helium isotopes, tectonics and heat flow in the northern ...geotherm.ginras.ru/pdf/_pol tolst et al...

20
PII S0016-7037(00)00342-2 Helium isotopes, tectonics and heat flow in the Northern Caucasus B. G. POLYAK, 1, * I. N. TOLSTIKHIN, 2 I. L. KAMENSKY, 2 L. E. YAKOVLEV, 1 B. MARTY, 3 and A. L. CHESHKO 1 1 Geological Institute, Academy of Sciences, Moscow, 109017 Russia 2 Geological Institute, Academy of Sciences Kola Branch, Apatity, 184200 Russia 3 CNRS - CRPG B.P. 20, 54501 Vandoeuvre-Nancy Cedex, Nancy, France (Received September 25, 1998; accepted in revised form February 2, 2000) Abstract—109 new measurements of 3 He/ 4 He [ R in subsurface fluids of the Northern Caucasus coupled with the data obtained previously allow regional regularities in the distribution of helium isotopic composition to be examined. Cis-Caucasian foredeeps show the lowest radiogenic R-values. The average R av -value is slightly higher in gases of the Scythian plate beyond the Stavropol arch. Within the arch, elevated R 5 (1.6 – 4.5) 3 10 27 indicates an input of mantle-derived helium. This input is even more evident to the south of Starvropol arch, in the Caucasian Mineral Water area, where the 8 Ma old laccolithes occur and R-values approach (5–11) 3 10 27 . The highest R-values, up to (0.7– 0.9) 3 10 25 , are observed further to the south, in the central segment of the Greater Caucasus, where recent volcanism is manifested. Enhanced R-values do not correlate with the crustal thickness but reflect degassing of magmatic reservoirs including those yet unknown. According to the recent Sr-Nd-O data, the young volcanic rocks are of mantle affinity but they are contaminated by a crustal component. The average R av -values in fluids and 87 Sr/ 86 Sr ratios in host magmatic rocks show an inverse correlation suggesting mixing of crustal and mantle materials. R-values vary inversely with apatite fission-track ages of crystalline basement rocks. The ages increase westward of the Elbrus volcano, most likely recording the thermal degradation of the Greater Caucasus since the pre-Cainozoic magmatic activity. A direct correlation between R av -values and background conductive heat flow densities implies that discharge of the mantle melts into the crust is the common cause of the geochemical, geochro- nological and geothermal regularities observed. Elevated R-values are generally observed in CO 2 -bearing fluids, low values are typical of CH 4 gases, a few N 2 -rich gases display highly variable R. Relationships between the major gas constituents and noble gas isotopes are discussed. Fractionation, loss, and gain of these species are considered as the processes controlling the compositions of underground fluids. Copyright © 2000 Elsevier Science Ltd 1. INTRODUCTION 3 He/ 4 He 5 R ratios in underground fluids of the Alpine- Himalayan folding belt were first investigated in the Caucasus by Matveeva et al. (1978) who reported a highly variable R from 3.1 3 10 28 , corresponding to radiogenic helium gener- ated within terrestrial rocks, to 0.9 3 10 25 indicating a dominant contribution of mantle-derived helium with 3 He/ 4 He 5 R ; 10 25 . Additionally, some regularity in the lateral distribution of R-values was perceived for the Caucasus region. The enhanced R-values appear to be typical of fluids in the Transcaucasian transversal uplift zone that crosses the Greater Caucasus meganticlinorium through its central part, where manifestations of Neogene-Quaternary volcanism has occurred. Matveeva et al. (1978) reported R-values uncorrected for air contamination because of lack of parallel measurements of Ne and/or Ar isotope abundances. Later Gazaliev and Prasolov (1988), Prasolov (1990), and Lavrushin et al. (1996) presented additional R-measurements. High R, up to 0.9 3 10 25 , were also reported for fluids from the Apennine segment of the Alpine belt (Polyak et al., 1979b). These authors revealed a He-Sr isotope correlation reflecting crust-mantle interaction during N-Q volcanism in the Apenni- nes. Results presented by Polyak et al. (1979b) were corrobo- rated by Hooker et al. (1985) who studied, among others, the Larderello geothermal field supplementing earlier measure- ments reported by Nuti (1984). Helium isotope abundances in Italian fluids were discussed later by Sano et al. (1989), Te- desco et al. (1990) Tedesco et al. (1998), Marty et al. (1992) Marty et al. (1994), Elliot et al. (1993), Tedesco (1996), Te- desco and Nagao (1996), and Allard et al. (1997). A contribution of mantle-derived helium was observed in fluids from many other fragments of the Alpine orogenic belt where the Cainozoic magmatic activity occurred: Greece (Ox- burgh et al., 1987), Turkey (Hill et al., 1986; Kipfer, 1991), and others. On the contrary, in the Alps themselves underground fluids usually contain He with low R from 3 310 28 to 15 3 10 28 (Marty et al., 1992). Studies of the Cis-Alpine Molasse foredeep (Loosli et al., 1995; Tolstikhin et al., 1996) showed that such a range could result from the radiogenic helium production by host rocks. R increases up to 8.4 3 10 27 in one site of Southern Austria and to (5.3– 8.4) 3 10 26 in two sites on the border with the Pannonian basin (Marty et al., 1992). These authors considered a large thickness of the earth crust and weak magmatic activity as the reasons for the low R-values in the Alps, while rare enhanced values in the Eastern Alps could be related to N-Q volcanism within the Pannonian basin. Low Alpine-like R , 2 3 10 27 are also typical for the Himalayan segment of the belt (Craig and Craig, 1983; Giggen- bach et al., 1983; Zuhuang et al., 1986), and Yokoyama et al. (1999) have measured slightly higher R 5 (16.8 –30.8) 3 10 28 in spring gases from the southern Tibet. The Pannonian basin is considered as one of the largest *Author to whom correspondence should be addressed ([email protected]). Pergamon Geochimica et Cosmochimica Acta, Vol. 64, No. 11, pp. 1925–1944, 2000 Copyright © 2000 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/00 $20.00 1 .00 1925

Upload: others

Post on 16-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

PII S0016-7037(00)00342-2

Helium isotopes, tectonics and heat flow in the Northern Caucasus

B. G. POLYAK ,1,* I. N. TOLSTIKHIN,2 I. L. KAMENSKY,2 L. E. YAKOVLEV ,1 B. MARTY,3 and A. L. CHESHKO1

1Geological Institute, Academy of Sciences, Moscow, 109017 Russia2Geological Institute, Academy of Sciences Kola Branch, Apatity, 184200 Russia

3 CNRS - CRPG B.P. 20, 54501 Vandoeuvre-Nancy Cedex, Nancy, France

(Received September25, 1998;accepted in revised form February2, 2000)

Abstract—109 new measurements of3He/4He [ R in subsurface fluids of the Northern Caucasus coupledwith the data obtained previously allow regional regularities in the distribution of helium isotopic compositionto be examined. Cis-Caucasian foredeeps show the lowest radiogenicR-values. The averageRav-value isslightly higher in gases of the Scythian plate beyond the Stavropol arch. Within the arch, elevatedR 5(1.6–4.5)3 1027 indicates an input of mantle-derived helium. This input is even more evident to the southof Starvropol arch, in the Caucasian Mineral Water area, where the'8 Ma old laccolithes occur andR-valuesapproach (5–11)3 1027. The highestR-values, up to (0.7–0.9)3 1025, are observed further to the south, inthe central segment of the Greater Caucasus, where recent volcanism is manifested. EnhancedR-values do notcorrelate with the crustal thickness but reflect degassing of magmatic reservoirs including those yet unknown.

According to the recent Sr-Nd-O data, the young volcanic rocks are of mantle affinity but they arecontaminated by a crustal component. The averageRav-values in fluids and87Sr/86Sr ratios in host magmaticrocks show an inverse correlation suggesting mixing of crustal and mantle materials.R-values vary inverselywith apatite fission-track ages of crystalline basement rocks. The ages increase westward of the Elbrusvolcano, most likely recording the thermal degradation of the Greater Caucasus since the pre-Cainozoicmagmatic activity. A direct correlation betweenRav-values andbackgroundconductive heat flow densitiesimplies that discharge of the mantle melts into the crust is the common cause of the geochemical, geochro-nological and geothermal regularities observed.

ElevatedR-values are generally observed in CO2-bearing fluids, low values are typical of CH4 gases, a fewN2-rich gases display highly variableR. Relationships between the major gas constituents and noble gasisotopes are discussed. Fractionation, loss, and gain of these species are considered as the processescontrolling the compositions of underground fluids.Copyright © 2000 Elsevier Science Ltd

1. INTRODUCTION

3He/4He 5 R ratios in underground fluids of the Alpine-Himalayan folding belt were first investigated in the Caucasusby Matveeva et al. (1978) who reported a highly variableRfrom 3.1 3 1028, corresponding to radiogenic helium gener-ated within terrestrial rocks, to'0.9 3 1025 indicating adominant contribution of mantle-derived helium with3He/4He 5 R ; 1025. Additionally, some regularity in the lateraldistribution ofR-values was perceived for the Caucasus region.The enhancedR-values appear to be typical of fluids in theTranscaucasian transversal uplift zone that crosses the GreaterCaucasus meganticlinorium through its central part, wheremanifestations of Neogene-Quaternary volcanism has occurred.Matveeva et al. (1978) reportedR-values uncorrected for aircontamination because of lack of parallel measurements of Neand/or Ar isotope abundances. Later Gazaliev and Prasolov(1988), Prasolov (1990), and Lavrushin et al. (1996) presentedadditionalR-measurements.

High R, up to 0.93 1025, were also reported for fluids fromthe Apennine segment of the Alpine belt (Polyak et al., 1979b).These authors revealed a He-Sr isotope correlation reflectingcrust-mantle interaction during N-Q volcanism in the Apenni-nes. Results presented by Polyak et al. (1979b) were corrobo-rated by Hooker et al. (1985) who studied, among others, the

Larderello geothermal field supplementing earlier measure-ments reported by Nuti (1984). Helium isotope abundances inItalian fluids were discussed later by Sano et al. (1989), Te-desco et al. (1990) Tedesco et al. (1998), Marty et al. (1992)Marty et al. (1994), Elliot et al. (1993), Tedesco (1996), Te-desco and Nagao (1996), and Allard et al. (1997).

A contribution of mantle-derived helium was observed influids from many other fragments of the Alpine orogenic beltwhere the Cainozoic magmatic activity occurred: Greece (Ox-burgh et al., 1987), Turkey (Hill et al., 1986; Kipfer, 1991), andothers. On the contrary, in the Alps themselves undergroundfluids usually contain He with lowR from '3 31028 to '1531028 (Marty et al., 1992). Studies of the Cis-Alpine Molasseforedeep (Loosli et al., 1995; Tolstikhin et al., 1996) showedthat such a range could result from the radiogenic heliumproduction by host rocks.R increases up to 8.43 1027 in onesite of Southern Austria and to (5.3–8.4)3 1026 in two siteson the border with the Pannonian basin (Marty et al., 1992).These authors considered a large thickness of the earth crustand weak magmatic activity as the reasons for the lowR-valuesin the Alps, while rare enhanced values in the Eastern Alpscould be related to N-Q volcanism within the Pannonian basin.Low Alpine-like R , 2 3 1027 are also typical for theHimalayan segment of the belt (Craig and Craig, 1983; Giggen-bach et al., 1983; Zuhuang et al., 1986), and Yokoyama et al.(1999) have measured slightly higherR 5 (16.8–30.8)3 1028

in spring gases from the southern Tibet.The Pannonian basin is considered as one of the largest

*Author to whom correspondence should be addressed([email protected]).

Pergamon

Geochimica et Cosmochimica Acta, Vol. 64, No. 11, pp. 1925–1944, 2000Copyright © 2000 Elsevier Science LtdPrinted in the USA. All rights reserved

0016-7037/00 $20.001 .00

1925

Page 2: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

regional positive geothermal anomalies in Europe. Here, as inthe adjacent Wienna Basin, helium isotopes in undergroundfluids were thoroughly studied with an emphasis on the deci-phering of hydrologic regime (Nagao, 1979; Cornides et al.,1986; Deak et al., 1989; Martell et al., 1989; Ballentine et al.,1991; Ballentine and O’Nions, 1993; Ballentine and O’Nions,1994; O’Nions and Ballentine, 1993; Stute et al., 1992).Rvaries usually from 43 1027 to 7 3 1027 but locally can beas high as to 5.53 1026, indicating a substantial contributionof mantle-derived helium.

The earth mantle is considered as the principal3He reservoirin all contributions referred above. However the flux of extra-terrestrial helium, carried by interplanetary dust particles (IDP),also supplies3He to terrestrial sediments at about constant rate;1 3 10212 cc STP cm22 ka21 (Merrihue, 1964; Farley, 1995;Marcantonio et al., 1998). After IDPs have reached sediments,the evolution of helium isotopic composition depends on thesedimentation rates, the U and Th concentrations, the rates ofloss of helium isotopes, and the age. Sedimentation rates forareas remote from continents, such as the central Pacific, is ofthe order of;0.1 cm ka21, by a factor of 100 to 10,000 lessthan those for continental margins or intercontinental seas (e.g.,Marcantonio et al., 1998). Because of this great difference,accumulating radiogenic3He overshadows the extraterrestrial3He in sediments having U' 1–3 ppm , Th/U' 4, and age 1to 100 Ma; sediments filling the Cis-Caucasian foredeeps arewithin this diapason.

Tolstikhin et al. (1996) and Tolstikhin et al. (1999) suggestedand verified another process leading to enhanced3He/4Heratios in chemical sediments, anhydrite and carbonates: radio-genic helium isotope fractionation related to a specific behav-iour of 3H, 3He precursor. However the only example ofgroundwater, bearing the isotopically fractionated radiogenicHe, shows very low He/Ne ratios and3He/4He # 1.5 3 1027,much less than those in fluids investigated in this contribution.

Therefore we consider the enhanced3He/4He ratios in aconservative way as those resulting from mixing of crustalradiogenic and mantle partially primordial helium.

This paper examines both published and newly obtained dataon He isotope abundances in underground fluids of the North-ern Caucasus. A general aim is to refine relationships betweenR-value (considered as a measure of crust-mantle interaction)and magmatism, heat flow, groundwater circulation, major gasabundances in subsurface fluids, and other isotopic data. Unlikerocks, the fluids naturally integrateR-values, characterise large-scale geological blocks and therefore provide an important stepfrom local to regional characteristics.

