hervé rivano - insa lyonperso.citi.insa-lyon.fr/hrivano/hdr/hdr_keynote_herve.pdf · 20 25 30 35...

78
Hervé Rivano Habilitation à Diriger les Recherches Linear Programming techniques for modeling capacity and energy issues in wireless multi hop networks 23 juin 2014 Amphi Chappe - Laboratoire CITI - INSA Lyon

Upload: others

Post on 21-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

Hervé Rivano Habilitation à Diriger les RecherchesLinear Programming techniques for modeling capacity and energy issues in wireless multi hop networks !23 juin 2014 Amphi Chappe - Laboratoire CITI - INSA Lyon

Page 2: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

Me, Myself, and othersFollowed by Capacity of wireless networks Modeling interferences Solving models Introducing energy What’s the point anyway?

2

Page 3: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Last ten years

2012 : Creation of UrbaNet team 2011 : Chargé de Recherche Inria 2009 : Moving to the CITI lab (Swing team) 2004 : Chargé de Recherche CNRS, I3S lab (Mascotte team) 2003 : 1/2 ATER IUT Génie Télécom Réseau UNSA 2003 : PhD thesis University of Nice Sophia Antipolis - FT R&D

« Algorithms and telecommunications : Approximate coloring and multi-commodity flow applied to infrastructure networks »

Advised by Afonso Ferreira and Jérôme Galtier

3

Responsibilities : • Leader of Inria/INSA Lyon team UrbaNet since 2012 • Steering committee of ResCom since 2010 • CITI lab council since 2009 • Section 7 of Comité National de la Recherche Scientifique, 2008-2012 • I3S lab council, 2007-2009

Page 4: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Last ten years

2012 : Creation of UrbaNet team 2011 : Chargé de Recherche Inria 2009 : Moving to the CITI lab (Swing team) 2004 : Chargé de Recherche CNRS, I3S lab (Mascotte team) 2003 : 1/2 ATER IUT Génie Télécom Réseau UNSA 2003 : PhD thesis University of Nice Sophia Antipolis - FT R&D

« Algorithms and telecommunications : Approximate coloring and multi-commodity flow applied to infrastructure networks »

Advised by Afonso Ferreira and Jérôme Galtier

3

Responsibilities : • Leader of Inria/INSA Lyon team UrbaNet since 2012 • Steering committee of ResCom since 2010 • CITI lab council since 2009 • Section 7 of Comité National de la Recherche Scientifique, 2008-2012 • I3S lab council, 2007-2009

Page 5: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Academic collaborations

Collaboration contexts: • Equip-Ex Sense-City: experimental urban playground for sensors • Labex IMU: « Urban Smart Worlds », with social and economics scientists • CityLab@Inria project lab: Inria teams addressing SmartCities issues

!People and teams:

• Catherine Rosenberg (U. Waterloo) • Nathalie Mitton (Equipe Inria Lille FUN) • Marcelo Dias De Amorim (LIP 6) • Alfredo Goldman (U. Sao Paulo) • Coati (ex Mascotte, Inria Sophia Antipolis), • Drakkar (INPG) !

• Paris XIII (Khaled Boussetta) • CNR (Marco Fiore)

4

Page 6: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Grants and partnership management

Management of research grants: • IMU PrivaMov project 2013-2016, leaded by LIRIS, 200k€, CITI coordinator • ANR IDEFIX 2013-2016, leaded by Orange labs, 1M€, Inria coordinator • ARC Région « mobilité et services urbains » 2012-2015, 100k€, leader • BQR INSA Lyon ARBRE 2012-2014, 30k€, leader • ANR Ecoscells 2009-2012, leaded by Alcatel-Lucent, 1M€, Inria coordinator • ARC Inria CARMA 2007-2008, 100k€, leader • ANR Jeune Chercheur OSERA 2005-2007, 100k€, leader

!Industrial partnerships:

• Alcatel-Lucent • Orange Labs • 3Roam (PME Sophia Antipolis)

5

Page 7: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Teaching and scientific mediation

