heat capacity of liquid bismuth

2
4 . A. Hartman: Int.J. Fract. Mech., 1965,vol. 1, pp. 167-88. 5 . F. J. Bradshaw a n d C. Wheeler: AppL Mater. Res., 1966, vol. 5 , p p . 112-20. 6 . R. P .Wei: Int. J. Fract. Mech., 1968, vol. 1, n o . 1, pp. 159-70. 7 . J. A. Feeney, J. C. McMillan, a n d R. P .Wei: Met. Trans., 1970, vol. 1, pp. 1741- 57. (a) (b) Fig. 3--Effect of replica tilt angle on fractographic appear- ance. (a) Zero deg tilt; (b) 30 deg tilt. Magnification ~5700 times. are known to be quite sensitive to the effect of atmos- pheric moisture, an order of magnitude reduction in crack growth rateassociatedwith a change in test environment, from air to v a c u u m , i s p o s s i b l e .4-7 The striations, ifpresentat the reduced rate of growth, may not have been resolvable. Theseresults,along with additional fractographic results in other environ- ments, suggest that the mechanism for fatigue-crack growth in the Ti-6A1-4V alloy is basically similar (striations are observed) for a wide range of environ- ments. In addition to "vacuum", these environments include distilled water,"dry" and"wet" air, "dry" hydrogen, "dry"oxygen, and"dry" and"wet"argon. The authors wish to express their appreciation to Mr. C. M. Hudson for carrying out the experiments in vacuum at NASA Langley Research Center, and to Mr. R. Korastinsky for electron-microfractography. Support for this work by the National Aeronautics and Space Administration underGrant NGL39-007-040 is gratefully acknowledged. 1. R. M. N. Pelloux: J. Eng. Frac. Mech., 1970, vol. 1, no. 4 , pp. 697-704. 2 . D. Meyn: Trans. ASM, 1968,vol. 61, no. 1,pp. 52.61. 3 . D. Brock: J. Eng. Frac. Mech., 1970, vol. 1, no. 4 , pp. 691-96. Heat Capacity of Liquid Bismuth HOWARD BELL AND RALPH HULTGREN KNOWLEDGE of the heat capacity, Cp, of liquid bismuth is needed for its possible use as a reactor coolant either in elemental form or in a eutectic with lead;1or as an alloy with uranium as a liquidmetal fuel.2 Scientifically, the Cp of bismuth is of interest because of its non close-packed structure in the solid state and its decreaseofvolumeon melting. Previousmeasurementsof the heat capacity of liquidbismuthdiffer considerably, see Fig. 1. Car- penter and Harle3 (1932) found the C~ decreased -- 4 steadily to 644°K; Forster and Tschentke (1940) ob- tainedresultsabout8 pct higher with Cp decreasing to 690°K, then increasingabove that temperature. Persons (1848) very early found an intermediate value, Cp = 7.59, constant with T. Enthalpy measurements of Umino8 (1926) led to a constant CP = 7.80;whilethose of WAst, Meuthen, and Durrer7 (1918) indicated Cp in- creased with T, from 7.1 to 8.76 at 1273°K. For most liquidmetals Cp is tabulated as constant with temperature, s because enthalpy content measure- mentsare not accurate enough to show a trend of Cp with temperature. A few precise measurements of liquidmetals show that Cp decreases withtempera- ture. For Hg, K, and Na, the decrease continues to a minimum value at about 2.3 Tm , followed by an in- crease.14 The bismuth used in the experiments was obtained from Consolidated Mining and Smelting Company and was reported to be 99.9999 pct pure. Spectrographic analysis showed only a single impurity; a trace of iron. The liquid tin solution calorimeter, described else- where,9 as modified by Heffan,1° was used for the measurements from Tmto 801.8°K. Into a large quan- tity ofliquidbismuth is dropped a small amount of solid bismuth; the temperature drop is measured. From the heat required to melt the solid, and raise it to the temperature of the liquid, the Cp of bismuth can be calculated. The results are shown in Table I and Fig. 1; smoothed values in Table II. The enthalpy content of bismuth at the melting point (4200 cal per g-atom) was taken from the literature. ~1 The data show a smooth decrease in the Cp of liquid bismuth,agreeingfairly well with those of Carpenter and Harle~ and extending them to higher temperatures. Other workers found much highervalues. HOWARD BELL is Assistant Professor of Nuclear Engineering, Iowa State University,Ames, Iowa. RALPH HULTGREN is Professor of Metallurgy, Department of Materials Science and Engineering, Inor- ganic Materials Research Division, Lawrence Berkeley Laboratory, Uni- versity of California, Berkeley,Calif. Manuscript submitted November 2, 1970. 3230-VOLUME 2, NOVEMBER 1971 METALLURGICAL TRANSACTIONS

