hematite nanowires for solar water splitting: development and structure optimization j. azevedo 1,2,...

57
Hematite nanowires for solar water splitting: development and structure optimization J. Azevedo 1,2 , C.T. Sousa 1 , M.P. Fernandez-García 1 , A. Apolinário 1 , J. M. Teixeira 1 , A.M. Mendes 2 and J.P. Araújo 1 University of porto MAP-Fis PhD Research Conference Porto, January 20, 2011 1 IN-IFIMUP and Dep. Física, Rua do Campo Alegre 687, 4169-007 Porto, Portugal 2 LEPAE – Dep. de Engenharia Quıímica, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.

Upload: johnathon-lindley

Post on 01-Apr-2015

222 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Hematite nanowires for solar water splitting: development and structure

optimization

J. Azevedo1,2, C.T. Sousa1, M.P. Fernandez-García1, A. Apolinário1, J. M. Teixeira1, A.M. Mendes2 and J.P. Araújo1

University of porto

MAP-Fis PhD Research Conference

Porto, January 20, 2011

1IN-IFIMUP and Dep. Física, Rua do Campo Alegre 687, 4169-007 Porto, Portugal2 LEPAE – Dep. de Engenharia Quıímica, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.

Page 2: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Outline

• Introduction

• Fabrication Methods

• Results

• Conclusions and Future work

2

Page 3: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

3

Page 4: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Phot

oano

de

Coun

tere

lect

rode

4

heh

h

22244 OOHhOH 22 2444 HOHeOH

+++

++

OH-

OH-

OH-

H2O2

Photoelectrochemical Cell

1) Absorption of light near the surface of the semiconductor creates electron-hole pairs.

2) Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H+ ions in the electrolyte solution to make H2 :

heh

22244 OOHhOH

22 2444 HOHeOH

)(2

1)()(2 222 gOgHlOHh

3) Holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen:

4) Transport of H+ from the anode to the cathode through the electrolyte completes the electrochemical circuit.

1.23 eV

http:

/new

ener

gyan

dfue

l/com

/201

1/05

/11/

Page 5: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Hematite ( -Feα 2O3) as photoanode

5

Nano structuring

Page 6: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Objectives

6

Page 7: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Electrodeposition 7

Page 8: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Pulsed Electrodeposition

Pulsed ModePulsed Mode

Alumina

Aluminium

Barrier layer thinning

Pulseddeposition

8

Page 9: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Perfis de Deposição 9

I, II III IV V VII, II III IV V VI VII

VII

VI

V

IVIII

I, II

a) b)

c)

Page 10: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

10

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

Fill

ed P

erc

enta

ge (

%)

Concentration (M)

0 100 200 300 400 500

0

20

40

60

80

100

120II) High j(t) regime

Fill

ed p

erce

ntag

e (%

)

Current Density (mAcm-2)

I) Low j(t) regime

Page 11: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Pore modulation

11

Page 12: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

12

10 µm

1 µm

Page 13: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

oxidation 13

Page 14: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Atmosphere dependence on oxidationComparison of oxidation state between different atmospheres: a) left in ambient conditions for 2 months,

b) and c) annealing for 6 h at 600oC in air and oxygen, respectively. The α-Fe2O3 Bragg reflections are shown with their respective Miller indices.

14

Page 15: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Temperature dependence on oxidationAnnealing temperature study on samples with 60 μm thickness. Between 400oC - 600oC the

samples were annealed together with the Al substrate. For annealing’s above 600oC, the substratewas removed prior to oxidation, due to the Al melting point

15

Page 16: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Reference samplesX-ray absorption spectroscopy measurements at the Fe k-edge in transmission

16

7000 7100 7200 7300 7400 7500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

cristaline struture

FeO(OH) -Fe

2O

3

-Fe2O

3

Fe3O

4

norm

E (eV)

XANES EXAFS chemical composition

Page 17: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Comparison with prepared samples 17

7105 7110 7115 7120 7125 7130 7135 7140-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Fe FeO(OH) -Fe

2O

3

-Fe2O

3

Fe3O

4

650oC for 6h in O2

600oC for 19h in O2

norm

E (eV)

Higher Oxidation

Lower Oxidation

Page 18: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

(a), (c) and (d) SEM images of annealed NWs; (b) EDS profile of annealed NWs.