Academic teaching • Optimization: M2 MDFI U. Marseille 2008, M2 RTS U. Lyon 1 2010 (2*12h) • Network and network administration: IUT GTR 2003-2004 (92h) • Approximation algorithms: DEA RSD UNSA 2000-2008 (10h/y) • Programming (java, Scheme, C): UNSA 2001-2003 (30h/y) • Computer science primers: CNAM de Nice 1999 (30h)

!Scientific mediation

• « Networks for digital cities », tutorial for ISN teachers, 2014 • Organization of « Digital Cities Days », Insa Lyon, 2013 • « Linear programming, relaxation, column generation », Optimization

school of Alcatel-Lucent/Inria common lab, 2012 • « Network primers », ENS Lyon « semaine ski », 2012 • « Smart cities issues », Bubble Spark tutorial, 2011 • Co-organization of « eHuman in digital society » colloquium, French

pavillon of universal exposition, Shanghai, 2010

6

Page 8: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

PhD advising

Defended thesis • Anis Ouni, ANR Ecoscells (2009-2013), postdoc Telecom ParisTech

• « Optimisation de la capacité et de la consommation énergétique dans les réseaux maillés sans fil »

• Christelle Molle-Caillouet, DGA/CNRS (2006-2009), MCF UNSA Coati • « Optimisation de la capacité des réseaux radio maillés »

• Patricio Reyes, Conicyt/Inria (2005-2009), postdoc U. Madrid • « Collecte d'Information dans les Réseaux Radio » !

Ongoing thesis • Soukaina Cherkaoui, ADR Green Alcatel-Lucent/Inria (2013-)

• « Economies d’énergie dans les réseaux cellulaires hétérogènes » • Trista Lin, ARC région, avec Dynamid et UrbaLyon (2012-) :

• « Mesure de la mobilité humaine pour une cartographie des services »

7

Page 9: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

Capacity of wireless networksFollowed by Modeling interferences Solving models Introducing energy What’s the point anyway?

8

Page 10: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Looking back 10 years ago

2004 : routing and wavelength assignment in optical networks • Core networks

• Operator viewpoint • Network design and provisioning issues

• Approximation algorithm methodology • Provide guarantees on approximation ratio and complexity • Graph theoretic and algorithmic culture

!The rise of mobile communication

• Promising technology for under-equipped regions • « Internet in the villages » project

• Feeling of being useful for fast expanding urban zones !

« How to compute the capacity of a multi-hop wireless network? »

9

Page 11: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

A choice of methodology: optimization

Several other methods in the literature • Performance evaluation and simulation

• Average results, sometimes higher order statistics • Evaluate one strategy at a time

• Distributed algorithms and combinatorics • Modeling with evolving graphs [A. Ferreira, Networks 2004] • Algorithmic complexity and lower bounding results, theoretical models

!Lack of understanding extremal properties of networks !Use of operational research and linear programing results for

• Modeling networks fundamental properties • Compute optimal configurations • Analyse the underlying structures

10

Page 12: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Fundamentals of wired network capacity

Routing information flows and sharing local ressources on each link • Perfect medium, queuing policies and saturated mode hypothesis • Modeling with multi-commodity flows

!Assigning global ressources to entities competing over the network

• Binary and absolute competition hypothesis • Modeling with coloring of conflict graph

!!

11

Page 13: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Signal to Noise Ratio • Continuous phenomenon

Shannon links capacity and SNR

Radio is neither local nor global

12

SNR(u, v) = ⇥

✓�(u, v).P (u)

N (v)

D(u, v) = ⇥ (log (1 + SNR(u, v)))

Transmit Power (W)

Page 14: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Signal to Noise Ratio • Continuous phenomenon

Shannon links capacity and SNR

Modulation and coding schemes • Discretization of capacity • Tx « ok » threshold

Radio is neither local nor global

12

SNR(u, v) = ⇥

✓�(u, v).P (u)

N (v)

D(u, v) = ⇥ (log (1 + SNR(u, v)))

Transmit Power (W)

Page 15: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Signal to Noise Ratio • Continuous phenomenon

Shannon links capacity and SNR

Modulation and coding schemes • Discretization of capacity • Tx « ok » threshold

Combinatorial notion of radio link

Radio is neither local nor global

12

SNR(u, v) = ⇥

✓�(u, v).P (u)

