ for MH ∼> 130 GeV

Michael Kramer Page 8 Universitat Bielefeld, Mai 2005

Page 19: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: past and present colliders

search at the CERN LEP2 (e+e− collider with√s ∼< 200 GeV)

e+e− −→/ ZH ⇒ MH > 114.4 GeV (95% CL) (LEPHIGGSWG)

search at the Fermilab Tevatron (pp collider with√s = 2 TeV)

current∫L = 0.7 fb−1

expectation in 2008:∫L = 4 − 6 fb−1

Michael Kramer Page 9 Universitat Bielefeld, Mai 2005

Page 20: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson hunting: past and present colliders

search at the CERN LEP2 (e+e− collider with√s ∼< 200 GeV)

e+e− −→/ ZH ⇒ MH > 114.4 GeV (95% CL) (LEPHIGGSWG)

search at the Fermilab Tevatron (pp collider with√s = 2 TeV)

current∫L = 0.7 fb−1

expectation in 2008:∫L = 4 − 6 fb−1

Michael Kramer Page 9 Universitat Bielefeld, Mai 2005

Page 21: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

The Large Hadron Collider LHC

− pp collider located at CERN

− circumference 27 km

−√s = 14 TeV

− ∫L = 10 − 100 fb−1/year

− in operation from April 2007

Michael Kramer Page 10 Universitat Bielefeld, Mai 2005

Page 22: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

We will start in 2007We will start in 2007

CMS HB-1 CMS HB+1

Installation of readout boxes started

source calibration in 2005.

Insertion in vacuum tank: Summer 2005.

Michael Kramer Page 11 Universitat Bielefeld, Mai 2005

Page 23: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson search at the LHC

The days of the Higgs boson are numbered!

1

10

10 2

102

103

mH (GeV)

Sig

nal s

igni

fican

ce H → γ γ ttH (H → bb) H → ZZ(*) → 4 l

H → ZZ → llνν H → WW → lνjj

H → WW(*) → lνlν

Total significance

5 σ

∫ L dt = 30 fb-1

(no K-factors)

ATLAS

Michael Kramer Page 12 Universitat Bielefeld, Mai 2005

Page 24: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σttbar

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σbbar

σtot

σ (n

b)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

−→ QCD background: σbb ≈ 108 pb

−→ Higgs signal: σH+X ≈ 10 pb

↪→≈ 3 × 105 Higgs bosons/year

(∫L = 30 fb−1)

−→ Higgs-search through associate production or/and through rare decays

Michael Kramer Page 13 Universitat Bielefeld, Mai 2005

Page 25: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: cross section predictions

σ(pp → H + X) [pb]√s = 14 TeV

NLO / NNLO

MRST

gg → H (NNLO)

qq → Hqqqq

_' → HW

qq_ → HZ

gg/qq_ → tt

_H (NLO)

MH [GeV]

10-4

10-3

10-2

10-1

1

10

10 2

100 200 300 400 500 600 700 800 900 1000

/01

1

2 34

55

55

2 34 /

2 3 4

565

7 89/

11

060

/

Michael Kramer Page 14 Universitat Bielefeld, Mai 2005

Page 26: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: signal significance

1

10

10 2

100 120 140 160 180 200 mH (GeV/c2)

Sig

nal s

igni

fican

ce H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

qqH → qq ττ

Total significance

5 σ

∫ L dt = 30 fb-1

(no K-factors)ATLAS

MH ∼< 2MZ →

gg → H (H → γγ, ZZ∗,WW (∗))

gg/qq → ttH (H → bb, ττ)

qq → qqH (H → γγ,WW ∗, ττ)

qq′ →WH (H → γγ)

MH ∼> 2MZ →{

gg → H (H → ZZ,WW )

qq → qqH (H → ZZ,WW )

[ + diffractive Higgs production]

Michael Kramer Page 15 Universitat Bielefeld, Mai 2005

Page 27: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: why precision calculations?

Higgs discovery through resonance peak, eg. H → γγ

10000

12500

15000

17500

20000

105 120 135mγγ (GeV)

Eve

nts

/ 2 G

eV

0

500

1000

1500

105 120 135mγγ (GeV)

Sign

al-b

ackg

roun

d, e

vent

s / 2

GeV

However, need precision calculations for signal and background processes

– for Higgs discovery in WW decay channels (no reconstruction of mass peak possible)

– for a reliable determination of the discovery/exclusion significance

– for a precise measurement of the Higgs couplings

↪→ test of the Higgs mechanism

↪→ discrimination between SM and BSM (eg. SUSY)

Michael Kramer Page 16 Universitat Bielefeld, Mai 2005

Page 28: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: why precision calculations?