18

Page 19: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Conclusions Fabrication of highly organized alumina

templates;

Optimization of an industrially viable Fe

nanowires deposition method;

Fabrication of Fe nanowires with high degree of

organization with lengths from 1 μm to 10 μm

up to 99 % of pore filling; 19

0 100 200 300 400 500

0

20

40

60

80

100

120II) High j(t) regime

Fill

ed p

erce

ntag

e (%

)

Current Density (mAcm-2)

I) Low j(t) regime

Page 20: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Conclusions Enlarged nanowire surface area through

pore modulation;

Oxidation studies indicate the presence

of hematite after an annealing.

20

1 µm

Page 21: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Future Work

Expose only a fraction of the

nanowires by a partial removal of

the alumina template;

Test solar water splitting efficiencies;

Reproduce results in TiO2 templates.

21

Page 22: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Acknowledgments

22

Page 23: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Thank you for your attention

João Carlos [email protected]://sites.google.com/site/azevedojcam/

23

Page 24: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Introduction support 24

Page 25: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Photoelectrochemical Scheme 25

Potentiostat

Phot

oano

de

Coun

tere

lect

rode+

++

++

H2O2

H+

H+

H+

heh

HgOlOHh 2)(2

1)(2 22 )(22 2 gHHe

h

Page 26: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

26

1) Absorption of light near the surface of the semiconductor creates electron-hole pairs.

2) Holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen:

3) Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H+ ions in the electrolyte solution to make H2 :

4) Transport of H+ from the anode to the cathode through the electrolyte completes the electrochemical circuit.

The overall reaction :

heh

HgOlOHh 2)(2

1)(2 22

)(22 2 gHHe

)(2

1)()(2 222 gOgHlOHh

Page 27: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Photoelectrolysis

27

Electric Current

Solar Cell

Electric Current

Electrolysis

Photoelectrolysis

Page 28: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Nernst Equation

28

For an oxidation/reduction reaction we have:

Where F is the Faraday constant and n is the number of necessary electrons (in this case two).

Energy losses

Page 29: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Theoretical efficiencies

29

The overall solar energy conversion efficiency can be written as the product of the efficiencies of

the cell in performing these processes:

Page 30: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Quais as dificuldades?

Adapted from M. Grätzel, Nature 414, 388 (2001)30

Óxidos Quimicamente estáveis

mas baixa eficiência (baixa condutividade)

Não óxidos Boa condutividade mas

fraca estabilidade química

Page 31: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Maximum efficiency possibleDepending upon semiconductor bandgap, under xenon arc

lamp and AM1.5 solar illuminations.

31

Page 32: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Armazenamento de Hidrogénio

32

http://en.wikipedia.org/wiki/File:XASEdges.svg

• Compressed hydrogen

• Liquid hydrogen

• Chemical storage

• Physical storage

• Carbon nanotubes

Page 33: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

PAA support 33

Page 34: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

First Anodization

The four major stages of nanoporous alumina template formation:

1) 2) 3) 4)

1) oxide barrier formation;

2) pore initial nucleation;

3) pore initial growth;

4) pore continuous growth;

34

Al

Page 35: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Two Step Anodization

1 µm

Aluminium

Pattern formed Better organization!

1 µm

No organization

1 µm1 µm

Alu

min

a

1st Anodization Dissolution of Oxide Layer

2nd Anodization

SEM surface 35

Page 36: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Ordered triangular lattices

36

Page 37: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Ordered triangular lattices

37

Page 38: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Electrodepositon support 38

Page 39: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Experimental parameters

39

Page 40: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

General Concepts

40

Page 41: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Different methods

41Electrodeposition different methods

Page 42: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Simulação numérica da influência do pulso de repouso na deposição 42

Page 43: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Influência do tamanho de poro na qualidade da deposiçãoAmostras de 10μm de espessura, preparadas a 20oC, 0.43M e 14mA/cm2

43

Page 44: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Characterization support 44

Page 45: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Estrutura Cristalina

45

• Os eletrões emitidos pelo cátodo de uma ampola onde foi previamente realizado vácuo são

acelerados por um potencial elevado aplicado ao longo dela, dirigindo-se a alta velocidade em

direção a uma placa metálica (alvo) utilizada como ânodo. Quando os eletrões chocam com o alvo

dá-se a emissão de raios-X.