N (v)

E = {(u, v) | 9P (u), i, SNR(u, v) > �i}c(u, v) = maxi{ci | 9P (u), i, SNR(u, v) > �i}

D(u, v) = ⇥ (log (1 + SNR(u, v)))

Transmit Power (W)

Page 16: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Signal to Noise and Interference ratio • Cumulatif effect • Non binary competition

To define a conflit graph, a strong approximation • Fixed transmit power • Perfect communication within range, 0 after • 100% interference within larger range, 0 after

To alleviate isotropic propagation hypothesis • Random perturbation of range

Combinatorial modeling of interferences

13

SINR(u, v) =�(u, v)P (u)

N (v) +P

w 6=u,v �(w, v)P (w)� �

Page 17: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Signal to Noise and Interference ratio • Cumulatif effect • Non binary competition

To define a conflit graph, a strong approximation • Fixed transmit power • Perfect communication within range, 0 after • 100% interference within larger range, 0 after

To alleviate isotropic propagation hypothesis • Random perturbation of range

2-hop interference model • Contention with nodes at 2 hops • Capacity sharing inside a neighborhood ?

Combinatorial modeling of interferences

13

SINR(u, v) =�(u, v)P (u)

N (v) +P

w 6=u,v �(w, v)P (w)� �

Page 18: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Under and over estimating capacity reuse !

Routing over path computed by simulation • Gives also signaling overhead

!Allows for a « fair » comparison of protocols

2-hop interference model

14

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 25 30 35 40 45 50 55 60

Aggr

egat

ed C

apac

ity

Number of nodes

Lower bound - OLSRUpper bound - OLSR

Lower bound - VSRUpper bound - VSR

Lower bound - localized CDSUpper bound - localized CDS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

20 25 30 35 40 45 50 55 60

Capa

city

per f

low

Number of nodes

Lower bound - OLSRUpper bound - OLSR

Lower bound - VSRUpper bound - VSR

Lower bound - localized CDSUpper bound - localized CDS

Page 19: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

Modeling interferencesFollowed by Solving models Introducing energy What’s the point anyway?

15

Page 20: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Wireless mesh networks

Mesh topology • Aggregated user traffic • Routers-gateway flows • Traffic demand: dr • Time multiplexing !

Steady state hypothesis • Periodic system • Period of T (or 1)

!Capacity :

• Link : !

• Network :

16

Pr drT

c(e).#slots with e active

T

Page 21: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Routing and scheduling, binary model

17

Max

X

r

dr

s.t. a(t, e) + a(t, e0) 6 1, 8e0 2 I(e), t 6 TX

r2V

fr(e) 6X

t6T

a(t, e).c(e), 8e 2 E

X

(u,v)2E

fr(u, v) =

X

(u,v)2E

fr(v, u), 8r 2 V, 8u 2 V \{r}

X

(r,v)2E

fr(r, v) + dr =

X

(v,r)2E

fr(v, r), 8r 2 V

X

(v,u)2E

fr(v, u) =

X

(u,v)2E

fr(u, v) + yr(u)), 8r 2 V, 8u 2 Vp

X

u2VG

yr(u) = dr, 8r 2 V

fr(u, v) � 0, 8r, u, v 2 V

yr(u) � 0, 8r 2 V, u 2 Vp

a(t, e) 2 {0, 1}, 8t T, e 2 V

Page 22: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Routing and scheduling, binary model

17

Max

X

r

dr

s.t. a(t, e) + a(t, e0) 6 1, 8e0 2 I(e), t 6 TX

r2V

fr(e) 6X

t6T

a(t, e).c(e), 8e 2 E

X

(u,v)2E

fr(u, v) =

X

(u,v)2E

fr(v, u), 8r 2 V, 8u 2 V \{r}

X

(r,v)2E

fr(r, v) + dr =

X

(v,r)2E

fr(v, r), 8r 2 V

X

(v,u)2E

fr(v, u) =

X

(u,v)2E

fr(u, v) + yr(u)), 8r 2 V, 8u 2 Vp

X

u2VG

yr(u) = dr, 8r 2 V

fr(u, v) � 0, 8r, u, v 2 V

yr(u) � 0, 8r 2 V, u 2 Vp

a(t, e) 2 {0, 1}, 8t T, e 2 V

Page 23: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Routing and scheduling, binary model