2. GEOLOGICAL SETTING

The earth crust of the Northern Caucasus includes blocksformed during Baikalian, Hercynian, Cimmerian, and properAlpine orogenic cycles (Adamiya et al., 1989). Philip et al.(1989), applying plate tectonic concepts, revised evolution ofthe Caucasus which is briefly resumed below.

During the Jurassic, Cretaceous and Paleogene, a marginalsea covered the Scythian plate and was bounded in the south bythe calc-alkaline volcanic arc, corresponding to the present-dayposition of the Greater Caucasus. After closing the Tetis Ocean(about 20 Ma), the marginal basin was reduced. The following

drift of the Arabian Plate to the north initiated continentalcollision and uplift of the Greater Caucasus. It began 5 Ma agoand escalated 3.5 Ma ago. “A remainder of the volcanic arcmay still be seen to the west of the collision zone, from Kazbekto Elbrus. . . In general, the structures of the Greater Caucasusare overturned towards the south. Nevertheless, thrusting to thenorth occurs in Daghestan and next to the southern border ofthe Kuban basin” termed hereafter as the Indol-Kuban foredeep(Philip et al., 1989).

Figure 1 presents tectonic patterns of the Greater Caucasus.In comments to the A-B cross-section, Philip et al. (1989)emphasised that a monocline of the Greater Caucasus northernslope “continues smoothly into the Scythian Plate” and “isformed by a sequence of Mesozoic to Quaternary layers over-lying the Palaeozoic basement”, whereas the C-D cross-sectiondemonstrates “the asymmetrical Mesozoic to Quaternary Terekbasin (Terek-Caspian foredeep) that thickens to the south, withmaximum depth of 12 km” and “the Daghestan folded zone,composed of calcareous Mesozoic to Cainozoic sediments, thatthrusts to the north over Terek basin. . . . No recent volcanismis observed” in this region (Philip et al., 1989).

Milanovsky and Koronovsky (1973) noticed magmatic re-activation of the Central Caucasus during the Late Miocenewhen stratovolcanoes and monogenic cones, lava and tufflavaplateaux, and hypabyssal intrusions were formed; the latter aremainly unexposed on the earth surface. The manifestations ofmagmatic and volcanic processes are observed in the Elbrus-Kazbek volcanic province. The earliest of these manifestationswere laccolithes of trachyrhyolite situated to the north of Elbrusvolcano in the Caucasian Mineral Waters area (CMW). The40Ar/39Ar ages of these laccolithes range from 8.41 to 7.79 Ma(Pohl et al., 1993). Later the northern boundary of the volcanicmanifestations shifted to the south. In general, Elbrus productsare calc-alkaline acidic rocks that vary from rhyolites to ande-sidacites, whereas the volcanic rocks of the Kazbek sector aremore basic (from andesidacites to andesites, rarely andesiba-salts). Compared to the Elbrus volcanic rocks, the CMW tra-chyrhyolites contain up to 3 times more K2O (6.9 wt%) and 2–5times more Ce, Rb, Sr, Ba, U, Th and Pb indicating a higherdegree of crustal contamination (Popov, 1987).

The depth to the Moho discontinuity beneath the Caucasusvaries from,40 to .60 km (Shengelaya, 1978). Within theElbrus sector the total crustal thickness is rather uniform(45–50 km), whereas that of the granite layer varies from 24 kmbelow the Northern Caucasus to 16 km under the volcano(Milanovsky et al., 1989). According to gravimetric and seis-mological data, the crustal rock density is reduced within thedepth interval from 10 to 20 km beneath the Elbrus. Thesestudies also found a large segment-like lessened-Vp body cen-tred below the Elbrus with a radius; 50 km. Garetovskaya etal. (1986) interpreted this body as an “asthenolense”. All theabove indicates a high magmatic potential for the GreaterCaucasus central segment.

3. EXPERIMENTAL

The free gases spontaneously escaping from underground fluidsdischarged on the earth surface (through natural springs or boreholes)are mainly discussed in this work. Most of the samples were collectedin 220 cm3 glass containers using a simple water replacement tech-nique. Several fluid samples from hydrocarbon fields have been col-

1926 B. G. Polyak et al.

Page 3: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

lected with a special sampler or in steel containers under head pressures(Prasolov, 1990).

He, Ne, and Ar concentrations were determined volumetrically usingKhlopin-Gerling glass-mercury device and the purified specimens of(He 1 Ne) and Ar were sealed in glass ampoules. The dynamic rangeof device is from 10 to 1025 vol% (from 100000 to 0.1 ppm). Initialportion of gas varied from 3 to 200 cm3. Blank values are#1027 cc forHe and#1026 cc for Ar; the accuracy of measurement of optimalconcentrations is62% (1s).

Several (up to 15) ampoules were loaded into high-vacuum ampoulebreaker connected with an inlet line to a single-beam mass-spectrom-eter MI-1201 operating under static mode. Hydrogen multiplet is sur-pressed by rejuvenated Ti-mirror cooled by liquid nitrogen so thatcurrent of HD1 ions is less than 10217 A.

Sensitivity of the mass-spectrometer for He and Ar is (3–5)31025 A/torr and (3–5) 3 1026, respectively. The resolution is'1000, which allows HD-3He duplet to be completely separated.The shape of peak is satisfactory flat (Kamensky et al., 1990). Thetotal blanks of4He and 40Ar in ampoule breaker, inlet line andmass-spectrometer chamber are 13 10210 and 53 1029 cm3 STP,respectively.

Computer controls scanning of the magnetic field by a special deviceand measuring of the ion beams. Reproducibility of isotope analysis(1s) depending on the measured isotopic ratios is:

25, 10, and 3 % for3He/4He ; 1028, ; 1027, and ; 1026,respectively;

20, 10, and 3 %, for4He/20Ne ; 104, ; 102, and;1, respectively;1 and 0.5 %, for40Ar/36Ar ; 1000 and; 300, respectively.

Fig. 1. Tectonic pattern of the Northern Caucasus (a fragment from Philip et al., 1989, modified). (a) structural map(tectonic units renamed in accordance with the CGMW standards), (b) and (c) cross-sections AB and CD, respectively (seemap for positions). Legend: (1) continental crust; (2) oceanic or intermediate crust; (3) outcrops of continental basement;(4) folding within Mesozoic to Paleogene sediments; (5) young sedimentary basins (foredeeps); (6) Mesozoic to Paleogenelayers; (7) strong deformation of Mesozoic layers; (8) Oligocene to Miocene sediments; (9) major thrust faults; (10) majorstrike-slip faults; (11) folding within young sedimentary basins (foredeeps); (12) Neogene to Quaternary volcanic centresmarked as (E) Elbrus, (C) Chegem, and (K) Kazbek. Other abbreviations denote (Sa) Stavropol arch, (DW) Daghestanwedge (or Daghestan folded zone), and cities (MW) Mineral’nye Wody and (M) Makhachkala.

1927Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 4: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tables 1 and 2 comprise new and previous results and Figure 2shows the location of the sampling points.

4. DATA PROCESSING

UsingR in underground fluids for elucidation of lateralR variationsshould be preceded by an analysis of changeability of this parameterwith time and depth.

17 sites within the region under study were sampled repeatedly since1968. Besides, one borehole was sampled 11 times (Prasolov, 1990).These data (Table 1) show that the temporalR variations are insignif-icant in all but one case, and a single specimen may be considered asrepresentative of a given locality. The time-diverseR-values from thesame locality were averaged. Repeated measurements in Iceland, Italy,Mexico, New Zealand, Kamchatka, Tien Shan, and Baikalia also dem-onstrate near-constantR in an individual object. The few exceptionswere related to active volcanoes.

R measurements at different depths in the same borehole are veryrare. However R-values are available for different depths in the bore-holes situated within one and the same geological unit (Table 1). Thesedata demonstrate thatR variations with depth are statistically insignif-icant. Therefore, for the mapping of lateral variations, theR-values atdifferent depths within one and the same borehole were averaged aswell.

5. RESULTS AND DISCUSSION

5.1. Helium Isotopes and Major Gases

CH4, N2, and CO2 are the major gas components of the fluids(Table 2). Figure 3 shows relationships between these compo-nents, helium concentrations and3He/4He ratios; two principalterrestrial reservoirs are also shown for comparison. The first isMORB-like-source characterised byRMORB 5 (11506 100)31028, (CO2/

3He)MORB 5 (0.9 6 0.2) 3 109, and the totalhelium concentration [He]' [4He] ' (3He/CO2)MORB 31/RMORB 5 97 6 30 mcc/L (Marty and Tolstikhin, 1998;hereafter mcc/L5 1023 cubic centimetre STP per litre of gasphase5 ppm).

The leftward dispersion from the MORB rectangle couldoriginate from: (1) an addition of He-depleted major gas con-stituent(s) or (2) He loss increasing CO2/

3He ratio in a gas-water system. The He loss could result from solubility-con-trolled processes in accord with two scenarios. The firstscenario (2.1) envisages partial dissolution of MORB-sourcegas, which would enhanced CO2/

3He ratio in the water phasebecause of a higher solubility of CO2. Subsequent substantialdegassing of this groundwater produces gas with CO2/

3He .CO2/

3HeMORB. This inequality is actually observed in a num-ber of samples from the Greater Caucasus.

The second scenario (2.2) implies a two-stage fractionaldegassing of groundwater, having initially MORB CO2/

3Heratio. After the first stage, the residual groundwater would havecharacterised by higher CO2/

3He ratios. During the secondstage, the gas having similar ratios could be extracted, provid-ing a high enough degree of degassing. Simultaneously a no-ticeable fractionation of atmospheric noble gases dissolved ingroundwaters must occur. This is not observed in our samples:20Ne/36Ar ratios vary between 0.53 (air) and 0.14 (air-saturatedwater) supporting scenario (2.1).

The rightward dispersion could be caused by fractional de-gassing leading to preferable transfer of less soluble He in a gasphase or/and by consumption of the major chemically activecomponent.

The second end-member is a crustal helium reservoir with

R ' (2 6 1) 3 1028. The slope band represents mixingbetween the mantle MORB-like reservoir and crustal He.

The experimental data-points in Figure 3 lay mainly to theleft off the slope band, within the sector limited by this bandand by the horizontal trend to the left of the MORB rectangle.Generally CO2-rich gases from the Greater Caucasus meganti-clinorium show enhanced CO2/

3He ratios, in some specimensapproaching;1012 that is;1000 times above the MORB ratio.As shown above this could originate from contribution ofCO2-rich He-free component as specified under (1) above or/and from the solubility-controlled processes described under(2.1). Carbon isotopic data allow a principal source of CO2 tobe identify. d13C values in CO2-rich gases from the Elbrusvicinity, with the average25.9‰ (Buachidze and Mkheidze,1989), are within the accepted mantle diapason,26 6 3‰(Trull et al., 1993), implying the mantle source for CO2.

Irrespective of the major gas constituent, all data availablefor the Greater Caucasus meganticlinorium (GC) including itssouth-eastern sector (SEC) and the monocline zone (MZ) ex-cepting the CMW area show an inverse correlation betweenHe-depleted mantle end member and4He-enriched crustal one(Fig. 3). The inverseR-[He] correlation was also observedpreviously in several other regions characterised by a youngmagmatic activity, e.g., in the Trans-Mexican volcanic belt(Polyak et al., 1982), the Rhine graben (Griesshaber et al.,1989), and the Baikal rift (Polyak et al., 1992, Polyak et al.,1994).

CMW gases differ from those in the Greater Caucasus. Anarrow range of lowerR-values indicates a considerable con-tribution of crustal helium. [He] varies within almost 3 ordersof magnitude, but the concentrations are dominantly above thatin MORB. CO2 is the major component as well, but CO2/

3Heratios, varying from 33 107 to 6 3 1010, are generally belowthe MORB value. The simplest explanation of these relation-ships envisages mixing of the mantle and crustal componentsalong with CO2-He fractionation.

Mixing of a mantle-derived fluid with a4He-bearing under-ground water would lead to decrease ofR-value correspondingto the growth of helium concentration. A maximal concentra-tion of crustal helium in the underground water could beestimated from4He/20Ne # 2000 (Table 1) and Ne solubility,assuming air-saturated concentration of Ne (the assumption issupported by observed20Ne/36Ar ratios, see above). The esti-mated water-dissolved [4He] # 4 3 1024 cc STP He per g H2Oappears to be quite reasonable; it is an order of magnitudelower than those observed in many sedimentary basins (Ivanovet al., 1978; Tolstikhin et al., 1996). The mean CMWR ' 8 31027 indicates [He] increase by a factor of 13, and the corre-sponding slope track is highlighted in Fig. 3.

CO2 carbon isotopic compositions is noticeably heavier inCMW gases as compare with the mantle composition: theaveraged13C 5 24.0‰ (Potapov et al., 1998; Voitov et al.,1993; Voitov et al., 1994; Voitov et al., 1996; Voitov et al.,1998; Zor’kin et al., 1981, and our measurements). This heaviercarbon seems to indicate a contribution from marine carbonatesavailable in sedimentary cover of the CMW area. Becaused13Cin the crustal CO2 component is not known, it is not possible toestimate its contribution. Qualitatively the [4He] decreasecaused by CO2 addition is shown in Figure 3 as the horizontal

1928 B. G. Polyak et al.

Page 5: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le1.

He,

Ne

and

Ar

abun

danc

esan

dis

otop

icco

mpo

sitio

nin

the

Nor

ther

nC

auca

sus

subs

urfa

ceflu

ids

a .

No.

inF

ig.

2Lo

catio

nN

,E

Uni

tbN

ame

Yea

rof

sam

ple

Dep

thm

Sam

ple

inde

x

He

Ne

Ar

3H

e/4H

e,10

28

4H

e2

0 Ne

40 A

r3

6 Ar

Ref

.m

cc/L

5pp

mm

eas.

corr

.

146

°05,

38°5

79S

PK

anev

skay

apr

osp.

area

,ho

le60

,19

7817

00E

MP

-620

95.

74

246

°33,

39°0

49S

PS

taro

min

skay

apr

osp.

area

,ho

le36

,19

7821

00E

MP

-817

88.

34

345

°56,

39°1

79S

PC

helb

assk

aya

pros

p.ar

ea,

hole

,19

7821

50E

MP

-516

47

44

46°1

9,39

°249

SP

Leni

ngra

dska

yapr

osp.

area

,ho

le52

,19

7821

00E

MP

-717

38.

64

545

°46,

39°3

29S

PS

erdy

ukov

skay

apr

osp.

area

,ho

le37

,19

7826

50E

MP

-415

38.