Upload: howard-bell

Post on 24-Aug-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Heat capacity of liquid bismuth

4 . A. Hartman: Int.J. Fract. Mech., 1965,vol. 1, pp. 167-88.5 . F. J. Bradshaw andC. Wheeler: AppL Mater. Res., 1966, vol. 5 , pp . 112-20.6 . R. P .Wei: Int. J. Fract. Mech., 1968, vol. 1, no . 1, pp. 159-70.7 . J. A. Feeney, J. C. McMillan, andR. P .Wei: Met. Trans., 1970, vol. 1, pp. 1741-

57.

(a)

(b)Fig. 3--Effect of r e p l i c a tilt a n g l e on fractographic a p p e a r -ance. (a) Zero d e g t i l t ; (b) 30 d e g til t . Magnification ~5700t i m e s .

a r e k n o w n t o b e q u i t e s e n s i t i v e to t h e e f f e c t o f a t m o s -p h e r i c m o i s t u r e , a n o r d e r o f m a g n i t u d e r e d u c t i o n inc r a c k g r o w t h r a t e a s s o c i a t e d w i t h a c h a n g e in t e s te n v i r o n m e n t , f r o m a i r to v a c u u m , i s p o s s i b l e .4-7 T h es t r i a t i o n s , i f p r e s e n t a t t h e r e d u c e d r a t e o f g r o w t h ,m a y not h a v e b e e n r e s o l v a b l e . T h e s e r e s u l t s , a l o n gw i t h a d d i t i o n a l f r a c t o g r a p h i c r e s u l t s in o t h e r e n v i r o n -m e n t s , s u g g e s t t h a t t h e m e c h a n i s m f o r f a t i g u e - c r a c kg r o w t h in t h e T i - 6 A 1 - 4 V a l l o y i s b a s i c a l l y s i m i l a r( s t r i a t i o n s a r e o b s e r v e d ) f o r a wide r a n g e of e n v i r o n -m e n t s . I n a d d i t i o n to " v a c u u m " , t h e s e e n v i r o n m e n t sinc lude d i s t i l l e d w a t e r , " d r y " a n d " w e t " a i r , " d r y "h y d r o g e n , " d r y " o x y g e n , a n d " d r y " a n d " w e t " a r g o n .

T h e a u t h o r s wish to e x p r e s s t h e i r a p p r e c i a t i o n t oM r . C . M . H u d s o n f o r c a r r y i n g o u t t h e e x p e r i m e n t sin v a c u u m a t NASA L a n g l e y R e s e a r c h C e n t e r , a n d toM r . R . K o r a s t i n s k y f o r e l e c t r o n - m i c r o f r a c t o g r a p h y .S u p p o r t f o r t h i s w o r k by the N a t i o n a l A e r o n a u t i c s a n dS p a c e A d m i n i s t r a t i o n u n d e r G r a n t N G L 3 9 - 0 0 7 - 0 4 0 i sg r a t e f u l l y a c k n o w l e d g e d .

1. R. M. N. Pelloux: J. Eng. Frac. Mech., 1970,vol. 1, no. 4 , pp. 697-704.2 . D. Meyn: Trans. ASM, 1968,vol. 61, no. 1, pp. 52.61.3 . D. Brock: J. Eng. Frac. Mech., 1970,vol. 1, no. 4 , pp. 691-96.