17

Max

X

r

dr

s.t. a(t, e) + a(t, e0) 6 1, 8e0 2 I(e), t 6 TX

r2V

fr(e) 6X

t6T

a(t, e).c(e), 8e 2 E

X

(u,v)2E

fr(u, v) =

X

(u,v)2E

fr(v, u), 8r 2 V, 8u 2 V \{r}

X

(r,v)2E

fr(r, v) + dr =

X

(v,r)2E

fr(v, r), 8r 2 V

X

(v,u)2E

fr(v, u) =

X

(u,v)2E

fr(u, v) + yr(u)), 8r 2 V, 8u 2 Vp

X

u2VG

yr(u) = dr, 8r 2 V

fr(u, v) � 0, 8r, u, v 2 V

yr(u) � 0, 8r 2 V, u 2 Vp

a(t, e) 2 {0, 1}, 8t T, e 2 V

Page 24: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Routing and scheduling, binary model

17

Max

X

r

dr

s.t. a(t, e) + a(t, e0) 6 1, 8e0 2 I(e), t 6 TX

r2V

fr(e) 6X

t6T

a(t, e).c(e), 8e 2 E

X

(u,v)2E

fr(u, v) =

X

(u,v)2E

fr(v, u), 8r 2 V, 8u 2 V \{r}

X

(r,v)2E

fr(r, v) + dr =

X

(v,r)2E

fr(v, r), 8r 2 V

X

(v,u)2E

fr(v, u) =

X

(u,v)2E

fr(u, v) + yr(u)), 8r 2 V, 8u 2 Vp

X

u2VG

yr(u) = dr, 8r 2 V

fr(u, v) � 0, 8r, u, v 2 V

yr(u) � 0, 8r 2 V, u 2 Vp

a(t, e) 2 {0, 1}, 8t T, e 2 V

Page 25: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Explicite timing but no impact on objective • T! equivalent solutions • Poor linear relaxation

!Graph « coloring » and multi-commodity flow combined

• Independent sets = sets of simultaneously actionable links • Coloring = covering by independent sets

Breaking symmetries

18

Page 26: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Explicite timing but no impact on objective • T! equivalent solutions • Poor linear relaxation

!Graph « coloring » and multi-commodity flow combined

• Independent sets = sets of simultaneously actionable links • Coloring = covering by independent sets

Breaking symmetries

18

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 27: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph

19

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 28: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph

19

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 29: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph

19

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 30: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph

19

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 31: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph• SINR model is possible

19

8(r, v) 2 I,P · �(r, v)

N (v) +X

w 6={r,v}

P · �(w, v)> �

X

v2�(r)

z(r, v) 6 1, 8r 2 V

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 32: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Independent sets

Given a fixed routing• Weighted coloring of links• Providing link capacity

Interference model included within the description of the independent sets• Binary model: stable set of the conflict graph• SINR model is possible

How to manipulate so many variables?

19

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 33: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

Solving modelsFollowed by Introducing energy What’s the point anyway?

20

Page 34: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Duality

21

Min c.x

Ax � b

Max bt.y

Aty � ct

Page 35: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Duality

Each LP has a Dual LP • Dual of Dual is Primal • Solving Primal gives dual values

21

Min c.x

Ax � b

Max bt.y

Aty � ct

Page 36: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Duality

Each LP has a Dual LP • Dual of Dual is Primal • Solving Primal gives dual values

Dual coeff matrix = transposed of primal • One dual variable per constraint • One dual constraint per variable • Too many variables —> too many constraints

21

Min c.x

Ax � b

Max bt.y

Aty � ct

Page 37: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Duality

Each LP has a Dual LP • Dual of Dual is Primal • Solving Primal gives dual values

Dual coeff matrix = transposed of primal • One dual variable per constraint • One dual constraint per variable • Too many variables —> too many constraints

Dual built by feasibility of Primal • x solution of Primal —> values for y • x non optimal solution <—> y not a solution • x non optimal <—> a dual constraint is violated • x optimal solution <—> y optimal too

!Principle of Column Generation algorithm

21

Min c.x

Ax � b

Max bt.y

Aty � ct

Page 38: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Column Generation

22

Min c.x

Ax � b

Max bt.y

Aty � ct

Page 39: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Column Generation

22

Min c.x

Ax � b

Max bt.y

Aty � ct

2 challenges : • Find a violated dual constraint • Translate it into a primal variable !