24

645

°23,

39°3

29S

PB

erez

ansk

aya

pros

p.ar

ea,

hole

1051

,19

7826

20E

MP

-315

611

.14

746

°34,

39°3

99S

PK

usch

evsk

aya

pros

p.ar

ea,

hole

48,

1978

1380

EM

P-9

231

10.4

48

45°1

3,39

°439

SP

Ust

-Lab

insk

aya

pros

p.ar

ea,

hole

,19

7833

70E

MP

-211

38

49

45°1

6,39

°519

SP

Nek

raso

vska

yapr

osp.

area

,ho

le,

1978

3350

EM

P-1

152

7.2

410

45°1

9,39

°589

SP

Lado

zhsk

aya

pros

p.ar

ea,

hole

,19

7893

6E

SM

-14

335.

51

1045

°19,

39°5

89S

PLa

dozh

skay

apr

osp.

area

,ho

le,

1978

3400

EM

P-7

4b83

6.8

511

44°4

8,40

°059

SP

May

kops

kaya

pros

p.ar

ea,

hole

137

,19

7825

58E

SM

-16

128

5.4

112

44°2

3,40

°059

SP

Kra

snod

ages

tans

kaya

pros

p.ar

ea,

hole

,19

7815

00E

MP

-129

d60

05.

15

1344

°46,

41°1

19S

PY

uzhn

o-S

ovie

tska

yapr

osp.

area

,ho

le32

,19

7829

71E

SM

-18

807.

71

1444

°33,

41°2

39S

PB

essk

orbn

ensk

oepr

osp.

area

,ho

le,

1978

2918

ES

M-1

915

08.

51

1545

°46,

43°4

09S

PIk

i-Bur

ulsk

aya

pros

p.ar

ea,

hole

,19

78E

MP

-105

9.4

516

45°1

4,43

°419

SP

Mirn

ensk

aya

pros

p.ar

ea,

hole

,19

7845

0E

MP

-113

a72

974.

45

1744

°57,

45°0

99S

PB

ezvo

dnen

skoe

pros

p.ar

ea,

hole

890

,19

7814

48E

SM

-20

270

81

1844

°52,

45°4

09S

PY

ubile

ynay

apr

osp.

area

,ho

le2

,19

7844

32E

SM

-21

110

8.6

119

44°4

6,45

°459

SP

Sol

onch

akov

skay

apr

osp.

area

,ho

le15

,19

7836

18E

SM

-22

290

688

120

45°2

0,46

°139

SP

Kra

sno-

Kam

ysha

nska

yapr

osp.

area

,ho

le,

1978

EM

P-1

96b

5.8

521

45°3

2,46

°209

SP

Sev

ero-

Kam

ysha

nska

yapr

osp.

area

,ho

le,

1978

2200

EM

P-1

94b

908.

65

2245

°23,

46°3

39S

PN

aryn

-Kho

duks

kaya

pros

p.ar

ea,

hole

,19

7822

30E

MP

-195

c21

03.

75

SP

Nov

o-T

roits

kaya

pros

p.ar

ea,

hole

,19

78E

MP

-210

910

3016

1530

03

SP

List

vins

kaya

pros

p.ar

ea,

hole

,19

7822

00E

MP

-2639

184

711.

47

2545

°38,

40°3

19S

aM

itrof

anov

skay

apr

osp.

area

,ho

le4

,19

7836

54E

SM

-812

015

.81

2645

°32,

40°5

19S

aS

okol

ovsk

aya

pros

p.ar

ea,

hole

,19

7835

93E

SM

-10

135

201

2745

°36,

41°0

49S

aR

assh

evat

skay

apr

osp.

area

,ho

le46

,19

7827

99E

SM

-921

033

128

45°1

7,41

°489

Sa

Sev

.-S

tavr

opol

skay

apr

osp.

area

,ho

le80

,19

7895

2E

SM

-11

350

451

IKF

Beg

olS

pr.,

sprin

g,

1978

0E

MP

-8d9

3090

4.3

4.1

316

330

45°0

9,36

°219

IKF

Prio

zern

aya

pros

p.ar

ea,

hole

,19

78E

MP

-8b

4014

04.

44.

232

83

3145

°25,

36°2

89IK

FA

ndru

sova

m.

v.(B

ulga

nak

grou

p),

sprin

g19

680

EM

P-9

19a

140

5.4

331

45°2

5,36

°289

IKF

Old

enbu

rgsk

ogo

m.v

.(B

ulga

nak

grou

p),

sprin

g19

680

EM

P-9

19b

100

120

65.

93

3145

°25,

36°2

89IK

FT

rube

tsko

gom

.v.

(Bul

gana

kgr

oup)

,sp

ring

1968

0E

MP

-91

9c11

020

03.

73.

734

83

3145

°25,

36°2

89IK

FP

avlo

vaS

opka

m.

v.(B

ulga

nak

grou

p),

sprin

g19

680

EM

P-P

S60

190

3.5

3.4

325

331

45°2

5,36

°289

IKF

Ver

nads

kogo

Sop

kam

.v.

(Bul

gana

kgr

oup)

,sp

ring

1968

0E

MP

-VS

9025

03.

63.

532

83

3245

°12,

36°4

69IK

FK

arab

etov

ago

ram

.v.,

sprin

g19

680

EM

P-9

39

3080

6.2

632

43

3245

°12,

36°4

69IK

FK

arab

etov

ago

ram

.v.

,sp

ring

1990

0V

AI-

934

1.9

1520

63.

919

.730

07

3345

°26,

36°5

59IK

FK

uchu

gurs

kiim

.v.

,sp

ring

1994

0V

L-1/

943.

050.

094

778.

57.

935

.831

37

3445

°08,

36°5

69IK

FB

ugaz

skii

m.

v.(B

ugaz

grou

p),

sprin

g19

680

EM

P-9

29a

4040

5.1

538

13

3445

°08,

36°5

69IK

FY

uzhn

o-B

ugaz

skii

m.v

.(B

ugaz

grou

p),

sprin

g19

680

EM

P-9

29b

2080

5.1

4.8

338

335

45°1

7,36

°579

IKF

Sha

purs

kiim

.v.

,sp

ring

1994

0V

L-17

/94

7.7

0.58

415

18.6

1614

.529

87

3645

°09,

36°5

79IK

FP

oliv

adin

am

.v.

,sp

ring

1994

0V

L-5/

94a

16.2

0.12

106

4.6

4.3

153

301

736

45°0

9,36

°579

IKF

Pol

ivad

ina

m.

v.,

sprin

g19

940

VL-

5/94

b16

.80.

118

106

3.9

3.6

156

301

737

45°1

9,37

°029

IKF

Zap

adny

iTsi

mba

lim

.v.

,sp

ring

1990

0V

AI-

648

0.51

764

84.

54.

110

230

27

3845

°19,

37°0

39IK

FV

osto

chny

iTsi

mba

lim

.v.

,sp

ring

1990

0V

AI-

349

0.53

464

85.

24.

810

130

27

3945

°19,

37°0

49IK

FA

khta

nizo

vski

im.

v.,

sprin

g19

900

VA

I-1

103

0.53

456

75.

55.

321

231

07

4045

°22,

37°0

69IK

FS

inya

yaB

alka

m.

v.,

sprin

g19

940

VL-

14/9

430

.10.

1513

76

5.8

219

314

7(C

ontin

ued)

1929Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 6: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le1.

Con

tinue

d

No.

inF

ig.

2Lo

catio

nN

,E

Uni

tbN

ame

Yea

rof

sam

ple

Dep

thm

Sam

ple

inde

x

He

Ne

Ar

3H

e/4H

e,10

28

4H

e2

0 Ne

40 A

r3

6 Ar

Ref

.m

cc/L

5pp

mm

eas.

corr

.

4145

°17,

37°0

69IK

FB

oris

aan

dG

leba

m.

v.,

sprin

g19

900

VA

I-2

114

0.75

569

15.

35

166

307

742

45°2

0,37

°139

IKF

Sop

kam

.v.

,sp

ring

1994

0V

L-23

/94

50.1

0.19

122

94.

24.

128

8.5

321

743

45°1

5,37

°139

IKF

Sev

ero-

Nef

tyan

oim

.v.

,sp

ring

1994

0V

L-20

/94

13.5

0.14

814

94.

84.

410

0.1

304

744

45°1

1,37

°139

IKF

Yuz

hno-

Nef

tyan

oim

.v.

,C

entr

.sp

ring

1994

0V

L-18

/94

8.4

0.1

85.5

4.9

4.5

92.5

303

744

45°1

1,37

°139

IKF

Yuz

hno-

Nef

tyan

oim

udv,

Eas

t.sp

ring

1994

0V

L-19

/94

1.8

0.21

212

13.3

9.0

9.2

299

745

45°2

0,37

°179

IKF

Gol

ubits

kiim

orsk

oim

.v.

,sp

ring

1994

0V

L-2/

9413

.70.

112

23.

12.

815

030

77

4645

°16,

37°2

49IK

FM

iska

m.

v.,

sprin

g19

900

VA

I-7

150.

349

409

54.

147

.330

17

4744

°54,

37°3

69IK

FS

emig

orsk

iiy

m.

v.,

sprin

g19

680

EM

P-S

S12

060

6.3

6.3

428

747

44°5

4,37

°369

IKF

Sem

igor

skii

m.

v.,

sprin

g19

940

VL-

9/94

204

0.14

132

5.3

5.3

1629

342

748

45°0

3,37

°379

IKF

Shu

gom

.v.

,sp

ring

119

940

VI-

13/9

422

.50.

0986

.14.

14.

027

532

07

4845

°03,

37°3

79IK

FS

hugo

m.

v.,

sprin

g2

1994

0V

L-13

-2/9

435

.40.

4126

24.

23.

894

302

749

45°1

3,37

°389

IKF

Gni

laya

Sop

kam

.v.

,sp

ring

1990

0V

AI-

GS

121.

6314

7014

.39.

58.

129

97

4945

°13,

37°3

89IK

FG

nila

yaS

opka

m.

v.,

Eas

t.sp

ring

1994

0V

L-3/

94a

400.

219

13.

53.

322

031

47

4945

°13,

37°3

89IK

FG

nila

yaS

opka

m.

v.,

Eas

t.sp

ring

1994

0V

L-3/

94b

390.

2419

43.

53.

318

231

27

5044

°59,

37°4

49IK

FG

ladk

ovsk

iim

.v.

,sp

ring

1994

0V

L-11

/94a

876

0.17

272

4.6

4.8

5700

658

750

44°5

9,37

°449

IKF

Gla

dkov

skii

m.

v.,

sprin

g19

940

VL-

11/9

4b86

80.

1327

15

5.0

7450

670

751

45°0

3,37

°509

IKF

Kie

vski

im.

v.,

sprin

g19

940

VL-

12/9

422

0.16

135

3.4

3.1

151

302

752

44°4

9,38

°309

IKF

Zyb

zapr

osp.

area

,ho

le,

1978

1360

–200

0E

MP

-19c

8075

3.7

3.7

370

353

44°0

9,39

°499

IKF

Sam

ursk

aya

pros

p.ar

ea,

hole

,19

7892

0–18

60E

MP

-31a

420

659.

49.

453

73

5443

°21,

44°2

89T

CF

Zam

anku

l’ska

yapr

osp.

area

,ho

le,

1978

3700

EM

P-5

025

4.9

555

43°2

0,45

°099

TC

FS

erno

vods

kS

pr.,

sprin

g19

890

89B

P-1

173

8860

3.3

3.3

26.4

307

756

43°2

2,45

°389

TC

FS

taro

groz

nehs

kaya

pros

p.ar

ea,

hole

,19

7814

30E

MP

-58a

100

85

5743

°16,

45°4

59T

CF

Okt

yabr

’ska

yapr

osp.

area

,ho

le,

1978

1930

EM

P-6

3b-1

410

125

5743

°16,

45°4

59T

CF

Okt

yabr

’ska

yapr

osp.

area

,ho

le,

1978

4500

EM

P-6

3b-2

2014

558

43°1

8,46

°129

TC

FIs

ti-S

uS

pr.,

sprin

g19

880

DB

-881

085

4410

5.7

5.7

6.6

344

759

43°0

5,46

°509

TC

FZ

uram

aken

t(M

iatly

)S

pr.,

sprin

g19

880

DB

-881

7a60

.712

.113

050

10.9

3.5

5.53

300

759

43°0

5,46

°509

TC

FZ

uram

aken

t(M

iatly

)S

pr.,

sprin

g19

880

DB

-881

7b60

329

47

6042

°53,

47°1

59T

CF

Zau

zenb

ash

pros

p.ar

ea,

hole

1988

DB

-880

7a14

6013

022

2221

311

761

42°4

3,47

°229

TC

FE

l’dam

ase

ttl.,

hole

219

88D

B-8

811

460

320

34.6

34.6

2120

297

762

42°5

2,47

°289

TC

FT

algi

Spr

.,ho

le1-

bis

1988

218–

310

DB

-880

1a56

755

0016

.216

.267

300

762

42°5

2,47

°289

TC

FT

algi

Spr

.,ho

le1-

bis

1988

218–

310

DB

-880

1b65

510

.981

2017

.417

.466

299

763

42°5

9,47

°309

TC

FM

akha

chka

lath

erm

alar

ea,

hole

220

1971

3518

ES

M-2

720

304.

64.

549

31

6442

°49,

47°3

69T

CF

Uyt

ash

Spr

.,sp

ring

1988

0D

B-8

802

1046

1890

3.4

3.4

245

296

765

42°2

4,47

°359

TC

FB

urde

kiS

pr.,

sprin

g19

880

DB

-880

6a95

382

4.2

4.2

142

298

765

42°2

4,47

°359

TC

FB

urde

kiS

pr.,

sprin

g19

880

DB

-880

6b25

600

6.7

6.7

937

6642

°50,

47°4

09T

CF

Tur

aliL

ake

regi

on,

sprin

g19

900

VL-

5001±

1485

18.8

9575

21.

586

297

767

42°2

1,47

°509

TC

FA

lkha

dzhi

kent

Spr

.,sp

ring

1985

0IM

G-8

4012

130

337

291

268

42°3

1,47

°529

TC

FIz

berb

ash

pros

p.ar

ea,

hole

4619

8812

00–1

500

DB

-880

3a43

314

5.2

5.2

9529

97

6842

°31,

47°5

29T

CF

Izbe

rbas

hpr

osp.

area

,ho

le46

1988

1200

–150

0D

B-8

803b

4647

04.

34.