Heat Capacity of Liquid BismuthH O W A R D B E L L A N D R A L P H H U L T G R E N

K N O W L E D G E o f t h e h e a t c a p a c i t y , C p , o f l i q u i db i s m u t h i s n e e d e d f o r i t s p o s s i b l e u s e a s a r e a c t o rc o o l a n t e i t h e r in e l e m e n t a l f o r m o r in a e u t e c t i c w i t hl e a d ; 1 o r a s a n a l l o y w i t h u r a n i u m a s a l i q u i d m e t a lf u e l .2 S c i e n t i f i c a l l y , t h e Cp o f b i s m u t h i s o f i n t e r e s tb e c a u s e o f i t s non c l o s e - p a c k e d s t r u c t u r e in t h e s o l i ds t a t e a n d i t s d e c r e a s e o f v o l u m e o n m e l t i n g .

P r e v i o u s m e a s u r e m e n t s o f t h e h e a t c a p a c i t y ofl i q u i d b i s m u t h d i f f e r c o n s i d e r a b l y , s e e F i g . 1 . C a r -p e n t e r a n d H a r l e3 (1932) f o u n d t h e C~ d e c r e a s e d

- - 4s t e a d i l y to 6 4 4 ° K ; F o r s t e r a n d T s c h e n t k e (1940) ob -t a i n e d r e s u l t s a b o u t 8 pct h i g h e r w i t h Cp d e c r e a s i n gto 6 9 0 ° K , t h e n i n c r e a s i n g a b o v e t h a t t e m p e r a t u r e .P e r s o ns (1848) v e r y e a r l y f o u n d a n i n t e r m e d i a t e v a l u e ,Cp = 7 . 5 9 , c o n s t a n t w i t h T . E n t h a l p y m e a s u r e m e n t s o fU m i n o 8 (1926) l e d to a c o n s t a n t CP = 7 . 8 0 ; w h i l e t h o s eo f W A s t , M e u t h e n , a n d D u r r e r 7 (1918) i n d i c a t e d Cp i n -c r e a s e d w i t h T , f r o m 7 . 1 to 8 . 7 6 a t 1 2 7 3 ° K .

F o r m o s t l i q u i d m e t a l s Cp i s t a b u l a t e d a s c o n s t a n tw i t h t e m p e r a t u r e , s b e c a u s e e n t h a l p y c o n t e n t m e a s u r e -m e n t s a r e not a c c u r a t e e n o u g h to s h o w a t r e n d o f Cpw i t h t e m p e r a t u r e . A f e w p r e c i s e m e a s u r e m e n t s o fl i q u i d m e t a l s s h o w t h a t Cp d e c r e a s e s w i t h t e m p e r a -t u r e . F o r H g , K , a n d N a , t h e d e c r e a s e c o n t i n u e s t o am i n i m u m v a l u e a t a b o u t 2.3 Tm , f o l l o w e d by a n i n -c r e a s e . 14

T h e b i s m u t h u s e d in the e x p e r i m e n t s w a s o b t a i n e df r o m C o n s o l i d a t e d M i n i n g a n d S m e l t i n g C o m p a n y a n dwas r e p o r t e d to be 9 9 . 9 9 9 9 p c t p u r e . S p e c t r o g r a p h i ca n a l y s i s s h o w e d o n l y a s i n g l e i m p u r i t y ; a t r a c e o f i r o n .

T h e l i q u i d t i n s o l u t i o n c a l o r i m e t e r , d e s c r i b e d e l s e -w h e r e , 9 a s m o d i f i e d by H e f f a n ,1° w a s u s e d f o r t h em e a s u r e m e n t s f r o m T m t o 8 0 1 . 8 ° K . Into a l a r g e q u a n -t i t y o f l i q u i d b i s m u t h i s d r o p p e d a s m a l l a m o u n t ofs o l i d b i s m u t h ; t h e t e m p e r a t u r e d r o p i s m e a s u r e d .F r o m t h e h e a t r e q u i r e d to m e l t t h e s o l i d , a n d r a i s e i tt o t h e t e m p e r a t u r e o f t h e l i q u i d , t h e Cp o f b i s m u t h c a nbe c a l c u l a t e d . T h e r e s u l t s a r e s h o w n in T a b l e I a n dF i g . 1 ; s m o o t h e d v a l u e s in T a b l e I I .