Higgs discovery through resonance peak, eg. H → γγ

10000

12500

15000

17500

20000

105 120 135mγγ (GeV)

Eve

nts

/ 2 G

eV

0

500

1000

1500

105 120 135mγγ (GeV)

Sign

al-b

ackg

roun

d, e

vent

s / 2

GeV

However, need precision calculations for signal and background processes

– for Higgs discovery in WW decay channels (no reconstruction of mass peak possible)

– for a reliable determination of the discovery/exclusion significance

– for a precise measurement of the Higgs couplings

↪→ test of the Higgs mechanism

↪→ discrimination between SM and BSM (eg. SUSY)

Michael Kramer Page 16 Universitat Bielefeld, Mai 2005

Page 29: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: why precision calculations?

Example: MSSM Higgs sector

two Higgs doublets to give mass to up- and down-quarks → 5 physical states: h, H , A, H±

MSSM Higgs sector determined by tanβ = v2/v1 and MA

Consider

σMSSM(gg→h→γγ)

σSM(gg→h→γγ)

→ differences ∼< 10%

Needs precision measure-

ments & calculations for

production cross sections

and branching ratios

[Dedes, Heinemeyer, Su, Weiglein]

0 200 400 600 800 1000 1200 1400 1600 1800 20000

10

20

30

40

50

60

MA (GeV)

tanβ

mSUGRA gg−>h−>γγ

< 0.50.5−0.80.8−1.01.0−1.21.2−1.5>1.5

Michael Kramer Page 17 Universitat Bielefeld, Mai 2005

Page 30: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs boson searches at the LHC: why precision calculations?

Example: MSSM Higgs sector

two Higgs doublets to give mass to up- and down-quarks → 5 physical states: h, H , A, H±

MSSM Higgs sector determined by tanβ = v2/v1 and MA

Consider

σMSSM(gg→h→γγ)

σSM(gg→h→γγ)

→ differences ∼< 10%

Needs precision measure-

ments & calculations for

production cross sections

and branching ratios

[Dedes, Heinemeyer, Su, Weiglein]

0 200 400 600 800 1000 1200 1400 1600 1800 20000

10

20

30

40

50

60

MA (GeV)

tanβ

mSUGRA gg−>h−>γγ

< 0.50.5−0.80.8−1.01.0−1.21.2−1.5>1.5

Michael Kramer Page 17 Universitat Bielefeld, Mai 2005

Page 31: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Example: Drell-Yan process

:;=< ;?>

@@

ABDCB

EEC F=GHI JK FH JLM N N

Cross section: σpp→l+l− =∑

q

dx1dx2 fq(x1) fq(x2) σqq→l+l−

− fq,q(x) dx: probability to find (anti)quark with momentum fraction x

→ process independent, measured in DIS

− σqq→l+l− : hard scattering cross section

→ calculable in perturbation theory

Michael Kramer Page 18 Universitat Bielefeld, Mai 2005

Page 32: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Example: Drell-Yan process

OP=Q P?R

SS

TUDVU

WWV X=YZ[ \] XZ \^_ ` `

Cross section: σpp→l+l− =∑

q

dx1dx2 fq(x1) fq(x2) σqq→l+l−

− fq,q(x) dx: probability to find (anti)quark with momentum fraction x

→ process independent, measured in DIS

− σqq→l+l− : hard scattering cross section

→ calculable in perturbation theory

Michael Kramer Page 18 Universitat Bielefeld, Mai 2005

Page 33: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Example: Drell-Yan process

ab=c b?d

ee

fgDhg

iih j=klm no jl npq r r

Cross section: σpp→l+l− =∑

q

dx1dx2 fq(x1) fq(x2) σqq→l+l−

− fq,q(x) dx: probability to find (anti)quark with momentum fraction x

→ process independent, measured in DIS

− σqq→l+l− : hard scattering cross section

→ calculable in perturbation theory

Michael Kramer Page 18 Universitat Bielefeld, Mai 2005

Page 34: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Example: Drell-Yan process

st=u t?v

ww

xyDzy

{{z |=}~� �� |~ ��� � �

Cross section: σpp→l+l− =∑

q

dx1dx2 fq(x1) fq(x2) σqq→l+l−

− fq,q(x) dx: probability to find (anti)quark with momentum fraction x

→ process independent, measured in DIS

− σqq→l+l− : hard scattering cross section

→ calculable in perturbation theory

Michael Kramer Page 18 Universitat Bielefeld, Mai 2005

Page 35: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Factorization is non-trivial beyond leading order

− virtual corrections

→ UV divergences

→ IR divergences

− real corrections

→ IR divergences

→ collinear divergences

UV divergences → renormalization (αs(µren) etc.)