389

769

42°2

3,47

°549

TC

FK

ayak

ent

Spr

.,sp

ring

1985

0IM

G-9

1200

9470

7.6

729

42

7041

°43,

48°0

19T

CF

Ryc

hal-s

uS

pr.,

sprin

g19

880

DB

-881

610

011.

314

723.

73.

784

831

37

7041

°43,

48°0

19T

CF

Ryc

hal-s

uS

pr.,

sprin

g19

850

IMG

-522

704

355

271

42°1

4,48

°039

TC

FB

erik

eypr

osp.

area

,ho

le20

1976

1000

–150

0E

MP

-78a

6010

57.

27.

131

25

7142

°14,

48°0

39T

CF

Ber

ikey

pros

p.ar

ea,

hole

2019

8510

00–1

500

IMG

-10

307

271

42°1

4,48

°039

TC

FB

erik

eypr

osp.

area

,ho

le20

1988

1000

–150

0D

B-8

805

1616

700

296

772

42°1

9,48

°049

TC

FA

dzhi

Lake

regi

on,

sprin

g19

900

VL-

9099

200

0.93

1830

4.3

4.3

237

300

773

41°3

4,48

°159

TC

FG

il’ya

rS

pr.,

sprin

g19

760

EM

P-9

5911

6045

05.

35.

331

95

7341

°34,

48°1

59T

CF

Gil’

yar

Spr

.,sp

ring

1985

0IM

G-6

1900

5.3

2(C

ontin

ued)

1930 B. G. Polyak et al.

Page 7: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le1.

Con

tinue

d

No.

inF

ig.

2Lo

catio

nN

,E

Uni

tbN

ame

Yea

rof

sam

ple

Dep

thm

Sam

ple

inde

x

He

Ne

Ar

3H

e/4H

e,10

28

4H

e2

0 Ne

40 A

r3

6 Ar

Ref

.m

cc/L

5pp

mm

eas.

corr

.

7442

°51,

44°2

99C

MW

Nag

utsk

aya

settl

.,ho

le3-

SG

1985

852

INK

-850

2a29

9053

8047

774

42°5

1,44

°299

CM

WN

agut

skay

ase

ttl.,

hole

3-S

G19

8585

2IN

K85

02b

3000

2.3

2170

4545

1438

316

775

43°5

3,42

°449

CM

WK

islo

vods

kR

esor

t,ho

le5-

O19

8975

–147

.5D

B-8

907

221

625

7575

209

775

43°5

3,42

°449

CM

WK

islo

vods

kR

esor

t,ho

le5-

O19

9175

–147

.5LN

B91

0130

10.

7582

887

8744

430

47

7543

°53,

42°4

49C

MW

Kis

lovo

dsk

Res

ort,

hole

1-O

P19

8927

2D

B-8

908

125

0.49

549

4949

248

296

776

43°5

1,42

°479

CM

WO

lkho

vsko

epr

osp.

area

,ho

le11

5-E

1991

LNB

9107

287

0.67

818

156

156

471

303

776

43°5

1,42

°479

CM

WO

lkho

vsko

epr

osp.

area

,ho

le11

5-bi

s19

9140

0LN

B91

0817

70.

5771

316

316

334

329

87

7844

°01,

42°5

19C

MW

Pod

kum

okriv

er,

hole

2-N

V19

8656

6–58

0IN

K-3

1499

692

8787

176

579

44°0

3,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

418

1989

61–1

55D

B-8

910

2290

1.38

1340

8484

1827

320

779

44°0

3,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

418

1990

61–1

55D

B-9

006

1420

1.6

1310

7373

957

309

779

44°0

5,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

1CM

W-b

is19

8613

75–1

468

INK

-861

585

133

108

108

160

297

779

44°0

5,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

1CM

W-b

is19

9013

75–1

468

LNB

9001

716.

755

011

111

111

730

07

7944

°03,

42°5

39C

MW

Ess

entu

kiR

esor

t,ho

le2-

B19

9095

8–99

8LN

B90

0322

736.

983

8067

.768

362

300

779

44°0

3,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

,19

78E

MP

-97-

178

580

44°0

2,42

°539

CM

WE

ssen

tuki

Res

ort,

hole

1986

INK

-861

439

156

469

6924

.27

8144

°03,

42°5

39C

MW

Ess

entu

kiR

esor

t,ho

le1-

E19

9032

0–46

2D

B-9

007

3280

1.6

2450

89.3

8921

9031

47

8244

°07,

42°5

39C

MW

Nov

obla

goda

rnoe

settl

.,ho

le46

1990

552–

686

DB

-901

022

50.

453

177

7755

630

67

8344

°05,

42°5

39C

MW

Tel

man

sse

ttl.,

hole

1,

1978

EM

P-9

7-2

1200

905

8444

°03,

42°5

39C

MW

Ess

entu

kiR

esor

t,ho

le2-

E19

8933

4–43

5D

B-8

909b

8920

648

5575

.475

1521

306

785

44°0

8,42

°559

CM

WN

ovob

lago

darn

oese

ttl.,

hole

49-A

1990

627–

864

DB

-901

114

001.

515

3066

.166

1024

314

786

44°0

5,43

°019

CM

WB

esht

auM

t.,ho

le66

1990

1632

–185

0LN

B90

0214

60.

8672

885

.886

189

301

787

44°0

8,43

°029

CM

WZ

hele

znov

odsk

Res

ort,

hole

6119

9020

9–25

0LN

B-6

110

103.

0135

3043

4336

830

17

8844

°09.

43°0

29C

MW

Raz

valk

aM

t.,ho

le74

-N19

9015

01LN

B90

0652

328.

510

990

71.5

7167

630

17

8944

°08,

43°0

29C

MW

Zhe

lezn

ovod

skR

esor

t,ho

le69

1989

277–

293

DB

-891

423

50.

9613

1071

7126

829

77

8944

°09,

43°0

29C

MW

Zhe

lezn

ovod

skR

esor

t,ho

le70

1990

660–

1128

LNB

9004

258

1.34

1420

8888

211

302

790

44°0

8,43

°029

CM

WZ

hele

znov

odsk

Res

ort,

Sem

ashk

o,ho

le19

9059

–101

DB

-900

933

51.

5116

2082

8224

430

17

9044

°08,

43°0

39C

MW

Zhe

lezn

ovod

skR

esor

t,S

lavy

anov

skay

a,ho

le19

9073

–120

DB

-900

812

80.

7894

473

7318

030

17

9044

°08,

43°0

39C

MW

Zhe

lezn

ovod

skR

esor

t,ho

le59

1989

115–

213

DB

-891

322

10.

8611

7074

7428

129

97

9144

°06,

43°0

39C

MW

Lerm

onto

vse

ttl.,

hole

113

,19

78E

MS

-23

735

9244

°10,

43°0

69C

MW

Zm

eyka

Mt.,

hole

7219

9024

58LN

B90

0521

30.

9310

4084

.284

253

301

793

44°0

5,43

°049

CM

WP

yatig

orsk

Res

ort,

hole

1619

8918

9–38

1D

B-8

911a

350.

7196

061

6046

296

793

44°0

5,43

°049

CM

WP

yatig

orsk

Res

ort,

hole

1619

8918

9–38

1D

B-8

911b

41.7

682.

359

5910

77

9344

°06,

43°0

49C

MW

Pya

tigor

skR

esor

t,ho

le19

1989

284–

335

DB

-891

220

40.

9886

259

.459

277

303

793

44°0

6,43

°039

CM

WM

ashu

kM

t.,ho

le4

1990

205

DB

-900

310

00.

8781

259

5912

729

87

9344

°07,

43°0

39C

MW

Mas

huk

Mt.,

hole

2419

9082

–201

DB

-900

511

90.

8684

859

.559

152

296

793

44°0

6,43

°049

CM

WM

ashu

kM

t.,ho

le33

-bis

1991

1337

LNB

9115

178

0.7

687

63.7

6428

030

07

9444

°06,

43°0

49C

MW

Var

vats

ievs

kaya

pros

p.ar

ea,

hole

1990

18–2

6D

B-9

004

25.1

1.52

1125

62.8

6218

.229

47

9543

°51,

43°0

89C

MW

Zol

otoy

Kur

gan

Mt.,

hole

10-K

G19

8512

39–1

440

INK

-850

151

321

.512

900

7473

25.4

301

796

43°4

5,43

°089

CM

WS

hard

akov

ose

ttl.,

hole

1985

50–6

0IN

K-8

303a

1370

1364

2828

108

797

43°2

1,40

°169

GC

Gag

ra-c

ity,

hole

,19

78E

MS

-50

8.9

198

43°3

1,40

°379

GC

Ava

dkha

rase

ttl.,

hole

,19

7825

0E

MS

-51

311

9943

°52,

41°1

09G

CU

rup

settl

.,ho

leA

,19

7830

0E

MP

-102

/169

059

599

43°5

2,41

°109

GC

Uru

pse

ttl.,

hole

A,

1978

570

EM

P-1

02/2

900

145

100

42°4

9,41

°169

GC

Kin

dgiS

pr.,

sprin

g19

880

GIB

8801

346

8.5

1055

034

.734

44.5

294

710

143

°43,

41°2

39G

CP

seke

ncha

settl

.,ho

le68

,19

78E

MS

-33

471

102

42°4

4,41

°319

GC

Okh

urey

Spr

.,sp

ring

1988

0G

IB88

0215

86.

799

7032

.231

2629

37

103

44°0

1,41

°339

GC

Pre

grad

naya

settl

.,ho

le,

1978

340

EM

S-2

858

9067

110

443

°18,

41°2

89G

CD

omba

yse

ttl.,

hole

1619

8912

8–35

0D

B-8

901a

544

0.67

781

88

305

7(C

ontin

ued)

1931Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 8: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le1.

Con

tinue

d

No.

inF

ig.

2Lo

catio

nN

,E

Uni

tbN

ame

Yea

rof

sam

ple

Dep

thm

Sam

ple

inde

x

He

Ne

Ar

3H

e/4H

e,10

28

4H

e2

0 Ne

40 A

r3

6 Ar

Ref

.m

cc/L

5pp

mm

eas.

corr

.

104

43°1

8,41

°289

GC

Dom

bay

settl

.,ho

le16

1989

128–

350

DB

-890

1b63

31.

412

2010

1051

330

27

105

42°3

2,44

°079

GC

Bag

iata

Spr

.,sp

ring

,19

780

EM

P-G

IB10

650

510

642

°30,

41°5

29G

CZ

ugdi

dici

ty,

sprin

g19

880

GIB

8812

291.

5116

500

43.7

282.

1329

87

107

43°4

7,41

°549

GC

Kar

acha

yevs

kse

ttl.,

hole

114

,19

78E

MS

-34

7.5

110

844

°03,

41°5

99G

CU

st-D

zheg

uta

settl

.,sp

ring

,19

780

EM

S-2

933

110

943

°57,

41°5

49G

CK

rasn

ogor

skii

Spr

.,sp

ring

,19

780

EM

S-3

032

111

043

°47,

42°0

09G

CA

rbak

olS

pr.,

hole

,19

78E

MS

-35

100

111

143

°46,

42°0

29G

CG

aral

iSpr

.,sp

ring

1989

0D

B-8

906

7.7

0.55

549

50.6

4915

296

711

243

°46,

42°0

49G

CM

ariin

skii

Nar

zan

Spr

.,sp

ring

,19

780

EM

S-3

641

111

342

°40,

42°0

59G

CLu

gella

Spr

.,ho

le,

1978

EM

S-5

250

111

443

°40,

42°0

69G

CIn

dysh

Spr

.,ho

le,

1978

EM

S-3

771

111

443

°40,

42°0

69G

CIn

dysh

Spr

.,sp

ring

1989

0D

B-8

905

70.

7291

160

.358

1.4

297

711

543

°32,

42°0

79G

CK

art-

Dzh

iyur

tS

pr.,

sprin

g19

890

DB

-890

44.

60.

5761

718

318

429

37

116

43°0

5,42

°129

GC

Tita

settl

.,sp

ring

,19

780

EM

S-4

754

111

743

°57,

42°1

89G

CK

rasn

yiV

osto

kse

ttl.,

hole

2-E

,19

78E

MS

-31

311

117

43°5

7,42

°189

GC

Kra

snyi

Vos

tok

settl

.,ho

le2-

E19

90D

B-9

001

188

0.73

620

49.4

4928

329

87

118

43°2

5,42

°209

GC

Tar

khor

-Nar

zan

Spr

.,sp

ring

,19

780

EM

S-4

055

111

943

°24,

42°2

19G

CB

ityuk

-Tyu

beS

pr.,

sprin

g,

1978

0E

MS

-39

280

111

943

°24,

42°2

19G

CB

ityuk

-Tyu

beS

pr.,

sprin

g,23

°C19

840

NK

h-I-

51.

983

870

511

943

°24,

42°2

19G

CB

ityuk

-Tyu

beS

pr.,

sprin

g,15

°C19

840

NK

h-I-

488

4700

280

511

943

°24,

42°2

19G

CB

ityuk

-Tyu

beS

pr.,

sprin

g,8J1

77 C

1984

0N

Kh-

I-7

824

8023

05

120

41°5

7,42

°229

GC

Nab

egla

viS

pr.,

hole

269

06

121

43°4

3,42

°319

GC

Kha

saut

Spr

.,sp

ring

1989

0D

B-8

903

0.76

0.71

566

130

123

0.72

301

712

242

°35,

43°1

29G

CT

ersk

olse

ttl.,

hole

,19

78E

MS

-41

260

112

342

°35,

43°1

49G

CB

adae

vykh

settl

.,ho

le,

1978

EM

S-4

436

01

124

43°0

2,42

°369

GC

Dal

asvi

liS

pr.,

sprin

g,

1978

0E

MS

-49

360

112

543

°04,

42°3

79G

CM

azer

iset

tl.,

sprin

g,

1978

0E

MS

-48

800

112

643

°16,

42°3

89G

CIr

ik-N

arza

nS

pr.,

sprin

g,

1978

0E

MS

-42

100

112

743

°03,

42°4

09G

CM

estiy

ase

ttl.,

sprin

g19

880

GIB

8817

2.2

510

224

243

1.6

296

712

743

°03,

42°4

09G

CM

estiy

ase

ttl.,

sprin

g,

1978

0E

MP

-VP

Y12

07

128

43°1

4,42

°409

GC

Dzh

an-T

ugan

Spr

.,sp

ring

1989

0D

B-8

915

51.

113

0044

345

86.

529

87

7743

°41,

42°4

29G

CD

olin

aN

arza

nov

Spr

s.,

sprin

g,14

°C19

840

NK

h-I-

38

1040

220

577

43°4

1,42

°429

GC

Dol

ina

Nar

zano

vS

prs.