Interpretation of the dual

Page 40: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

An example with flows

23

Max

X

p�Pf(p)

s.t.X

p⇥e

f(p) c(e), 8e

Page 41: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

An example with flows

23

Max

X

p�Pf(p)

s.t.X

p⇥e

f(p) c(e), 8e

MinX

e

�(e)c(e)

s.t.X

e2p

�(e) � 1, 8p

Page 42: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

An example with flows

23

Max

X

p�Pf(p)

s.t.X

p⇥e

f(p) c(e), 8e

MinX

e

�(e)c(e)

s.t.X

e2p

�(e) � 1, 8p

Constraint of the Dual : the weight of any path greater than 1. • In particular the shortest.

!Column generation: • Start with a trivial set of path (yet providing a solution) • Compute the sub-optimal flow on this restricted basis

• obtain dual multipliers (lambda) • Find a shortest path on the lambda-weighted graph

• If too short, insert it on the primal basis and loop • If not, optimality is guaranteed

Page 43: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Capacity of WMN : Joint Routing & Scheduling Problem

24

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 44: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Capacity of WMN : Joint Routing & Scheduling Problem

24

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 45: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Max

X

e2E

c(e).�(e).z(e)

s.t. z(e) + z(e0) 6 1, 8e 2 E, e0 2 I(e).

Capacity of WMN : Joint Routing & Scheduling Problem

24

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 46: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Max

X

e2E

c(e).�(e).z(e)

s.t. z(e) + z(e0) 6 1, 8e 2 E, e0 2 I(e).

Capacity of WMN : Joint Routing & Scheduling Problem

24

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 47: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Max

X

e2E

c(e).�(e).z(e)

s.t. z(e) + z(e0) 6 1, 8e 2 E, e0 2 I(e).

Capacity of WMN : Joint Routing & Scheduling Problem

24

1

10

100

1000

10 20 30 50

GCILP

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 48: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Max

X

e2E

c(e).�(e).z(e)

s.t. z(e) + z(e0) 6 1, 8e 2 E, e0 2 I(e).

Capacity of WMN : Joint Routing & Scheduling Problem

24

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Page 49: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Max

X

e2E

c(e).�(e).z(e)

s.t. z(e) + z(e0) 6 1, 8e 2 E, e0 2 I(e).

Capacity of WMN : Joint Routing & Scheduling Problem

24

Max

X

p2Pdr.µ(r)

s.t.

X

e2P

�(e) > µ (O(P )) , 8P 2 PX

e2I

�(e).c(e) 6 1, 8I 2 I

MinX

I2Iw(I)

s.t.X

P2P, P3e

f(P ) 6 c(e).X

I2I, e2I

w(I), 8e 2 E

X

P2Pr

f(P ) > dr, 8r 2 V

Max

X

e2E

c(e).�(e).z(e)

s.t. Pe�(r, v) > � · (N (v) +X

w 6={r,v}

Pe�(w, v)z(w, v))

�(1� z(r, v))�|V |Pe, 8(r, v) 2 EX

v2�(r)

z(r, v) 6 1, 8r 2 V

Page 50: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Global models obtains useful results

25

Nombre de noeuds10 20 30 40 50 60 70 80 90 100

Deb

it

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 gtw

2 gtws

3 gtws

4 gtws

6 gtws

8 gtws

10 gtws

12 gtws

16 gtws

17 gtws

Distance0 1 2 3 4 5 6 7 8 9 10 11 12

De

bit

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Grille 7x7 Grille 6x6 Grille 6x5 Grille 5x5

Nombre de gateways1 2 3 4 5 6 7 8 9 10 11 12 13

Gain

de c

ap

acit

e

0

2

4

6

8

10

12

20 noeuds 30 noeuds 50 noeuds 60 noeuds 70 noeuds

Number of nodes

Number of gateways

Inter-gateway distance

Cap

acity

gai

nTh

roug

hput

Thro

ughp

ut

Grid 7x7 Grid 7x7 Grid 7x7 Grid 7x7

20 nodes 30 nodes 50 nodes 60 nodes 70 nodes

Page 51: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Yes ! … but

Understanding some fundamentals of the capacity • Gathering patterns create bottlenecks • Area surrounding gateways determine the capacity • Spatial diversity is crucial !