IR divergences → cancel between virtual and real (KLN)

collinear initial state divergences → can be absorbed in pdfs

Michael Kramer Page 19 Universitat Bielefeld, Mai 2005

Page 36: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Factorization is non-trivial beyond leading order

− virtual corrections�

��

�����

→ UV divergences

→ IR divergences

− real corrections

→ IR divergences

→ collinear divergences

UV divergences → renormalization (αs(µren) etc.)

IR divergences → cancel between virtual and real (KLN)

collinear initial state divergences → can be absorbed in pdfs

Michael Kramer Page 19 Universitat Bielefeld, Mai 2005

Page 37: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Factorization is non-trivial beyond leading order

− virtual corrections�

��

�����

→ UV divergences

→ IR divergences

− real corrections

��

����� �

→ IR divergences

→ collinear divergences

UV divergences → renormalization (αs(µren) etc.)

IR divergences → cancel between virtual and real (KLN)

collinear initial state divergences → can be absorbed in pdfs

Michael Kramer Page 19 Universitat Bielefeld, Mai 2005

Page 38: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Factorization is non-trivial beyond leading order

− virtual corrections�

��

�����

→ UV divergences

→ IR divergences

− real corrections

��

����� �

→ IR divergences

→ collinear divergences

UV divergences → renormalization (αs(µren) etc.)

IR divergences → cancel between virtual and real (KLN)

collinear initial state divergences → can be absorbed in pdfs

Michael Kramer Page 19 Universitat Bielefeld, Mai 2005

Page 39: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Initial state collinear singularities,eg.

   ¡

¢£ ¤

− process independent divergence in∫

dk2T as k2

T → 0

→ absorb singularity in parton densities:

fq(x, µfac) = fq(x) +{

divergent part of∫ µ2

fac0 dk2

T

}

Hadron collider cross section

σ =∫

dx1fPi (x1, µF )

dx2fPj (x2, µF )

×∑

n

αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

(Collins, Soper, Sterman ’82-’84 and many others)

Michael Kramer Page 20 Universitat Bielefeld, Mai 2005

Page 40: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Initial state collinear singularities,eg.

¥

¦¦¦§

¨© ª

− process independent divergence in∫

dk2T as k2

T → 0

→ absorb singularity in parton densities:

fq(x, µfac) = fq(x) +{

divergent part of∫ µ2

fac0 dk2

T

}

Hadron collider cross section

σ =∫

dx1fPi (x1, µF )

dx2fPj (x2, µF )

×∑

n

αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

(Collins, Soper, Sterman ’82-’84 and many others)

Michael Kramer Page 20 Universitat Bielefeld, Mai 2005

Page 41: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Initial state collinear singularities,eg.

«

¬¬¬­

®¯ °

− process independent divergence in∫

dk2T as k2

T → 0

→ absorb singularity in parton densities:

fq(x, µfac) = fq(x) +{

divergent part of∫ µ2

fac0 dk2

T

}

Hadron collider cross section

σ =∫

dx1fPi (x1, µF )

dx2fPj (x2, µF )

×∑

n

αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

(Collins, Soper, Sterman ’82-’84 and many others)

Michael Kramer Page 20 Universitat Bielefeld, Mai 2005

Page 42: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Scale dependence

σ =

dx1fPi (x1, µF )

dx2fPj (x2, µF )

×∑

n

αns (µR)Cn(µR, µF )

finite order in perturbation theory

→ artificial µ-dependence:

dσd ln µ2

R

=

N∑

n=0

αns (µR) Cn(µR, µF )

= O(αs(µR)N+1)

⇒ scale dependence ∼ theoretical

uncertainty due to HO corrections

Example: rapidity distribution in pp→W +X

[Anastasiou, Dixon, Melnikov, Petriello ’03]

⇒ significant reduction of µ dependence at

(N)NLO

Michael Kramer Page 21 Universitat Bielefeld, Mai 2005

Page 43: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Scale dependence

σ =

dx1fPi (x1, µF )

dx2fPj (x2, µF )

×∑

n

αns (µR)Cn(µR, µF )

finite order in perturbation theory

→ artificial µ-dependence:

dσd ln µ2

R

=

N∑

n=0

αns (µR) Cn(µR, µF )

= O(αs(µR)N+1)

⇒ scale dependence ∼ theoretical

uncertainty due to HO corrections

Example: rapidity distribution in pp→W +X

[Anastasiou, Dixon, Melnikov, Petriello ’03]

⇒ significant reduction of µ dependence at

(N)NLO

Michael Kramer Page 21 Universitat Bielefeld, Mai 2005

Page 44: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

pdf uncertainties

[Martin, Roberts, Stirling, Thorne ’03]

2.50

2.55

2.60

2.65

2.70

2.75

2.80

W @ Tevatron

NLO

Q2cut = 7 GeV2

Q2cut = 10 GeV2

NNLO

xcut = 0 0.0002 0.001 0.0025 0.005 0.01

σ W .