• O espectro emitido é composto por radiação-X cujo comprimento de onda varia continuamente,

ao qual se sobrepõe uma série de riscas muito estreitas e em posições discretas.

Page 46: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Estrutura Cristalina

46

Fatores que contribuem para o alargamento dos picos medidos experimentalmente:

• tensões mecânicas não homogéneas

• variações de composição ao longo da amostra

• a sua espessura

• as larguras e alturas das fendas de colimação do feixe (instrumento)

• falta de monocromatismo do feixe incidente (instrumento)

o o tamanho médio das cristalites que compõem a amostra (policristalina)

A relação entre o tamanho L e o alargamento é dada pela fórmula de Scherrer, que se escreve do

seguinte modo:

Page 47: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Taxamento da deposição

47

Page 48: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Magnetic Characterization48

//

//

Page 49: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Oxidation Support 49

Page 50: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

FC and ZFC measurementsZFC and FC measurements in a 100 Oe field.

The annealing temperature was 800oC. (C. H. Kim et al, “Magnetic anisotropy of vertically aligned alpha-fe2o3 nanowire array”, Ap.

Phys. Let., vol. 89.)

50

Page 51: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Spectra of loose Fe oxide NWs, annealed at 800oC. The α-Fe2O3 Bragg reflections are identified.

51

Page 52: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Synchrotron radiation

52

Synchrotron radiation is produced from the electromagnetic

radiation emitted when charged particles are accelerated radially.

Page 53: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

Synchrotron radiation

53

Properties of synchrotron radiation:

•Broad Spectrum (which covers from microwaves to hard X-rays);

•High Flux of energy;

•High Brilliance (highly collimated photon beam);

•High Stability (submicron source stability);

•Polarization (both linear and circular);

•Pulsed Time Structure (pulsed length down to tens of picoseconds allows the

resolution of process on the same time scale).

Page 54: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

X-ray absorption spectroscopy

• X-ray absorption spectroscopy (XAS)

is a widely-used technique for

determining the local geometric

and/or electronic structure of

matter.

• XAS data are obtained by tuning

the photon energy using a

crystalline monochromator to a

range where core electrons can be

excited.54

http://en.wikipedia.org/wiki/File:XASEdges.svg

Page 55: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

X-ray absorption spectroscopy

• There are two main regions found on a spectrum generated by XAS data

55

http://en.wikipedia.org/wiki/File:XASEdges.svg

Page 56: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

XANES• X-ray Absorption Near Edge Structure (XANES), also known as Near edge X-ray

absorption fine structure (NEXAFS) is the absorption of an x-ray photon by a core

level of an atom in a solid and the consequent emission of a photoelectron.

• The resulting core hole is filled either via an Auger process or by capture of an

electron from another shell followed by emission of a fluorescent photon.

56

http://en.wikipedia.org/wiki/File:XASEdges.svg

Page 57: HEMATITE NANOWIRES FOR SOLAR WATER SPLITTING: DEVELOPMENT AND STRUCTURE OPTIMIZATION J. Azevedo 1,2, C.T. Sousa 1, M.P. Fernandez-García 1, A. Apolinário

XANES• The great power of XANES derives from its elemental specificity. Because the

various elements have different core level energies, XANES permits extraction of

the signal from a surface monolayer or even a single buried layer in the presence of

a huge background signal.

57

7105 7110 7115 7120 7125 7130 7135 7140-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Fe FeO(OH) -Fe

2O

3

-Fe2O

3

Fe3O

4

650oC for 6h in O2

600oC for 19h in O2

norm

E (eV)

• NEXAFS can also

determine the chemical

state of elements which

are present in bulk in

minute quantities