Exploit this structure, speed up computation, almost no limit on network size • Cuts are a prominent structure • Non constrained routing far from bottlenecks • Combined column and line generation !

But the model has to be extended • Uniform and fixed transmit power • Uniform and unique Modulation and Coding Scheme • TDMA on one radio channel

26

Page 52: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

Introducing energyFollowed by What’s the point anyway?

27

Page 53: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Energy is the prominent challenge

Society challenges ICT and telecommunication infrastructures • Explosion of mobile data consumption • Fear of radio waves exposure • Rise of the energetic crisis !

Typical Radio Access Networks = 1% of modern countries energy consumption • « More of the same » = 1 nuclear reactor per country in 10 years • Overwhelming OpEx for operators !

Contradictory a priori • Shannon: « more capacity needs more power » • Spatial reuse means capacity, needs lower transmit power !

Trade-off between energy consumption and network capacity? !

28

Page 54: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Transmit power control

Hypothesis of continuous power control • Mostly available - at least by steps • Combinatorial notion of links?

!Shannon : power non linear with capacity

• With MCS, discrete step function !General case very hard to handle

• Buy at bulk scenarios !Hopefully, convex shape • Piecewise linearization • Slope increases at each step • Fill 1st step, then 2nd, …

29

Capacity (Mbps)

Capacity (Mbps)

Pow

erPo

wer

Efficient configurations

Efficient configurations

Page 55: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

OFDMA networks

OFDMA available for cellular, mesh, sensors • Time and Frequency multiplexing • Scheduling blocks (SB)

!Notion of physical link

• Source, destination, channel gain • Transmit power • Modulation and coding scheme gives capacity

!Connexion implemented by a physical link

• Possibly on several SB simultaneously • Maximum sum of simultaneous transmit powers • Logical capacity is sum of physical capacities

30

FrequencyTime-Frequency block

Time

Page 56: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Energy model

Commonly adopted energy model (from European project Earth) • Fixed power P0 when idle • Fixed power P0 + Pr when receiving • Affine power P0 + aPe when sending at transmit power Pe

!Hypothesis of nodes « always on »

• Considering P0=0 • No impact on solution but shift on numerical values

31

Page 57: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

MinX

I2Iw(I)

s.t.X

I2IJ(I).w(I) J

max

8r 2 V,X

P2Pr

f(P ) > dr

8e 2 E,X

P2PP3e

f(P ) 6X

I2Ie2I

cI

(e).w(I)

Routing and scheduling with energy budget

32

Page 58: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

MinX

I2Iw(I)

s.t.X

I2IJ(I).w(I) J

max

8r 2 V,X

P2Pr

f(P ) > dr

8e 2 E,X

P2PP3e

f(P ) 6X

I2Ie2I

cI

(e).w(I)

Routing and scheduling with energy budget

Energy budget

32

Page 59: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

MinX

I2Iw(I)

s.t.X

I2IJ(I).w(I) J

max

8r 2 V,X

P2Pr

f(P ) > dr

8e 2 E,X

P2PP3e

f(P ) 6X

I2Ie2I

cI

(e).w(I)

Routing and scheduling with energy budget

Energy budget

Or, minimize energy with capacity budget

32

Page 60: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 61: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 62: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 63: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 64: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 65: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

ISet with continuous power control

33

Max

X

e2E2K

�(e).c

(e)� ⌘X

u2V

J(u) t.q.