Blν

(nb)

MRST NLO and NNLO partons

→ ∆ pdf ∼< 5% (CTEQ, MRST, Alekhin,...)

Michael Kramer Page 22 Universitat Bielefeld, Mai 2005

Page 45: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Particle production at hadron colliders

Precision physics at hadron colliders requires

– the calculation of QCD corrections at (N)NLO;

– the precision determination of input pdfs;

– the resummation of large logarithmic corrections;

– matching of fixed order calculations with parton showers & hadronization;

– the inclusion of electroweak corrections.

Michael Kramer Page 23 Universitat Bielefeld, Mai 2005

Page 46: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in gluon-gluon fusion

±²

³³

− NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

− NNLO corrections:

KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

consistent with calculations based on soft/collinear gluon

approximations [MK, Laenen, Spira; Catani et al.]

→ NNLO scale dependence ∼< 15%

[Harlander, Kilgore ’02]

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LONLONNLO

√s = 14 TeV

Michael Kramer Page 24 Universitat Bielefeld, Mai 2005

Page 47: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in gluon-gluon fusion

´µ

¶¶

− NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

− NNLO corrections:

KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

consistent with calculations based on soft/collinear gluon

approximations [MK, Laenen, Spira; Catani et al.]

→ NNLO scale dependence ∼< 15%

[Harlander, Kilgore ’02]

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LONLONNLO

√s = 14 TeV

Michael Kramer Page 24 Universitat Bielefeld, Mai 2005

Page 48: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in gluon-gluon fusion

·¸

¹¹

− NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

− NNLO corrections:

KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

consistent with calculations based on soft/collinear gluon

approximations [MK, Laenen, Spira; Catani et al.]

→ NNLO scale dependence ∼< 15%

[Harlander, Kilgore ’02]

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LONLONNLO

√s = 14 TeV

Michael Kramer Page 24 Universitat Bielefeld, Mai 2005

Page 49: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in gluon-gluon fusion

º»

¼¼

− NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

− NNLO corrections:

KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

consistent with calculations based on soft/collinear gluon

approximations [MK, Laenen, Spira; Catani et al.]

→ NNLO scale dependence ∼< 15%

[Harlander, Kilgore ’02]

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LONLONNLO

√s = 14 TeV

Michael Kramer Page 24 Universitat Bielefeld, Mai 2005

Page 50: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in gluon-gluon fusion

½¾

¿¿

− NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

− NNLO corrections:

KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

consistent with calculations based on soft/collinear gluon

approximations [MK, Laenen, Spira; Catani et al.]

→ NNLO scale dependence ∼< 15%

[Harlander, Kilgore ’02]

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LONLONNLO

√s = 14 TeV

Michael Kramer Page 24 Universitat Bielefeld, Mai 2005

Page 51: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Vector boson fusion

À Á?Â

ÃÃ

ÃÃ

À Á? Ä

− discovery channel & measurement ofHiggs couplings[Kauer, Plehn, Rainwater, Zeppenfeld]

− NLO QCD corrections (cf DIS) ≈ +10%[Han, Valencia, Willenbrock]

Associated VH production

− crucial for Tevatron search (MH ∼< 130 GeV)

− NLO QCD corrections ≈ +(30 − 40)%[Han, Willenbrock]

− NNLO QCD corrections ≈ +10%[Brein, Djouadi, Harlander ’03]

− NLO electroweak corrections ≈ −10%[Ciccolini, Dittmaier, MK ’03]

Michael Kramer Page 25 Universitat Bielefeld, Mai 2005

Page 52: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Vector boson fusion

Å Æ?Ç

ÈÈ

ÈÈ

Å Æ?Ç É

− discovery channel & measurement ofHiggs couplings[Kauer, Plehn, Rainwater, Zeppenfeld]

− NLO QCD corrections (cf DIS) ≈ +10%[Han, Valencia, Willenbrock]

Associated VH production

Ê ËÍÌ

ÎÏÎ

Ð ÑÓÒÔ

− crucial for Tevatron search (MH ∼< 130 GeV)

− NLO QCD corrections ≈ +(30 − 40)%[Han, Willenbrock]