,sp

ring

1989

0D

B-8

902

1.7

0.7

471

145

145

329

17

132

42°4

0,42

°469

GC

Rec

hkhi

Spr

.,sp

ring

,19

780

EM

P-1

3940

9000

135

513

342

°44,

42°4

89G

CT

sipl

akak

iya

Spr

.,sp

ring

,19

780

EM

P-G

IB40

905

131

43°2

4,42

°549

GC

Tyr

nyau

zor

efie

ld,

hole

104

,19

78E

MS

-45

360

112

942

°48,

43°5

99G

CG

erkh

ozha

n-S

uS

pr.,

sprin

g,

1978

0E

MS

-43

680

113

043

°23,

43°0

19G

CZ

ydac

hit

river

,sp

ring

,19

780

EM

S-4

611

01

134

44°0

3,43

°059

GC

Kra

snoa

rmey

skii

settl

.,ho

le19

9093

–120

DB

-900

25.

90.

6265

549

.447

297

713

542

°42,

43°1

79G

CU

ravi

Spr

.,sp

ring

,19

780

EM

P-G

IB80

6.4

513

642

°24,

43°5

69G

CD

zhav

aS

pr.,

sprin

g,

1978

0E

MP

-GIB

150

330

513

642

°24,

43°5

69G

CD

zhav

aS

pr.,

sprin

g19

880

GIB

8816

2375

0017

421

50.

5529

37

137

43°0

4,42

°419

GC

Art

skhe

liS

pr.,

sprin

g,

1978

0E

MP

-GIB

825

138

42°5

0,44

°039

GC

Sad

onor

efie

ld,

min

e8

,19

78E

MS

-38

6.7

113

942

°34,

44°0

49G

CT

ruso

Spr

.,sp

ring

1983

01-

375-

8420

590

260

714

042

°23,

44°3

89G

CN

adib

aani

Spr

.,sp

ring

066

06

141

42°2

7,44

°399

GC

Pan

shet

iSpr

.,sp

ring

,19

780

EM

P-G

IB25

05

142

42°2

1,44

°419

GC

Pas

anau

riS

pr.,

hole

930

06

(Con

tinue

d)

1932 B. G. Polyak et al.

Page 9: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le1.

Con

tinue

d

No.

inF

ig.

2Lo

catio

nN

,E

Uni

tbN

ame

Yea

rof

sam

ple

Dep

thm

Sam

ple

inde

x

He

Ne

Ar

3H

e/4H

e,10

28

4H

e2

0 Ne

40 A

r3

6 Ar

Ref

.m

cc/L

5pp

mm

eas.

corr

.

143

42°2

3,44

°479

GC

Mak

arta

Spr

.,sp

ring

,19

780

EM

P-G

IB30

690

514

442

°35,

45°0

79G

CD

atvi

siS

pr.,

sprin

g19

880

GIB

8803

1140

860

193

193

1600

416

714

542

°40,

45°0

99G

CK

hakh

mat

iSpr

.,sp

ring

1988

0G

IB88

048.

576

035

536

65.

929

37

146

42°4

5,45

°369

GC

Itum

-Kal

e,sp

ring

1989

0M

KK

-89

0.67

0.92

681

145

148

0.8

299

714

742

°26,

45°5

99G

CZ

a-E

ched

aS

pr.,

sprin

g19

880

DB

-880

9a56

4340

159

159

4230

37

147

42°2

6,45

°599

GC

Za-

Ech

eda

Spr

.,sp

ring

1988

0D

B-8

809b

2066

2015

523

00.

367

148

42°2

4,46

°029

GC

Inkh

okva

riS

pr.,

sprin

g19

850

IMG

-110

352

149

42°0

7,46

°069

GC

Khz

an-O

rS

pr.,

sprin

g,

1978

0E

MP

-32

7380

4560

5.3

5.3

345

714

942

°07,

46°0

69G

CK

hzan

-Or

Spr

.,sp

ring

1985

0IM

G-2

1067

05.

341

52

150

41°2

2,47

°289

GC

Khn

ovse

ttl.,

“New

”sp

ring

1988

0D

B-8

813

1820

4660

3.1

3.1

556

296

715

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le21

.7.7

613

493

03.

84

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

25.7

.76

138

920

44

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

28.7

.76

141

800

44

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

29.7

.76

142

820

3.8

415

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le31

.7.7

614

485

03.

64

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

10.8

.76

154

720

4.4

415

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le16

.8.7

616

080

03.

64

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

23.8

.76

167

870

4.3

415

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le1.

9.76

176

860

3.5

415

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le3.

9.76

178

870

3.9

415

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le10

.9.7

618

486

04.

24

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

,19

78E

MP

-33

850

1380

2.5

2.4

327

715

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le22

119

85IM

G-3

860

5.5

606

215

041

°22,

47°2

89G

CK

izil-

dere

ore

field

,ho

le31

519

88D

B-8

812a

1265

046

904.

24.

231

029

67

150

41°2

2,47

°289

GC

Kiz

il-de

reor

efie

ld,

hole

315

1988

DB

-881

2b48

403.

219

903.

53.

516

6533

67

151

41°2

8,47

°439

GC

Dzh

anis

ettl.

,sp

ring

1985

0IM

G-4

6880

2380

1414

322

215

141

°28,

47°4

39G

CD

zhan

iset

tl.,

hole

1988

DB

-881

573

663.

622

302.

32.

322

6831

57

152

41°2

8,47

°469

GC

Khk

emse

ttl.,

Gaz

ovay

aba

lka,

hole

1988

DB

-881

4a16

5053

42.

42.

433

9029

57

152

41°2

8,47

°469

GC

Khk

emse

ttl.,

Gaz

ovay

aba

lka,

hole

1988

DB

-881

4b19

001.

1311

002.

92.

918

4131

47

aA

llav

aila

ble

data

(incl

udin

gla

bdu

plic

ates

)ar

epr

esen

ted

with

out

any

aver

agin

g.b

Tec

toni

cU

nits

:S

P—

Scy

thia

npl

ate,

Sa—

Sta

vrop

olar

ch,

IKF

—In

dol-K

uban

fore

deep

,T

CF

—T

erek

-Cas

pian

fore

deep

,C

MW

—C

auca

sian

Min

eral

Wat

ers

are

a,G

C—

Gre

ater

Cau

casu

s.1—

[Mat

veev

aet

al.,

1978

];2—

[Gas

alie

van

dP

raso

lov,

1988

];3—

[Lav

rush

inet

al.,

1966

];4

—[P

raso

lov,

1990

];5—

[Pol

yak

etal

.,19

97];

6—

[Bua

chid

zean

dM

khei

dze,

1989

];7—

this

wor

k.

1933Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 10: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le2.

Maj

orga

ses

abun

danc

esin

the

Nor

ther

nC

auca

sus

subs

urfa

ceflu

ids.

##F

ig.

2U

nita

Sam

plin

gsi

teY

ear

ofsa

mpl

ing

Sam

plin

gpo

int

Dep

thm

H2

O2

N2

CO

2C

H4

Ref

.bin

104

mcc

/L5

104

ppm

29IK

FB

egol

Spr

.19

68S

prin

g0

1.7

47.8

50.5

1,2

30IK

FP

rioze

rnay

apr

osp.

area

1968

Hol

e0.

303.

35.

088

.91,

231

IKF

And

ruso

vam

udv.

1968

Spr

ing

00.

88.

690

.61,

231

IKF

Old

enbu

rgsk

ogo

mud

v.19

68S

prin

g0

0.6

8.0

91.4

1,2

31IK

FT

rube

tsko

gom

udv.

1968

Spr

ing

00.

359

.540

.21,

232

IKF

Kar

abet

ova

gora

mud

v.19

90S

prin

g0

0.00

090.

034

0.91

20.9

77.5

332

IKF

Kar

abet

ova

gora

mud

v.19

68S

prin

g0

0.6

0.3

99.1

1,2

33IK

FK

uchu

gurs

kiim

udv.

1994

Spr

ing

0tr

.0.

095

0.74

29.2

69.9

334

IKF

Yuz

hno-

Bug

azsk

iim

udv.

1968

Spr

ing

00.

92.

097

.11,

235

IKF

Sha

purs

kiim

udv.

1994

Spr

ing

00.

0009

0.06

10.

816.

792

.03

36IK

FP

oliv

adin

am

udv.

1994

Spr

ing

00.

0009

0.09

90.

7313

.185

.83

37IK

FZ

apad

nyiT

sim

baly

mud

v.19

94S

prin

g0

,0.

0000

60.

065

1.32

,0.

004

97.2

338

IKF

Vos

toch

nyiT

sim

baly

mud

v.19

94S

prin

g0

0.00

090.

017

0.94

,0.

004

95.8

339

IKF

Akh

tani

zovs

kiim

udv.

1994

Spr

ing

0,

0.00

006

0.06

51.

9114

.482

.53

40IK

FS

inya

yaB

alka

mud

v.19

94S

prin

g0

,0.

0000

60.

082

1.31

tr.

94.1

342

IKF

Sop

kam

udv.

1994

Spr

ing

0,

0.00

006

0.08

2.06

6.4

91.1

343

IKF

Sev

ero-

Nef

tyan

oim

udv.

1994

Spr

ing

0,

0.00

006

0.02

71.

175.

690

.13

44IK

FY

uzhn

o-N

efty

anoi

mud

v.19

94C

entr

.sp

ring

00.

0066

0.06

80.

886.

382

.33

44IK

FY

uzhn

o-N

efty

anoi

mud

v.19

94E

ast.

sprin

g0

0.00

060.

078

1.51

15.8

82.1

345

IKF

Gol

ubits

kiim

orsk

oym

.v.

1994

Spr

ing

00.

009

0.19

1.67

,0.

004

91.8

346

IKF

Mis

kam

udv.

1994

Spr

ing

0,

0.00

006

0.15

03.

85,

0.00

491

.13

47IK

FS

emig

orsk

iim

udv.

1994

Spr

ing

0tr

.0.

082

1.62

3.4

94.8

348

IKF

Shu

gom

udv.

1994

Spr

ing

10

,0.

0000

60.

095

0.92

8.5

89.5

349

IKF

Gni

laya

Sop

kam

udv.

1994

Eas

t.sp

ring

0,

0.00

006

0.08

81.

47,

0.00

492

.63

50IK

FG

ladk

ovsk

iim

udv.

1994

Spr

ing

0tr

.0.

164.

64,

0.00

494

.23

51IK

FK

ievs

kiim

udv.

1994

Spr

ing

00.

0012

0.08

0.88

7.3

91.4

359

TC

FZ

uram

aken

t(M

iatly

)S

pr.

,19

88S

prin

g0

0.00

50.

290

.56.

03.

25

60T

CF

Zau

zenb

ash

pros

p.ar

ea19

88H

ole

0.2

15.

992

.86

61T

CF

El’d

ama

settl

.19

88H

ole

20.

358.

54.

786

.36

64T

CF

Uyt

ash

Spr

.19

88S

prin

g0

0.03

42.2

9.9

47.3

665

TC

FB

urde

kiS

pr.

1988

Spr

ing

03.

23.

093

.86

67T

CF

Alk

hadz

hike

ntS

pr.

,19

88S

prin

g0

0.00

10.

497

.31.

81.

35

68T

CF

Izbe

rbas

hpr

osp.

area

,19

84H

ole

4612

00–1

500

0.8

18.1

3.7

77.2

469

TC

FK

ayak

ent

Spr

.,

1988

Spr

ing

00.

7592

.95.

80.

35

70T

CF

Ryc

hal-s

uS

pr.

,19

88S

prin

g0

0.1

13.2

22.6

63.9

571

TC

FB

erik

eypr

osp.

area

,19

88H

ole

2010

00–1

500

0.00

40.

52.

493

.03.

95

73T

CF

Gil’

yar

Spr

.,

1988

Spr

ing

01.

611

.75.

081

.55

75C

MW

Kis

lovo

dsk

Res

ort

1989

Hol

e5-

O75

–147

.50.

83.

995

.20.

016

75C

MW

Kis

lovo

dsk

Res

ort

,19

72H

ole

5-O

75–1

47.5

0.02

1.73

98.2

0.03

775

CM

WK

islo

vods

kR

esor

t,

1971

Hol

e1-

OP

272

0.28

6.07

93.7

877

GC

Dol

ina

Nar

zano

v(N

arza

nva

lley)

,19

72S

prin

g0

0.92

99.1

777

GC

Dol

ina

Nar

zano

v(N

arza

nva

lley)

1989

Spr

ing

00.

62.

297

.26

79C

MW

Ess

entu

kiR

esor

t19

89H

ole

418

61–1

551.

669

.628

.16

79C

MW

Ess

entu

kiR

esor

t19

89H

ole

2-E

334–

435

0.1

18.7

59.8

21.0

679

CM

WE

ssen

tuki

Res

ort

1990

Hol

e1-

E32

0–46

222

.351

.725

.06

79C

MW

Ess

entu

kiR

esor

t19

90H

ole

1KM

Wbi

s13

75–1

468

0.9

99.0

0.04

679

CM

WE

ssen

tuki

Res

ort

1990

Hol

e2-

B95

8–99

834

.963

.80.

336

82C

MW

Nov

obla

goda

rnoe

settl

.19

90H

ole

4655

2–68

614

.665

.320

.06

(Con

tinue

d)

1934 B. G. Polyak et al.

Page 11: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Tab

le2.

Con

tinue

d

##F

ig.

2U

nita

Sam

plin

gsi

teY

ear

ofsa

mpl

ing

Sam

plin

gpo

int

Dep

thm

H2

O2

N2

CO

2C

H4

Ref

.bin

104

mcc

/L5

104

ppm

85C

MW

Nov

obla

goda

rnoe

settl

.19

90H

ole

49-A

627–

864

10.3

46.8

42.3

686

CM

WB

esht

auM

t.,

1990

Hol

e66

1632

–185

01.

498

.10.

336

88C

MW

Raz

valk

aM

t.,

1990

Hol

e74

-N15

0147

51.0

2.0

990

CM

WZ

hele

znov

odsk

Res

ort,

Sem

ashk

o19

90H

ole

59–1

014.

795

.00.