8u 2 V, a(u).X

2KP

e

(u) +X

v2V2KiM

Pr

(u) i

(v, u) = J(u)

8(u, v) 2 E, i M, 2 K, P

e

(u).�

(u, v) � �i

0

@X

w 6=u,v

P k

t

(w).�

(w, v) +N (v)

1

A

��1� i

(u, v)�n ⇤ P

max

8u 2 V, 2 K,X

v2ViM

i

(u, v) +X

w2ViM

i

(w, u) 1

8e 2 E, 2 K, c

(e) =

X

iM

ci

i

(u,v),k

8u 2 V,X

2KP

e

(u) ¯P (u)

Page 66: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Not-so-easy to solve

Independent sets with continuous power control, MCS selection • Lots of binary variables • Complexity: number of channels and MCS !

Still possible to handle average sized networks • Can be accelerated a bit !

Pareto front computation • Max capacity solution with minimum energy consumption • Min energy solution with maximum capacity • Iterate on energy available, get max capacity under energy budget • Equivalently, iterate on capacity requirement

34

Page 67: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Capacity - energy Pareto front

Gain of power control • Higher max capacity • Cost less for more

35

All MCS are useful • Reach higher capacity • Nodes use several MCS each

5.5 Configuration optimale du réseau : contrôle de puissance et multi-MCS

(a) Compromis énergie-capacité. (b) Répartition de MCSs dans un ré-seau en grille : cas où la capacité estmaximale avec les 5 MCS.

Figure 5.13.: Apport de variation de taux de transmission à chaque ressource temps-fréquence

(a) Distribution de la consommation énergé-tique

(b) Distribution de charge de trafic

Figure 5.14.: Distribution de la consommation énergétique et de la charge de trafic dans un réseauen grille.

D’abord, qu’elle est la bonne stratégie du routage et du partage de MCS ? Ensuite, étant donnéune puissance de transmission limitée, est-ce que c’est mieux de transmettre plus loin avec un faibleMCS ou bien transmettre plus proche avec un MCS plus fort ? Autrement dit, est-ce qu’un bonroutage et partage de MCS consiste à minimiser le nombre de sauts avec un débit faible par sautou bien à augmenter le nombre de sauts avec un débit par lien plus fort ?

90

Energy consumption (10^-3 J/bit)N

etw

ork

capa

city

(kb/

s)

Net

wor

k ca

paci

ty (k

b/s)

Maximum transmit power

Page 68: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Understand optimal routing strategies

Lower energy consumption uses multi-hop

36

Page 69: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Understand optimal routing strategies

Lower energy consumption uses multi-hopHigher capacity means short-cup in bottleneck area

36

Page 70: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Similar conclusions on random networks

37

Page 71: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé Rivano - UrbaNet

What’s the point anyway?Followed by … oh wait ? The end already?

38

Page 72: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Ten years worth it ?

2004 : begin to take interest in radio networks • Need to twist the problem to fit into graph theory

2006 : unable to compute the capacity of a network

• Combining simulation and optimization gets bounds • Unsatisfying model gets … unsatisfying results

2009 : use of column generation to get rid of false interference models • Able to understand bottleneck effect and scaling of capacity • Computes very fast

2013 : introduction of continuous power control and multirate in OFDMA • Understand optimal routing strategies, power and rate allocations • Computes capacity - « energy » tradeoffs

39

Page 73: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Ten years worth it ?

2004 : begin to take interest in radio networks • Need to twist the problem to fit into graph theory

2006 : unable to compute the capacity of a network

• Combining simulation and optimization gets bounds • Unsatisfying model gets … unsatisfying results

2009 : use of column generation to get rid of false interference models • Able to understand bottleneck effect and scaling of capacity • Computes very fast

2013 : introduction of continuous power control and multirate in OFDMA • Understand optimal routing strategies, power and rate allocations • Computes capacity - « energy » tradeoffs

2014 : it’s not over: still many open problems to address

39

Page 74: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

2.4 Conservation de l’énergie dans les réseaux sans fil

(a) capteur WSN430 [S. 06] (b) Station de base micro [Aa10].