− NNLO QCD corrections ≈ +10%[Brein, Djouadi, Harlander ’03]

− NLO electroweak corrections ≈ −10%[Ciccolini, Dittmaier, MK ’03]

Michael Kramer Page 25 Universitat Bielefeld, Mai 2005

Page 53: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated WH and ZH production: QCD + EW corrections

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

80 100 120 140 160 180 200MH[GeV]

KW

H(L

HC

)

QCD+EW

QCD

NNLO

1

1.1

1.2

1.3

1.4

1.5

1.6

80 100 120 140 160 180 200MH[GeV]

KW

H(T

evat

ron)

QCD+EW

QCD

1

1.1

1.2

1.3

1.4

1.5

1.6

80 100 120 140 160 180 200MH[GeV]

KZ

H(L

HC

)

QCD+EW

QCD

1

1.1

1.2

1.3

1.4

1.5

1.6

80 100 120 140 160 180 200MH[GeV]

KZ

H(T

evat

ron)

QCD+EW

QCD

Michael Kramer Page 26 Universitat Bielefeld, Mai 2005

Page 54: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in association with top quarks

ÕÕ

Ö×Ö

Ø

− σ(ttH) ∼< 1 pb (LHC, MH > 115 GeV)

but: distinctive final state:

pp→ t(→W+b) t(→W−b) H(→ bb)

→ important contribution to 5σ discovery

for MH ∼< 130 GeV

− cross section ∝ g2ttH

⇒ direct measurement of top Yukawa coupling

δgttH/gttH ≈ 15% (exp.)[Drollinger, Muller, Denegri]

− NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas ’01;

Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas]

σ(pp → tt_ H + X) [fb]

√s = 14 TeV

MH = 120 GeV

µ0 = mt + MH/2

NLO

LO

µ/µ0

0.2 0.5 1 2 5200

400

600

800

1000

1200

1400

1

Michael Kramer Page 27 Universitat Bielefeld, Mai 2005

Page 55: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in association with top quarks

ÙÙ

ÚÛÚ

Ü

− σ(ttH) ∼< 1 pb (LHC, MH > 115 GeV)

but: distinctive final state:

pp→ t(→W+b) t(→W−b) H(→ bb)

→ important contribution to 5σ discovery

for MH ∼< 130 GeV

− cross section ∝ g2ttH

⇒ direct measurement of top Yukawa coupling

δgttH/gttH ≈ 15% (exp.)[Drollinger, Muller, Denegri]

− NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas ’01;

Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas]

σ(pp → tt_ H + X) [fb]

√s = 14 TeV

MH = 120 GeV

µ0 = mt + MH/2

NLO

LO

µ/µ0

0.2 0.5 1 2 5200

400

600

800

1000

1200

1400

1

Michael Kramer Page 27 Universitat Bielefeld, Mai 2005

Page 56: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in association with top quarks

ÝÝ

ÞßÞ

à

− σ(ttH) ∼< 1 pb (LHC, MH > 115 GeV)

but: distinctive final state:

pp→ t(→W+b) t(→W−b) H(→ bb)

→ important contribution to 5σ discovery

for MH ∼< 130 GeV

− cross section ∝ g2ttH

⇒ direct measurement of top Yukawa coupling

δgttH/gttH ≈ 15% (exp.)[Drollinger, Muller, Denegri]

− NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas ’01;

Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas]

σ(pp → tt_ H + X) [fb]

√s = 14 TeV

MH = 120 GeV

µ0 = mt + MH/2

NLO

LO

µ/µ0

0.2 0.5 1 2 5200

400

600

800

1000

1200

1400

1

Michael Kramer Page 27 Universitat Bielefeld, Mai 2005

Page 57: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in association with top quarks

áá

âãâ

ä

− σ(ttH) ∼< 1 pb (LHC, MH > 115 GeV)

but: distinctive final state:

pp→ t(→W+b) t(→W−b) H(→ bb)

→ important contribution to 5σ discovery

for MH ∼< 130 GeV

− cross section ∝ g2ttH

⇒ direct measurement of top Yukawa coupling

δgttH/gttH ≈ 15% (exp.)[Drollinger, Muller, Denegri]

− NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas ’01;

Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas]

σ(pp → tt_ H + X) [fb]

√s = 14 TeV

MH = 120 GeV

µ0 = mt + MH/2

NLO

LO

µ/µ0

0.2 0.5 1 2 5200

400

600

800

1000

1200

1400

1

Michael Kramer Page 27 Universitat Bielefeld, Mai 2005

Page 58: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Higgs production in association with top quarks