047

690

CM

WZ

hele

znov

odsk

Res

ort,

Sla

vyan

ovsk

aya

1990

Hol

e73

–120

3.6

96.6

0.3

690

CM

WZ

hele

znov

odsk

Res

ort

1989

Hol

e59

115–

213

1.4

4.8

93.2

0.48

690

CM

WZ

hele

znov

odsk

Res

ort

1990

Hol

e61

209–

250

20.7

1.4

77.4

690

CM

WZ

hele

znov

odsk

Res

ort

1989

Hol

e69

277–

293

0.7

10.2

88.8

0.13

690

CM

WZ

hele

znov

odsk

Res

ort

1990

Hol

e70

660–

1128

0.21

97.7

2.03

692

CM

WZ

mey

kaM

t.,

1990

Hol

e72

2458

2.0

98.0

993

CM

WP

yatig

orsk

Res

ort

1989

Hol

e16

189–

381

0.1

4.0

95.6

0.09

693

CM

WP

yatig

orsk

Res

ort

1989

Hol

e19

284–

335

,0.

001

4.7

18.2

75.4

1.22

693

CM

WM

ashu

kM

t.19

90H

ole

420

50.

0026

4.3

26.2

68.4

0.04

693

CM

WM

ashu

kM

t.19

90H

ole

2482

–201

,0.

001

3.6

14.2

82.0

0.14

693

CM

WM

ashu

kM

t.,

1972

Hol

e33

bis

1337

0.07

1.1

98.5

0.08

794

CM

WV

arva

tsie

vska

yapr

osp.

area

1990

Hol

e18

–26

4.6

95.2

0.03

66

97G

CG

agra

-cityc

,19

75H

ole

74.7

24.7

0.6

1098

GC

Ava

dkha

rase

ttl.

,19

75H

ole

670

03.

396

.710

106

GC

Zug

didi

city

,19

75H

ole

455

.643

.50.

910

114

GC

Indy

shS

pr.

1989

Spr

ing

00.

51.

598

.06

115

GC

Kar

t-D

zhiy

urt

Spr

.19

89S

prin

g0

6.5

10.9

77.1

612

1G

CK

hasa

utS

pr.

1989

Spr

ing

00.

40.

898

.86

134

GC

Kra

snoa

rmey

skii

settl

.19

90H

ole

93–1

201.

96.

691

.50.

016

136

GC

Dzh

ava

Spr

.,

1975

Hol

e44

120–

280

63.4

29.7

6.9

1013

6G

CD

zhav

aS

pr.

,19

75H

ole

14A

97.7

1013

9G

CT

ruso

Spr

.,

1975

Spr

.S

tyr-

suar

01.

597

.90.

610

141

GC

Pan

shet

iSpr

.,

1975

Spr

ing

09.

290

.810

145

GC

Kha

khm

atiS

pr.

,19

75S

prin

g0

2.2

97.8

1014

8G

CIn

khok

vari

Spr

.,

1988

Spr

ing

00.

002

0.4

11.5

87.9

0.2

514

9G

CK

hzan

-Or

Spr

.,

1988

Spr

ing

00.

361

.52.

934

.25

150

GC

Kiz

il-de

reor

efie

ld,

1988

Hol

e22

10.

29.

91.

488

.45

151

GC

Dzh

anis

ettl.

,19

88S

prin

g0

0.4

25.3

4.0

70.1

5

aT

ecto

nic

Uni

ts:

IKF

—In

dol-K

uban

fore

deep

,T

CF

—T

erek

-Cas

pian

fore

deep

,C

MW

—C

auca

sian

Min

eral

Wat

ers

area

,G

C—

Gre

ater

Cau

casu

s.b

1—[G

emp

etal

.,19

79];

2—[L

agun

ova,

1974

];3—

[Lav

rush

inet

al.,

1996

];4

—[V

oito

vet

al.,

1984

];5—

[Gaz

alie

van

dP

raso

lov,

1988

];6

—th

isw

ork;

7—[Iv

anov

,197

2];8

—[S

hche

rbak

and

Gur

evic

h,19

71];

9—

[Tre

bukh

ova

and

Che

salo

v,19

90];

10—

[Bua

chid

ze,

1975

].c

Wat

er-d

isso

lved

gas.

1935Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 12: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

shadowed arrow. Mechanisms causing a substantial horizontalscatter of CMW data-points were already discussed above.

In the Kazbek vicinity, CO2 is even isotopically heavier thanthat of the CMW fluids: the meand13C value in CO2 equals to21.9‰ (Buachidze and Mkheidze, 1989). This indicates ahigher contribution of crustal CO2 in fluids due to metamorphicprocesses initiated by igneous activity.

The Indol-Kuban (IKF) and Terek-Caspian (TCF) foredeepscontain methane-bearing gases.R-values are of crustal (radio-genic) level, excepting three sites from the TCF: Zauzenbash(R5 223 1028), Eldama (353 1028), and Talgi (163 1028).The crustalR-values are also typical of a few N2- and CO2-bearing manifestations: the Berikey borehole and Zuramakent,Kayakent, and Alkhadzhikent thermal springs in TCF, andTrubetskogo mud volcano in IKF. Gases from the oil/gas-bearing Scythian plate showR-values slightly above the canon-ical radiogenic value, 23 1028.

Both foredeeps and Scythian plate do not show statisticallysignificant R–[He] correlations (Fig. 3). A great [He] rangeobserved in these areas reflects different production of methaneand radiogenic helium in sedimentary rocks as well as their lossfrom this reservoir.

CO2 and CH4-bearing gases usually contain N2, but nitrogenis the major component in a few samples only. Data-points inN2 versus Arair plot generally follow the solubility trend orig-inated from dilution of the atmospheric species by carbondioxyde or methane (Fig. 4). Some points shift from this trendindicating both underground generation of nitrogen or con-

sumption of presumably atmospheric N2. Thus, helium isotopiccompositions shed little light on processes governed behaviourof nitrogen.

5.2. He Isotopes, Tectonics and Magmatism

5.2.1. Cis-Caucasian foredeeps and Scythian plate

Regularities of lateralR variations are best seen from the barcharts for specified tectonic units (Fig. 5). The lowest averageRav-values characterise Indol-Kuban (5.23 1028) and Terek-Caspian (5.63 1028) foredeeps filled by Alpine molasse.Three Daghestan sites in the Terek-Caspian (Zauzenbash, El-dama and Talgi) show enhancedR. These sites are associatedwith apparent trust fault (see C-D cross section in Fig. 1) anda local zone of recent extension (Koronovsky, 1994), so mantlederivatives could migrate upward. When the relevantR-valuesare excluded from the Terek-Caspian data, both foredeeps showstatistically indistinguishableRav-values, with a generalRav

1 5(5.36 6 0.73) 3 1028. Similar values are observed in theTrans-Caucasian depressions (Rav 5 5.58 3 1028) and in theWest European segment of the Alpine belt, e.g., in the Cis-Alpine Molasse foredeep,Rav 5 (5.84 6 1.36) 3 1028, theDosso Degli Angelli gas field, and the Po basin,Rav 5 (4.966

1 Here and below the error was estimated as61.963 S/N0.5 where Sand N denote standard deviation and number of particular values,respectively.

Fig. 2. Location map of the sampling sites in the Northern Caucasus (site numbers correspond to those in Tables 1 and2). Tectonic units: (GC) Greater Caucasus meganticlinorium, (SEC) its south-eastern sector, (MZ) monocline zone, (Sa)Stavropol arch, (IKF) Indol-Kuban foredeep, (TCF) Terek-Caspian foredeep, (CMW) Caucasian Mineral Waters area. Starsmark the Elbrus (E) and Kazbek (K) volcanic centres; dashed circles denote the cities Mineral’nye Wody (MW),Makhachkala (M), and Gagra (Ga).

1936 B. G. Polyak et al.

Page 13: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Fig. 3. Relationships between helium isotope compositions and concentrations in fluid gas phase (see legend for symbols).The black rectangle shows a hypothetical MORB-like end-member (Marty and Tolstikhin, 1998). Dark rhomb correspondsto a crustal helium reservoir. Slope band between these rectangles reflects mixing between the crustal (almost3He-free)helium and the fluid with MORB-like CO2/

3He ratio. Horizontal shadowed trends are explained it the text. Statisticalanalyses of the data has shown that there is noR-[He] correlation in mainly CH4-rich fluids from oil/gas-bearing provinces,both foredeeps and Scythian Plate (beyond the Stavropol arch). CO2-rich gases from the CMW area also do not show thecorrelation. Four measurements from the Stavropol arch and its north-western vicinity show direct correlation, probablyreflecting mixing of fluids from SP and CMW. In contrast, mainly CO2-bearing gases from the Greater Caucasus show thestatistically significant inverseR-[He] correlation (solid regression line).

1937Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 14: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

0.30) 3 1028 (Polyak et al., 1979a; Oxburgh et al., 1986;Marty et al., 1992; Elliot et al., 1993).

Gases from the Scythian plate beyond the Stavropol arch(Fig. 5) contain He withRav 5 (7.516 1.08)3 1028 which isindistinguishable from that observed in the Paris Basin,Rav 5(8.79 6 1.06) 3 1028, which has a basement of the sameHercynian age (Marty et al., 1993). These ratios are slightlyhigher than the canonical radiogenic production ratio of'2 31028 typical for Precambrian platforms (Mamyrin and Tol-stikhin, 1984). Polyak and Tolstikhin (1985) considered thisdifference as a result of ageing of crustal domains. Marty et al.(1993) proposed a contribution of mantle-derived helium inParis Basin fluids from either migration of volatiles from theMassif Central (Matthews et al., 1987) or extensional tectonismduring upper Palaeozoic time. However, recent careful studiesof He isotope and relevant trace element inventories in rocksand mineral separates have shown that enhanced (relative to thecanonical production)R-values, up to;1031028, could orig-inate from specific composition of sediments, e.g., high Liconcentrations in shales or a long residence time of3H (and3He) in some chemical sediments (Loosli et al., 1995; Tol-stikhin et al., 1996; Tolstikhin et al., 1999). Therefore, toadequately interpret enhancedR-values, the He-productive po-tential of host rocks (both aquifers and aquitards) in a givenregion must be examined.

5.2.2. Stavropol arch—CMW area:R anomaly

R-values are increasing from the northern periphery of theStavropol arch, 1.63 1027, towards its central part, 4.531027. These values indicate a small contribution of mantle-derived helium. However, volcanic manifestations are notknown here.

The CMW area, situated to the south of Stavropol arch, hasbeen studied in detail: 37 specimens from 34 objects have beenanalysed (Tables 1, 2).R varies within relatively narrow limitswith Rav 5 (7.64 6 0.88) 3 1027 (Fig. 5). Within this areathere are several'8 Ma old laccolites. Several localR-fluctu-ations correlate with neither distances from laccolithes nor

lithological-stratigraphycal characteristics of aquifers. South-ward of the CMW areaR further increases up to 0.873 1025

in Bityuk-Tyube Springs nearest to the Elbrus volcano.Yakovlev and Polyak (1998) studied mechanism responsible

for this near-longitudinal trend. Based on hydrological model-ling, these authors concluded that the trend extending so farfrom the active volcano can not be attributed to a lateralmigration of magmatic fluids from a single volcanic feeder.Theenhances3He/4He halo encompassed not only the central seg-ment of the Greater Caucasus but the adjacent part of theScythian Plate as well, mainly results from degassing of deep-seated magmatic reservoirs situated far to the north of Elbrus.

5.2.3. R distribution along the Greater Caucasus

In the fluids of the Greater Caucasus as a whole, theRspectrum is very wide (see Fig. 5). The highestR are concen-trated around the Elbrus and Kazbek volcanoes separated byrelatively lowR-values measured in the Sadon and Uravi sites(Table 1, Fig. 6a). These sites are situated on the northern andsouthern slopes of the range, respectively, in a transversalcompression zone predicted by tectono-physical modelling(Koronovsky, 1994). The enhancedR-values occur not onlynearby N-Q volcanic manifestations, but also far away along

Fig. 4. Relationships between nitrogen and atmospheric argon con-centrations. Data points mainly follow the solubility trend, but there aresome substantial deviations also, showing both consumption of pre-sumably air nitrogen and undergoing nitrogen generation.

Fig. 5. Bar charts of theR distribution in different tectonic units ofthe Northern Caucasus.

1938 B. G. Polyak et al.

Page 15: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Fig. 6. Relationship between the apatite fission track ages for pre-Alpine basement of the Greater Caucasus orogene,FT-ages (Kral and Gurbanov, 1996) and the helium isotope composition in spring gases. Longitudinal trends of (a)R and(b) FT ages; (c) correlation between the averagedR and FT-ages in 1°-longitudinal sectors of the Greater Caucasus (rR/FT 50.887. 0.8785 r0.05, f5 k 22), squares mark the means, open circle corresponds to the single FT-age value for Belaya Riverarea; errors are 1s.

1939Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 16: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

the orogene where recent magmatism is not observed on thesurface.

To the west of the Elbrus, decreasingR-values correspond toincreasing fission track ages (Fig. 6b) available for the pre-Alpine basement of the orogene (Kral and Gurbanov, 1996).An inverse correlation between these parameters is quite clearafter their averaging in the longitudinal segments of the oro-gene (Fig. 6c).

Kral and Gurbanov (1996) believed that fission track agescorrespond to the time of uplifting of basement blocks throughthe isotherm which allows fission tracks in apatite to be re-tained; therefore they suggested a sequential uplifting of lon-gitudinal segments from the west to the east. Judging fromhelium isotope data, such an uplifting could be provoked byupward movements of mantle matter.

However, an alternative interpretation is also possible: grad-ual cooling of the Greater Caucasus, treated as a single body,from the eastern and western segments towards to the centralone. Such a cooling could reflect reduction of island-arc mag-matic activity in the marginal segments, whereas it is stillpreserved in the centre, beneath Elbrus-Kazbek zone. Subse-quent uplifting and erosion exposed both earlier-cooled mar-ginal blocks and the later-cooled ones situated closer to centre:the close to the centre, the later the cooling, the younger fissiontrack ages, and the higherR-values. This interpretation is inaccord with the generalR-age relationship (Polyak et al.,1979a; Polyak and Tolstikhin, 1985; Polyak, 1988).

Unlike the Alps (Marty et al., 1992), in the Caucasus there isno relation between the isotopic composition of fluid heliumand crustal thickness. Moreover, some of the highestR-valuesare observed in the areas with the maximum depth(s) to theMoho discontinuity. So, the crustal thickness does not controlthe contribution of mantle-derived species introduced into thecrust, but intrusion of mantle melts appears to be important.