Figure 2.7.: Modèle de consommation d’énergie

égale à la charge de sa batterie. Ainsi, le but est de maintenir le plus longtemps possible la chargede la batterie.Dans le cadre des réseaux maillés sans fil, la croissance rapide de la charge de trafic générée par lesterminaux de nouvelle génération a posé un problème d’augmentation insoutenable de la consom-mation d’énergie des réseaux d’accès (notamment les réseaux maillés et cellulaires). Ces dernièresannées, cette augmentation de la consommation énergétique est devenue un problème majeur quiinquiète la communauté de recherches et les industriels. De ce fait, plusieurs travaux de recherchesont concentré leurs efforts sur la réduction de la consommation énergétique de ces types de réseaux.Ces travaux tournent autour des trois premiers couches du modèle OSI : couche routage, MACet physique. Dans le cas général, les nœuds sont alimentés par une ressource infinie, i.e. alimentéspar un secteur électrique et ils n’ont pas alors une contrainte d’énergie limitée. Ainsi, le problèmed’énergie est un problème de réduction de coût total de la consommation d’énergie, ou bien c’est unproblème écologique et sanitaire dont le but est de réduire la pollution électromagnétique. D’autrestravaux considèrent le cas de ressource limitée d’énergie, en supposant que les points d’accès sontdéployés en milieu rural ou dans des zones dans lesquelles les secteurs électriques ne sont pas dis-ponibles [FTT+08, yLjW01].Vu que les réseaux maillés sans fil et les réseaux Ad-hoc partagent plusieurs points communs,plusieurs approches de conservation d’énergie utilisées dans l’un peuvent être adaptées à l’autre.Dans la suite nous allons présenter quelques techniques de conservation d’énergie proposées dans lalittérature en fonction de leur localisation sur la pile protocolaire du modèle OSI.

2.4.2. Conservation de l’énergie au niveau routage

Au niveau de la couche routage, la conservation d’énergie consiste à choisir la meilleure route.Dans ce cas, la consommation d’énergie est la métrique à utiliser pour prendre la décision de routessur le prochain saut. Ceci se traduit par le fait de choisir, pour chaque couple source-destination,la route qui offre la consommation d’énergie la plus faible. Plusieurs techniques de routage ontété proposées dans littérature. Vu que l’utilisation des paquets de contrôle consomme beaucoupd’énergie, plusieurs travaux ont proposé des protocoles de routages dont lesquels la réduction de ces

23

Back on energy models

« Always on » hypothesis is the core problem • Transmit power account for 10% of global expenditure • Only way to gain is to switch off the nodes • Partial sleep studied by Anis Ouni • PhD of Soukaina Cherkaoui

!Leveraging power control still interesting

• Enable better capacity as seen • Electromagnetic pollution issues • Heterogeneous architectures

40

Page 75: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Strong hypothesis not so easy to get rid off

Dynamic traffics • Very contradictory with a classical optimization approach • Adapt evolving graphs and DTN for slow dynamics? • High dynamics due to users mobility, behavior and usage !

Unstable links • Environment matters : what model of instability? • Lossy flows taking intra/inter flows interferences? !

For both case, robust optimization is a promising way • Need for some progress on the operational research field • Accelerating again computations would be mandatory !

Grid and random networks topologies have strong properties • Properties of a urban small cell deployment?

41

Page 76: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

/45 23 juin 2014Hervé RIVANO - UrbaNet

Architecture perspective: capillary networks

• Heterogeneous cellular networks • Network offloading/coverage extension with multi-hop • Single-hop sensor to relay followed by wireless mesh to gateways

42

2© 2013 Mischa Dohler

Heterogeneous Technologies

Page 77: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

Hervé RIVANO - UrbaNet /45 23 juin 2014Hervé RIVANO - UrbaNet

Wireless sensor networks, urban deployment

Self-*, 0-control, protocol analysis

Real time, cross-layer, formal methods

Mobility-aware networking, network offloading

Routing, resources allocation, optimization

Won’t do that alone : the UrbaNet Team

Associated members: CNR-IEIIT Turino, U. Paris 13

Page 78: Hervé Rivano - INSA Lyonperso.citi.insa-lyon.fr/hrivano/HDR/HDR_keynote_herve.pdf · 20 25 30 35 40 45 50 55 60 Aggregated Capacity Number of nodes Lower bound - OLSR Upper bound

Thanks to them

www.citi-lab.fr/urbanet