åå

æçæ

è

− σ(ttH) ∼< 1 pb (LHC, MH > 115 GeV)

but: distinctive final state:

pp→ t(→W+b) t(→W−b) H(→ bb)

→ important contribution to 5σ discovery

for MH ∼< 130 GeV

− cross section ∝ g2ttH

⇒ direct measurement of top Yukawa coupling

δgttH/gttH ≈ 15% (exp.)[Drollinger, Muller, Denegri]

− NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas ’01;

Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas]

σ(pp → tt_ H + X) [fb]

√s = 14 TeV

MH = 120 GeV

µ0 = mt + MH/2

NLO

LO

µ/µ0

0.2 0.5 1 2 5200

400

600

800

1000

1200

1400

1

Michael Kramer Page 27 Universitat Bielefeld, Mai 2005

Page 59: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production cross sections: theoretical status

Recent progress for SM Higgs production includes

– NNLO QCD calculations for pp → H[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Anastasiou, Melnikov, Petriello;Blumlein, Ravindran; . . . (02-05)]

– NNLO QCD calculations for pp → HZ, HW[Brein, Djouadi, Harlander (04)]

– (N)NLO QCD calculations for pp → QQH[Beenakker, Dittmaier, MK, Plumper, Spira, Zerwas; Dawson, Jackson, Orr, Reina, Wackeroth; Harlander, Kilgore;Campbell, Ellis, Maltoni, Willenbrock; . . . (01-05)]

– NLO QCD calculations for pp → qqH[Figy, Oleari, Zeppenfeld; Berger, Campbell (03-04)]

– NLO EWK calculations for pp → HZ, HW[Ciccolini, Dittmaier, MK (03)]

– (N)NLL resummation for pp → H[Kulesza, Sterman, Vogelsang; Berger, Qiu; Catani, de Florian, Grazzini; . . . (03-04)]

– matching of NLO calculation with parton shower MC Herwig for pp → H[Frixione, Webber (04)];

– NNLO splitting functions and PDF fits, error estimates for PDF fits[Moch, Vermaseren, Vogt; MRST; CTEQ (02-05)].

Michael Kramer Page 28 Universitat Bielefeld, Mai 2005

Page 60: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production in the MSSM: associated bbh production

Associated bbh/H production is crucial for MSSM Higgs searches at large tan β

Bottom-Higgs Yukawa coupling:

gMSSMbbh = − sin α

cos βgSM

bbH

gMSSMbbH = cos α

cos βgSM

bbH

}

tan β � 1-

{

tan β gSMbbH (Mh'MA'MZ)

tan β gSMbbH (MH'MA�MZ)

At tanβ � 1 associated bbh/H pro-

duction becomes the dominant MSSM

Higgs production mechanism

[Spira]

10-3

10-2

10-1

1

10

10 2

10 3

10 4

102

gg→H (SM)

gg→H

Hbb–

Htt–

Hqq

HZ HW

tan β = 30Maximal mixing

Ù H

Ù

h

mh/H (GeV)

Cro

ss-s

ectio

n (p

b)

Michael Kramer Page 29 Universitat Bielefeld, Mai 2005

Page 61: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs production in the MSSM: associated bbh production

Associated bbh/H production is crucial for MSSM Higgs searches at large tan β

Bottom-Higgs Yukawa coupling:

gMSSMbbh = − sin α

cos βgSM

bbH

gMSSMbbH = cos α

cos βgSM

bbH

}

tan β � 1-

{

tan β gSMbbH (Mh'MA'MZ)

tan β gSMbbH (MH'MA�MZ)

At tanβ � 1 associated bbh/H pro-

duction becomes the dominant MSSM

Higgs production mechanism

[Spira]

10-3

10-2

10-1

1

10

10 2

10 3

10 4

102

gg→H (SM)

gg→H

Hbb–

Htt–

Hqq

HZ HW

tan β = 30Maximal mixing

Ù HÙ

h

mh/H (GeV)

Cro

ss-s

ectio

n (p

b)

Michael Kramer Page 29 Universitat Bielefeld, Mai 2005

Page 62: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production mechanism

At leading order

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2

s ln(MH/MQ) ∼ α2s

Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

MQ �MH-

Michael Kramer Page 30 Universitat Bielefeld, Mai 2005

Page 63: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production mechanism

At leading order

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2

s ln(MH/MQ) ∼ α2s

Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

MQ �MH-

Michael Kramer Page 30 Universitat Bielefeld, Mai 2005

Page 64: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production mechanism