5.2.4. He-Sr isotopic systematics

The Elbrus calc-alcaline acidic rocks were considered asproducts of anatexis in a granite-metamorphic layer (e.g., Mi-lanovsky and Koronovsky, 1973). However, the Sr-Nd-O iso-tope systematics implies a mantle source for recent volcanicrocks and their substantial contamination with crustal material(Ivanov et al., 1993; Bubnov et al., 1995). The contamination ofthe Elbrus lavas with87Sr/86Sr ratio ranging from 0.70528 to0.70590 (ibid.) appears to be lower than the CMW trachyrhyo-lites, where this ratio varies from 0.70754 to 0.708512 (Pohl etal., 1993).

Figure 7 shows an inverse correlation between87Sr/86Srratios in the rocks andR in fluids from the Elbrus and CMWareas, similar to that observed for Italian volcanic rocks andfluids (Polyak et al., 1979b). Such a correlation implies atransfer of He and Sr from the mantle by melts; and contami-nation of mantle melts by crustal components with contamina-tion being greater within the CMW area than beneath theElbrus.

5.3. Correlation between theR and Heat Flow

The terrestrial heat flow expresses an integral energetic ef-fect of all processes occurring at depths. The flow density,q,measured in an individual borehole is usually disturbed bymany factors (local topography, climatic changes, groundwatercirculation, variability of thermal properties of rocks, sedimen-tation, thrusting, etc.). In order to estimate an undisturbedq-value, the contributions of above-mentioned factors must bequantified which is hard to do reliably in most cases. Regionalaveraging within a given tectonic unit allows influence of someof these factors to be eliminated. The averaged valuesqav doindicate some regular correlation betweenqav and the age ofmagmatic activity (thermal events) in lithosphere (Polyak andSmirnov, 1968; Sclater and Francheteau, 1970; Chapman andPollack, 1976; Sclater et al., 1981, and others).

Several maps of the heat flow density within the Caucasuswere compiled (Hurtig, 1992; Kutas, 1993; Moisseenko andNegrov, 1993). Figure 8 reproduces fragments of these maps.The Cis-Caucasian foredeeps show a reduced heat flow density(Fig. 8a),qav 5 52 6 0.8 mW/m2 (Smirnov et al., 1992), withlocal positive anomalies; one of these coincides with the Dag-hestan enhancedR-values noted above.

The Scythian plate differs from the foredeeps by an elevatedqav 5 626 0.6 mW/m2 (Smirnov et al., 1992) with even higherqav 5 93 6 1.7 mW/m2 for the Stavropol arch. Polyak andSmirnov (1968) considered the Stavropol anomaly to be aresult of recent magmatism. A substantial contribution of man-tle-derived helium to arch fluids does support this interpreta-tion.

In the Greater Caucasus meganticlinorium bothR andq areenhanced, although the heat flow distribution is rather compli-cated here. Lowq , 40 mW/m2 is typical of the south-easternsegment (Fig. 8a) and correspond to the low crustalR-values,(2.3–5.3) 3 1028, in methane- and nitrogen-bearing fluids.These fluids most likely originate from degassing of recentmolasse sediments overthrusted by Mesozoic to Paleogenesedimentary rocks of the Caucasus orogene (see Fig. 1c).Simultaneously, the thrusting should decreaseq in upper hori-zons. There is no generally accepted pattern of heat flowdensity distribution in the central segment, as follows from a

2 Values of initial ratio after correction for87Rb decay during 8.25 Ma[ibid.]

Fig. 7. Relationship between3He/4He in fluids and87Sr/86Sr involcanic rocks from the Elbrus and CMW areas. Errors are 1s. Thedata for MORB and crustal reservoirs (Mamyrin and Tolstikhin, 1984;Faure and Powell, 1972) are shown for comparison.

1940 B. G. Polyak et al.

Page 17: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

comparison of the two available versions of maps (Fig. 8). Oneof them (Fig. 8b) shows that the Elbrus and the Kazbek positiveq anomalies are separated by a narrow band of lowerq , 50mW/m2; this version agrees with theR-value distribution. Re-garding the north-western segment, only a fewq-values areavailable and potentialq-R relationships remains a subject offuture studies.

Synthesis of theRav andqav-values for different parts of theNorthern Caucasus (Fig. 9) shows a direct correlation betweenthese parameters. Their coupled minima in the south-easternsegment of the Greater Caucasus and in the Sadon-Uravi zoneare particularly remarkable. Helium isotope data demonstrate aclose similarity between the Elbrus and Kazbek areas whereasuncertainty in heat flow density distribution seems to resultfrom the lack of geothermal data.

Summarising, the data discussed above supports the con-cepts proposing transfer of species and thermal energy fromthe mantle into the crust by silicate melts (Polyak et al., 1979a;Polyak and Tolstikhin, 1985; O’Nions and Oxburgh, 1988).

6. CONCLUSIONS

3He/4He 5 R in subsurface fluids of the Northern Caucasusvary insignificantly with time and depth and therefore may beused to study patterns produced by lateral variations inR.

Lateral R-variations depend on tectonic-magmatic zoning.

The lowest averageRav 5 (5.366 0.73)3 1028 characterisesthe Indol-Kuban and Terek-Caspian foredeeps filled with Al-pine molasse. Slightly enhancedRav 5 (7.516 1.08)3 1028

is typical of the epi-Hercynian Scythian plate. In the centralpart of the plate,R-values are increasing in south-east directionthrough the Stavropol arch, (1.6–4.5)3 1027 towards theCaucasus Mineral Waters area (CMW),Rav 5 (7.6 6 0.9) 31026, and further southward to the central segment of theGreater Caucasus, with the maximum values of (0.7–0.9)31025 near the Elbrus and Kazbek volcanoes.

This tendency implies a correlation between highR-valuesand proximity to magmatic bodies. Such bodies are indeedobserved as laccolithes in the CMW area and form youngvolcanic centres on the northern slope of the Greater Caucasus.So, the enhancedR are manifested much wider than the Neo-gene-Quaternary magmatism and reflect degassing of mag-matic reservoirs including those yet unknown.

Sr-R inverse isotope correlation emphasises role of silicatemelts as carriers of volatile and lithophile mantle species.Direct relationships between averagedRav-values and conduc-tive heat flow densities,qav, indicate that these very melts alsotransfer mantle heat into the crust. Evolution of the heat sourcesis recorded by fission-track ages of the pre-Alpine basementwithin the western segment of the orogene, whereR-valuesdecrease with age.

Fig. 8. Lateral variations of heat flow density,q, in the Northern Caucasus. (a) a simplified fragment of the map from(Hurtig, 1992), the rectangle bounds the area shown on (b) presenting a fragment of theq isolines map from (Moisseenkoand Negrov, 1993). Abbreviations: (E) Elbrus and (K) Kazbek volcanoes.

1941Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 18: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Generally CO2-bearing fluids show elevated3He/4He ratiosin contrast to CH4 gases, and a few N2-rich gases display highlyvariable ratios. Relationships between the major constituentsand noble gas isotopes indicate fractionation, loss, and gain ofthese species as the processes controlling the compositions ofunderground fluids.

Acknowledgments—The authors thank R. K. O’Nions for helpful dis-cussions and co-ordination of this study supported by the INTAS Grant94-3165 and by the Russian Foundation for Basic Researches, Project96-05-64313. We also express our gratitude to A. G. Gurbanov andS. N. Bubnow for providing unpublished87Sr/86Sr data and discussions.The paper greatly benefited from helpful and constrictive reviews fromtwo anonymous referees; they also considerably improved the language.

REFERENCES

Adamiya Sh. A., Gabuniya G. L., Kuteliya Z. A., Khuzishvili O. D.,and Zimakuridze G. K. (1989) Typical tectonic features of theCaucasus. InGeodynamics of Caucasus(eds. A. A. Belov and M. A.Satian) pp. 3–15. Moscow, Nauka Publ. (in Russian).

Allard P., Jean-Baptiste Ph., D’Alessandro W, Parello F., Parisi B., andFlehoc C. (1997) Mantle derived helium and carbon in groundwatersand gases of Mount Etna, Italy.Earth Planet. Sci. Lett.148,501–516.

Ballentine C. J. and O’Nions R. K. (1993) The use of natural He, Neand Ar isotopes as constraints on hydrocarbon transport.Proc. 4thConf. Petroleum Geology of Northwest Europe(ed. J. B. Parker, Ed.)pp. 1339–1345. London.

Ballentine C. J. and O’Nions R. K. (1994) The use of natural He, Neand Ar isotopes to study hydrocarbon-related fluid provenance, mi-gration and mass balance in sedimentary basins. InGeofluids: Mi-gration and evolution of fluids in sedimentary basins(ed. J. Parnell),Geol. Soc. Spec. Publ.78, 347–361.

Ballentine C. J., O’Nions R. K., Oxburgh E. R., Horvath F., and DeakJ. (1991) Rare gas constraints of hydrocarbon accumulation, crustaldegassing and groundwater flow in the Pannonian Basin.EarthPlanet. Sci. Lett.105,229–246.

Buachidze G. I. (1979) Temperature distribution in the Earth’s crust ofthe Western Caucasus and the Black Sea. InTerrestrial heat flow inEurope(eds. V. Cermak and L. Rybach, Eds.) pp. 316–323. Spring-er-Verlag Publ.

Buachidze G. I. and Mkheidze B. S. (1989)Natural gases of Georgia.Tbilisi, Metsniereba Publ. (in Russian).

Bubnov S. N., Goltsman Yu. V., and Pokrovsky B. G. (1995) Sr, Ndand O isotopic systems as indicators of origin and evolution ofprimary melts of the recent lavas in the Elbrus volcanic area ofthe Greater Caucasus.XIV Symp. on isotope geochemistry(ab-stracts), 19 –21 Oct. 1995, Moscow, GEOKHI Publ., 28 –29 (inRussian).

Chapman D. S. and Pollack H. N. (1976) Global heat flow: New look.Earth Planet. Sci. Lett.28, 23–32.

Cornides I., Takaoka N., Nagao K., and Matsuo S. (1986) Contributionof mantle derived gases to subsurface gases in a tectonically quies-cent area, the Carpathian Basin, Hungary, revealed by noble gasmeasurements.Geochim. J.20, 119–125.

Craig H. and Craig V. (1983) Helium isotopes and geochemical studiesin Tibet and Eastern China.EOS15, 549 (abstr.).

Fig. 9. Relationship between the background conductive heat flow density,q (data from: Smirnov et al., 1992;Moisseenko and Negrov, 1993) and the helium isotope composition in fluids,R, in the Northern Caucasus. Errors are 1s(in Sadon-Uravi zone and south-eastern segment of the Greater Caucasus not determined),q errors for Elbrus and Kazbekareas are conventional; the line shows the statistically significant regression (exponential approximation,rR/q 5 0.843.0.7075 r0.05, f 5 k22 5 6).

1942 B. G. Polyak et al.

Page 19: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

Deak J., Horvath F., Martell D. J., O’Nions R. K., Oxburgh E. R., andStegena L. (1989) Helium isotopes in geothermal waters from north-west Hungary.AAPG Mem.45, 293–296.

Elliot T., Ballentine C. J., O’Nions R. K., and Ricchiuto T. (1993)Carbon, helium, neon and argon isotopes in a Po Basin (northernItaly) natural gas field.Chem. Geol.106, 429–440.

Farley K. A. (1995) Cenozoic variations in the flux of interplanetarydust recorded by3He in a deep-sea sediment.Nature76, 153–156.

Faure G. and Powell J. L. (1972) Strontium Isotope Geology. Berlin,Springer-Verlag.

Garetovskaya I. V., Krasnopevtseva G. V., Sizov A. V., Faitelson A.Sh., and Shchukin Yu. K. (1986) Seismic and gravimetric study ofthe North Caucasus seismic-dangerous zone (Caucasus Mineral wa-ters and Elbrus area). InMain problems of seismotectonics(ed.Yu. K. Shchukin) pp. 105–119. Moscow, Nauka Publ. (in Russian).

Gazaliev I. M. and Prasolov E. M. (1988) On the origin of theDaghestan gas issues from isotopic data.Doklady AN SSSR298,1218–1221 (in Russian).

Gemp S. D., Lagunova I. A., and Nesmelova Z. N. (1979) Geneticfeatures of mud volcano gases.Geokhimiya12, 1859–1867 (inRussian).

Giggenbach W. F., Confiantini R., Jangi B. L., and Truesdell A. H.(1983) Isotopic and chemical composition of Parbati valley geother-mal discharge, North-West Himalayas, India.Geothermics12,199–222.

Griesshaber E., O’Nions R. K., and Oxburgh E. R. (1989) Heliumisotope systematics in crustal fluids from West Germany and adja-cent areas. InEuropean Geothermal Update(eds. K. Louwrier, E.Staroste, J. D. Garnish, and V. Karkoulias) pp. 407–418. KluwerAcad. Publ.

Hill R. I., O’Nions R. K., Oxburgh E. R., and Hooker P. J. (1986)Assessment of deep volatile fluxes by helium isotope ratios.BritishGeol. Surv. Rept.FLPU 86–2,Keyworth, England, 80–97.

Hooker P. J., Bertrami P. J., Lombardi S., O’Nions R. K., and OxburghE. R. (1985) Helium-3 anomalies and crust-mantle interaction inItaly. Geochim. Cosmochim. Acta49, 2505–2513.

Hurtig E., Editor-in-Chief (1992) Geothermal Atlas of Europe. Her-mann Haak Verlaggeselschaft mbH, Geoforschungs Zentrum Pots-dam.

Ivanov D. A., Bubnov S. N., Volkova V. M., Goltsman Yu. V.,Zhuravlev D. Z., and Bairova Zh. D. (1993) Sr and Nd isotopiccomposition in Quaternary lavas of the Greater Caucasus in relationto problem of their origin.Geokhimiya3, 342–353 (in Russian).

Ivanov Val. V., Editor-in-Chief (1972) Caucasian Mineral Waters.Proc. TsNIIKiPh, vol. XXI. The USSR Ministry of Health ServicePubl. (in Russian).

Ivanov Vas. V., Medovyi V. I., and Dobrovolskaya V. I. (1978) Fieldsof helium concentrations in the sedimentary sequences.SovetskayaGeologiya2, 48–63 (in Russian).

Kamensky I. L., Tolstikhin I. N., and Vetrin V. R. (1990) Juvenilehelium in ancient rocks: I.3He excess in amphiboles from 2.8 Gacharnockite series: Crust-mantle fluid in intracrustal magmatic pro-cesses.Geochim. Cosmochim. Acta54, 3115–3122.

Kipfer R. (1991) Primordial Edelsgase als Tracer fur¨ Fluide aus demMantel. D. Sci. dissertation no. 9463, Eidgeno¨ssischen TechnischenHochschule Zu¨rich.