At leading order

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2

s ln(MH/MQ) ∼ α2s

Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

MQ �MH-

Michael Kramer Page 30 Universitat Bielefeld, Mai 2005

Page 65: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

4-flavour scheme

+ exact g → bb splitting & mass effects

− no summation of ln(MH/Mb) terms

5-flavour scheme

+ summation of ln(MH/Mb) terms

− LL approximation to g → bb splitting

The 4- and 5-flavour schemes

– are both theoretically consistent & well-defined

– represent different ways of ordering perturbation theory

– should agree at sufficiently high order

– do not match exactly at finite order

Michael Kramer Page 31 Universitat Bielefeld, Mai 2005

Page 66: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

4-flavour scheme

+ exact g → bb splitting & mass effects

− no summation of ln(MH/Mb) terms

5-flavour scheme

+ summation of ln(MH/Mb) terms

− LL approximation to g → bb splitting

The 4- and 5-flavour schemes

– are both theoretically consistent & well-defined

– represent different ways of ordering perturbation theory

– should agree at sufficiently high order

– do not match exactly at finite order

Michael Kramer Page 31 Universitat Bielefeld, Mai 2005

Page 67: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

4-flavour scheme

+ exact g → bb splitting & mass effects

− no summation of ln(MH/Mb) terms

5-flavour scheme

+ summation of ln(MH/Mb) terms

− LL approximation to g → bb splitting

The 4- and 5-flavour schemes

– are both theoretically consistent & well-defined

– represent different ways of ordering perturbation theory

– should agree at sufficiently high order

– do not match exactly at finite order

Michael Kramer Page 31 Universitat Bielefeld, Mai 2005

Page 68: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

4-flavour scheme

+ exact g → bb splitting & mass effects

− no summation of ln(MH/Mb) terms

5-flavour scheme

+ summation of ln(MH/Mb) terms

− LL approximation to g → bb splitting

The 4- and 5-flavour schemes

– are both theoretically consistent & well-defined

– represent different ways of ordering perturbation theory

– should agree at sufficiently high order

– do not match exactly at finite order

Michael Kramer Page 31 Universitat Bielefeld, Mai 2005

Page 69: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

Comparison at leading order

→ strong scale dependence

→ σ(bb→ H) � σ(gg → bbH) at µ = MH

→ discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)

[see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

Michael Kramer Page 32 Universitat Bielefeld, Mai 2005

Page 70: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

Comparison at leading order

→ strong scale dependence

→ σ(bb→ H) � σ(gg → bbH) at µ = MH

→ discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)

[see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

Michael Kramer Page 32 Universitat Bielefeld, Mai 2005

Page 71: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: two calculational schemes

Comparison at leading order

→ strong scale dependence

→ σ(bb→ H) � σ(gg → bbH) at µ = MH

→ discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)

[see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

Michael Kramer Page 32 Universitat Bielefeld, Mai 2005

Page 72: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Associated bbh production: (N)NLO corrections

Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC)

[Harlander, Kilgore; Dittmaier, MK, Spira]

σ(pp → bb_

h + X) [fb]

√s = 14 TeV

µ = (2mb + Mh)/4

Mh [GeV]

bb_

→ h (NNLO)

gg → bb_

h (NLO)10

10 2

10 3

100 150 200 250 300 350 400

Michael Kramer Page 33 Universitat Bielefeld, Mai 2005

Page 73: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Higgs background calculations

Example: pp → H → γγ/WW backgrounds

γγ background

– NLO parton level MC program pp→ γγ (DIPHOX) [Binoth, Guillet, Heinrich, Pilon, Werlen]

– gg → γγ at NLO (2-loop) [Bern, De Freitas, Dixon, Schmidt ’02]

WW background

– jet veto effects [Catani, De Florian, Grazzini]

– NLO parton level MC program pp→W+W−[Frixione, Nason, Ridolfi; Baur, Han, Ohnemus]

– NLO spin correlations in leptonic W decays [Dixon, Kunszt, Signer]

– tt backgrounds including finite width effects [Kauer, Zeppenfeld]

– NLO parton level MC program pp→W/Z + bb [Campbell, Ellis, Veseli]

– gluon-gluon induced contributions to pp→WW → lνlν [Binoth, Ciccolini, Kauer, MK ’05]

Michael Kramer Page 34 Universitat Bielefeld, Mai 2005

Page 74: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

WW production: a background to Higgs searches

pp → H → WW → lν l′ν ′ is an important Higgs search channel

– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

– a Higgs mass peak cannot be reconstructed from leptonic W decays

⇒ theoretical control of the background is important (≈ 5%!)

experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

example: gg →WW → lν l′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

W−

νµ

µ+

W+

e−

νe γ, Z

νe

e−

νµ

µ+

W+γ, Z, H

g

gq

q

q

g

gq

q

q

g

g W+

νµ

µ+

e−

νe

d

d u

W−d

→ formally NNLO

→ but enhanced by Higgs search cuts

gg qq (NLO) corr.