Koronovsky N. V. (1994) Geodynamic situations of the Late Cenozoicvolcanism manifestations in the Aegean, Anatolian and Caucasianregions (central part of the Alpine fold belt)).Vestnik MoskovskogoUniversiteta ser. 4 (geol.)1, 35–48 (in Russian).

Kral J. and Gurbanov A. G. (1996) Apatite fission track data from theGreater Caucasus pre-Alpine basement.Chem. Erde56, 177–192.

Kutas R. I. (1993) Thermal field and geothermal regime of lithosphere.In Lithosphere of Central and Eastern Europe: Generalisation ofresearch data(ed. A. V. Chekunov) Chap. 6, pp. 114–135. Kiev,Naukova Dumka Publ. (in Russian).

Lagunova I. A. (1974) On the CO2 genesis in mud volcano gases of theKerch’-Taman’ region.Geokhimiya6, 721–730 (in Russian).

Lavrushin V. Yu., Polyak B. G., Prasolov E. M., and Kamensky I. L.(1996) Sources of substance in mud volcanism products.Lithol. Min.Res.6, 625–647 (in Russian).

Loosli H. H., Lehman B. E., Gautschi A., and Tolstikhin I. N. (1995)Helium isotopes in rocks, minerals, and related groundwaters. In

Proc. 8th Int. Symp Water-Rock Interaction(eds. Y. K. Kharaka andO. V. Chudaev). pp. 31–34. Balkema, Rotterdam.

Mamyrin B. A. and Tolstikhin I. N. (1984). Helium isotopes in nature.Elsevier, Amsterdam.

Marcantonio F., Higgins S., Anderson R. F., Stute M., Schlosser P.,Rasbury E. T. (1998) Terrigenous helium in deep sediments.Geochim. Cosmochim. Acta62, 1535–1543.

Martell D. J., Deak J. N., Doveni P., Horvath F., O’Nions R. K.,Oxburgh E. R., Stegena L., and Stute M. (1989). The leakage rate ofmantle helium in the Pannonian Basin.Nature342,908–912.

Marty B., O’Nions R. K., Oxburgh E. R., Martell D., and Lombardi S.(1992) Helium isotopes in Alpine regions.Tectonophysics206,71–78.

Marty B., Torgersen T., and Meynier V. (1993) Helium isotopes fluxesand groundwater ages in the Dogger aquifer, Paris Basin.Water Res.Res.29, 1025–1035.

Marty B., Trull T., Lussiez P., Basile I., and Tangui J.-C., (1994) He,Ar, O, Sr and Nd isotope constraints and evolution of Mount Etnamagmatism.Earth Planet. Sci. Lett.126,23–39.

Marty B. and Tolstikhin I. N. (1998) CO2 fluxes from mid-oceanridges, arcs and plumes.Chem. Geol.145,233–248.

Matthews A., Fouillac C., Hill R., O’Nions R. K., and Oxburgh E. R.(1987) Mantle-derived volatiles in continental crust: The MassifCentral of France. Earth Planet. Sci. Lett.85, 117–128.

Matveeva E. S., Tolstikhin I. N., and Yakutseni V. P. (1978) Helium-isotope criterion for gases origin and revealing the neotektogenesiszones (on the example of Caucasus)).Geokhimiya3, 307–317 (inRussian).

Merrihue C. (1964) Rare gas evidence for cosmic dust in modernPacific red clay.Ann. New York Acad. Sci.119,351–367.

Milanovsky E. E. and Koronovsky N. V. (1973) Orogenic volcanismand tectonics of the Alpine belt of Eurasia. Moscow, Nedra Publ. (inRussian).

Milanovsky E. E., Rastsvetaev L. M., Kukhmazov S. U., Birman A. S.,Kurdin N. N., Simako B. G., and Tveritinova T. Yu. (1989) Newestgeodynamics of the Elbrus-Mineral Waters region in Northern Cau-casus. InGeodynamics of Caucasus(eds. A. A. Belov and M. A.Satian). Moscow, Nauka Publ. (in Russian).

Moisseenko U. I. and Negrov O. B. (1993) Geothermal conditions ofthe North-Caucasus seismic-dangerous zone. InGeothermics of seis-mic and non-seismic zones(eds. V. I. Kononov, F. N. Yudakhin, andV. B. Svalova). pp. 32–40. Moscow, Nauka Publ. (in Russian).

Nagao K. (1979) Isotopic composition of terrestrial rare gases andapplication to earth science. Ph. D. dissertation, Osaka University.

Nuti S., (1984) Elementary and isotopic compositions of noble gases ingeothermal fluids of Tuscany, Italy.Geothermics13/3,215–226.

O’Nions R. K. and Ballentine C. J. (1993). Rare gas studies on basinscale fluid movement.Phil. Trans. R. Soc. Lon. A344,141–156.

O’Nions R. K. and Oxburgh E. R. (1988) Helium, volatile fluxes andthe development of continental crust.Earth Planet. Sci. Lett.90,331–347.

Oxburgh E. R., O’Nions R. K., and Griesshaber E. (1987)3He/4Hemeasurements in Greece and southern Germany. InCEC Proc.Contractors’ Meeting/Workshop Geochem. Toulouse, 24–25 Nov.(ed. K. Lowrier and J. Garnish), 183–190.

Oxburgh E. R., O’Nions R. K., and Hill R. I. (1986) Helium isotopesin sedimentary basins.Nature324,632–635.

Philip H., Cisternas A., Gvishiani A., and Gorshkov A. (1989) TheCaucasus: An actual example of the initial stages of continentalcollision. Tectonophysics161,1–21.

Pohl I. R., Hess J. S., Kober B., and Borsuk A. M. (1993) Origin andpetrogenesis of Miocene trachyrhyolites (A-type) from the GreaterCaucasus northern part. InMagmatism of rifts and folded beltspp.109–124. Moscow, Nauka Publ. (in Russian).

Polyak B. G. (1988) Heat-mass flux from the mantle in the maintectonic units of the earth crust. Moscow, Nauka Publ. (in Russian).

Polyak B. G. and Smirnov Ya. B. (1968) Relation of terrestrial heatflow to tectonic structure of continents.Geotektonika4, 3–19 (inRussian).

Polyak B. G. and Tolstikhin I. N. (1985) Isotopic composition of theEarth’s helium and the motive forces of tectogenesis.Chem. geol.52, 9–33.

Polyak B. G., Tolstikhin I. N., and Yakutseni V. P. (1979a) Isotopic

1943Helium isotopes, tectonics and heat flow in the Northern Caucasus

Page 20: Helium isotopes, tectonics and heat flow in the Northern ...geotherm.ginras.ru/Pdf/_Pol Tolst et al 2000 Caucas GCA.pdf · slightly higher in gases of the Scythian plate beyond the

composition of helium and terrestrial heat flow: Geochemical andgeophysical aspects of tectogenesis.Geotektonika5, 3–23 (in Rus-sian).

Polyak B. G., Prasolov E. M., Buachidze G. I., Kononov V. I.,Mamyrin B. A., Surovtseva L. I., Khabarin L. V., and YudenichV. S. (1979b) Isotopic composition of He and Ar in fluids of theAlps-Apennines region and its relation to volcanism.Doklady ANSSSR247,1220–1225 (in Russian).

Polyak B. G., Prasolov E. M., Kononov V. I., Verkhovskiy A. B.,Gonzalez A., Templos L. A., Espindola J. M., Arellano J. M., andManon A. (1982) Isotopic composition and concentration of inertgases in Mexican hydrothermal systems.Geofisica Int.21,193–227.

Polyak B. G., Prasolov E. M., Tolstikhin I. N., Kozlovtseva S. V.,Kononov V. I., and Khutorskoi M. D. (1992) Helium isotopes influids of the Baikalian Rift zone.Izvestiya AN SSSR, ser. geol.,10,18–33 (in Russian).

Polyak B. G., Khutorskoi M. D., Kamensky I. L., and Prasolov E. M.(1994) Heat-mass flux from the mantle in Mongolia (on the base ofhelium isotopes and geothermal data))Geokhimiya12, 1693–1706(in Russian).

Popov V. S. (1987) Geochemistry of the recent Caucasus volcanicrocks and their origin. InGeochemistry of continental volcanism(ed.S. V. Grigoryan), Chap. 5, pp. 143–238. Moscow, Nauka Publ. (inRussian).

Potapov E. G., Voitov G. I., Korobeinik G. S., Miller Yu. M., andYakovleva V. P. (1998) The features of spontaneous gases andcarbon isotope composition of Zheleznovodsk mineral water deposit.Doklady AN SSSR359,106–108 (in Russian).

Prasolov E. M. (1990) Isotope geochemistry and origin of naturalgases. Leningrad, Nedra Publ. (in Russian).

Sano Y., Wakita H., Italiano F., and Nuccio M. P. (1989) Heliumisotopes and tectonics in Southern Italy.Geophys. Res. Lett.16,511–514.

Sclater J. G. and Francheteau J. (1970) The implication of terrestrialheat flow observations on current tectonic and geochemical modelsof the crust and upper mantle of the earth.Geophys. Roy. Astron.Soc.20, 509–542.

Sclater J., Parsons B., and Jaupart C. (1981) Oceans and continents:Similarities and differences in mechanism of heat flow.J. Geophys.Res.86, 11535–11552.

Shengelaya G. Sh. (1978) 3-d gravitation model of deep structure of theCaucasus earth crust.Sovetskaya geologiya12, 102–107 (in Rus-sian).

Shcherbak V. P. and Gurevich N. G. (1971) Some geochemical pecu-liarities of gases in the Caucasian Mineral Waters, CMW.Proc.TsNIIKiPh, vol. 33, The USSR Ministry of Health Service Publ.,119–124 (in Russian).

Smirnov Ya. B., Kutas R. I., and Zui V. I. (1992) USSR. InGeothermalAtlas of Europe(ed. E. Hurtig), pp. 91–101. Explanatory text,Hermann Haak Verlaggeselschaft mbH Geoforschungs ZentrumPotsdam.

Stute M., Sonntag C., Deak J., and Schlosser P. (1992) Helium in deepcirculating groundwater in the Great Hungarian Plain: Flow dynam-ics and mantle helium fluxes.Geochim. Cosmochim. Acta56,2051–2067.

Tedesco D. (1996) Chemical and isotopic investigations of fumarolicgases from Ischia island (southern Italy): Evidences of magmatic andcrustal contribution.J. Volcanol. Geotherm. Res.74, 233–242.

Tedesco D., Nagao K. (1996) Radiogenic 4He, 21Ne and 40Ar in

fumarolic gases on Volcano: Implication for the presence of conti-nental crust deneath the island.Earth Planet. Sci. Lett.144,517–528.

Tedesco D., Nagao K., and Scarci P. (1998) Noble gas isotopic ratiosfrom historical lavas and fumaroles ar Mount Vesuvius (southernItaly): Constraints for current and future volcanic activity.EarthPlanet. Sci. Lett.164,61–78.

Tedesco D., Allard P., Sano Y., Wakita H., and Pece R. (1990)Helium-3 in subaerial and submarine fumaroles of Campi Flegreicaldera, Italy.Geochim. Cosmochim. Acta54, 1105–1116.

Tolstikhin I. N., Lehmann B. E., Loosli H. H., and Gautschi A. (1996)Helium and argon isotopes in rocks, minerals, and related ground-waters: A case study in northern Switzerland.Geochim. Cosmochim.Acta 60, 1497–1514.

Tolstikhin I. N., Lehmann B. E., Loosli H. H., Kamensky I. L., NivinV. A., Orlov S. P., Ploschansky L. M., Tokarev I. V., and GannibalM. A. (1999) Radiogenic helium isotope fractionation: The role oftritium as 3He precusor and geochemical implications.Geochim.Cosmochim. Acta63, 1605–1611.

Trull T., Nadeau S., Pineau F., Polve M., and Javoy M. (1993) C-Hesystematics in hotspot xenoliths: Implications for mantle carboncontents and carbon recycling.Earth Planet. Sci. Lett.118,43–64.

Trebukhova T. M. and Chesalov S. M. (1990) Distribution and forma-tion regularities for mineral waters in the Zheleznovodsk zone.Proc.Sci. Res. Inst. for Phys. Methods of Rehabilitation. Moscow,5–66 (inRussian).

Voitov G. I., Gazaliev I. M., and Shapazov I. M. (1984) The40Ar/36Arratio in gas issues of the South Daghestan and Daghestan tectonicwedge).Doklady AN SSSR276,464–468 (in Russian).

Voitov G. I., Korobeinik G. S., Miller Yu. M., Potapov E. G., andYakovleva V. P. (1998) Chemical features and fluctuations in iso-topic composition of carbon from spontaneous gases of Piatigorskmineral water deposit.Doklady AN SSSR359,540–542 (in Russian).

Voitov G. I., Miller Yu. M., Murogova R. N., Potapov E. G., andYakovleva V. P. (1996) On the isotopic composition of the CO2

carbon from spontaneous gases of Kislovodsk mineral water deposit.Doklady AN SSSR350,681–683 (in Russian).

Voitov G. I., Miller Yu. M., Murogova R. N., Potapov E. G., andRudakov V. P. (1994) On the chemical and C-isotopic fluctuations ofspontaneous gases from Naguty mineral water deposit.Doklady ANSSSR339,666–669 (in Russian).

Voitov G. I., Korobeinik G. S., Miller Yu. M., Potapov E. G., andRudakov V. P. (1993) New data on C-isotopic composition forspontaneous gases from Caucasian Mineral Waters.Doklady ANSSSR333,380–384 (in Russian).

Yakovlev L. E. and Polyak B. G. (1998) The origin of a helium isotopeanomaly in the north of the Mount Elbrus Region.Vulkanol. Seismol.19, 769–783.

Yokoyama T., Nakai S. and Wakita H. (1999) Helium and carbonisotopic composition of hot spring gases in the Tibetan Plateau.J.Volcanol. Geotherm. Res.88, 99–107.

Zor’kin L. M., Krylova T. A., Bunakova G. V., and Slastenko L. G.(1981) On the carbon isotope composition from organic matter,rocks, water and spontaneous gas of Caucasian Mineral Waters.Doklady AN SSSR257/3,711–713 (in Russian).

Zuhuang C., Huxin S., Songlin M., Guangwei L., and Xizhong S.(1986) Isotopic study on depth of the recent activities of Yangbajingsection of the fault in front of Nianquing Tanggula Mountains.KexueTongbao30, 1401–1405.

1944 B. G. Polyak et al.