σtot 54 fb 1373 fb 4%

σbkg 1.39 fb 4.8 fb 30%

Michael Kramer Page 35 Universitat Bielefeld, Mai 2005

Page 75: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

WW production: a background to Higgs searches

pp → H → WW → lν l′ν ′ is an important Higgs search channel

– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

– a Higgs mass peak cannot be reconstructed from leptonic W decays

⇒ theoretical control of the background is important (≈ 5%!)

experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

example: gg →WW → lν l′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

W−

νµ

µ+

W+

e−

νe γ, Z

νe

e−

νµ

µ+

W+γ, Z, H

g

gq

q

q

g

gq

q

q

g

g W+

νµ

µ+

e−

νe

d

d u

W−d

→ formally NNLO

→ but enhanced by Higgs search cuts

gg qq (NLO) corr.

σtot 54 fb 1373 fb 4%

σbkg 1.39 fb 4.8 fb 30%

Michael Kramer Page 35 Universitat Bielefeld, Mai 2005

Page 76: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

WW production: a background to Higgs searches

pp → H → WW → lν l′ν ′ is an important Higgs search channel

– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

– a Higgs mass peak cannot be reconstructed from leptonic W decays

⇒ theoretical control of the background is important (≈ 5%!)

experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

example: gg →WW → lν l′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

W−

νµ

µ+

W+

e−

νe γ, Z

νe

e−

νµ

µ+

W+γ, Z, H

g

gq

q

q

g

gq

q

q

g

g W+

νµ

µ+

e−

νe

d

d u

W−d

→ formally NNLO

→ but enhanced by Higgs search cuts

gg qq (NLO) corr.

σtot 54 fb 1373 fb 4%

σbkg 1.39 fb 4.8 fb 30%

Michael Kramer Page 35 Universitat Bielefeld, Mai 2005

Page 77: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Summary and Conclusions

The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

actions in the gauge boson sector)

Higgs physics is exciting:

– reveals the mechanism of electroweak symmetry breaking

– points towards physics beyond the SM (hierarchy problem)

Exploring Higgs physics at the LHC needs precision measurements and precision

calculations

– signal cross sections are now known within 15% or better

– more work is needed to improve prediction of background processes

Exciting times ahead!

Michael Kramer Page 36 Universitat Bielefeld, Mai 2005

Page 78: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Summary and Conclusions

The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

actions in the gauge boson sector)

Higgs physics is exciting:

– reveals the mechanism of electroweak symmetry breaking

– points towards physics beyond the SM (hierarchy problem)

Exploring Higgs physics at the LHC needs precision measurements and precision

calculations

– signal cross sections are now known within 15% or better

– more work is needed to improve prediction of background processes

Exciting times ahead!

Michael Kramer Page 36 Universitat Bielefeld, Mai 2005

Page 79: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Summary and Conclusions

The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

actions in the gauge boson sector)

Higgs physics is exciting:

– reveals the mechanism of electroweak symmetry breaking

– points towards physics beyond the SM (hierarchy problem)

Exploring Higgs physics at the LHC needs precision measurements and precision

calculations

– signal cross sections are now known within 15% or better

– more work is needed to improve prediction of background processes

Exciting times ahead!

Michael Kramer Page 36 Universitat Bielefeld, Mai 2005

Page 80: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Summary and Conclusions

The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

actions in the gauge boson sector)

Higgs physics is exciting:

– reveals the mechanism of electroweak symmetry breaking

– points towards physics beyond the SM (hierarchy problem)

Exploring Higgs physics at the LHC needs precision measurements and precision

calculations

– signal cross sections are now known within 15% or better

– more work is needed to improve prediction of background processes

Exciting times ahead!

Michael Kramer Page 36 Universitat Bielefeld, Mai 2005

Page 81: Higgs Production at the LHC - RWTH Aachen Universitymkraemer/Higgs... · Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: gffH

Summary and Conclusions

The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

actions in the gauge boson sector)

Higgs physics is exciting:

– reveals the mechanism of electroweak symmetry breaking

– points towards physics beyond the SM (hierarchy problem)

Exploring Higgs physics at the LHC needs precision measurements and precision

calculations

– signal cross sections are now known within 15% or better

– more work is needed to improve prediction of background processes

Exciting times ahead!

Michael Kramer Page 36 Universitat Bielefeld, Mai 2005