T h e e n t h a l p y c o n t e n t of b i s m u t h a t t h e m e l t i n g p o i n t( 4 2 0 0 c a l p e r g - a t o m ) w a s t a k e n f r o m t h e l i t e r a t u r e . ~1

T h e d a t a s h o w a s m o o t h d e c r e a s e in t h e Cp o f l i q u i db i s m u t h , a g r e e i n g f a i r l y we l l w i t h t h o s e of C a r p e n t e ra n d H a r l e~ a n d e x t e n d i n g t h e m t o h i g h e r t e m p e r a t u r e s .O t h e r w o r k e r s f o u n d m u c h h i g h e r v a l u e s .

HOWARD BELL is Assistant Professor of Nuclear Engineering, IowaState University,Ames, Iowa. RALPH HULTGREN is Professor o fMetallurgy, Department of Materials Science and Engineering, Inor-ganic Materials Research Division, Lawrence Berkeley Laboratory, Uni-versity of California, Berkeley, Calif.

Manuscript submitted November 2 , 1970 .

3230-VOLUME 2 , NOVEMBER 1971 METALLURGICAL TRANSACTIONS

Page 2: Heat capacity of liquid bismuth

Table |. Experimentally Determined Heat Capacity Data for Liquid Bismuth

Cp, Cal/Deg Cp, Cal/DegRun No. T, °K G-Atom Run No. T, °K G-Atom

21 801.7 6.69 8 577.4 7.1320 801.8 6.72 7 577.4 7.1319 755.2 6.83 2 558.5 7.2218 755.3 6.76 1 558.5 7.2117 698.1 6.79 11 545.9 7.3216 698.1 6.86 10 546.6 7.29

12 545.4 7.286 653.4 6.92 13 545.4 7.335 653.4 6.92 9 546.6 7.304 606.3 7.03 15 544.8 7.343 606.8 6.92 14 545.2 7.27

Table II. Selected Data for Liquid Bismuth

T, °K Cal/DegG-Atom HT - H29s, Cal/G-Atom

544.5 (M.P.) - 4200550 7.27(±0.1) 4240600 7.04 4597650 6.93 4946700 6.85 5290750 6.78 5631800 6.72 5969

8 . 0

7.E

o3w .'at a 7 6re' O(.9tl.IO

~E 7:4

"~. 7.Z

S 7.o(J Q&

(J6 . 8

66 IMR540

--.%

z~

flA

AIk

U M I N O A H F=

O THIS INVESTIGATIONrl CARPENTER ond HARLE CpW WLIST, MEUTHEN ond

DURRER AHA F{~RSTER and TSCHENTKE Cp0 PERSON Cp

5 8 0 620 660 700 740 7 8 0 8 2 0T, ° K

Fig. 1--Heat capacity of l iqu id b i smuth .

8 6 0

According to one theory of the liquid state,12'13 theliquid near the melting point consists of aggregates ofa t o m s with lattices s i m i l a r to those in the solid. Asthe temperature is increased, t h e s e aggregates a r ebroken up, absorbing heat and leading to anomalouslyhigh Cp values. This anomaly should grow less im-portant as the temperature r i s e s , finally disappearingaltogether, so the Cp should f i r s t d e c r e a s e , then re-sume a normally increasing v a l u e with temperature.

Numerous X - r a y and electron diffraction patternshave been interpreted on this b a s i s . However, if theseaggregates exist,1~ they should b r e a k up only a fewdegrees above the melting point , giving a much la rge r

anomaly spreading over a limited n u m b e r of d e g r e e s ;not the g radua l effect found.

The experimental Cp c u r v e is more in a c c o r d withthe theory of Kincaid and Eyring, Is who consider thechemica l bonding gradually changes to that in a mort-atomic gas; Cp decreasing toward 5R/2 at high tem-peratures. A statistical mechanical treatment of Chap-man 16 indicates Cv of all liquid m e t a l s should declinewith increasing temperatures. Hg, K, and Na alsofollow this r u l e . The upturn in Cp of t h e s e m e t a l s athigh temperatures is due entirely t o the Cp-Cv t e r m .The six m e t a l s for which t h e r e was sufficient data allfollowed Chapman's equation within +10 pc t . It is hopedthe data for bismuth presented above will provide testsfor this and o t h e r theories of the liquid state.

The experimental work for this paper was supportedby the Office of Ordnance R e s e a r c h , U. S. Army andby the U. S. Atomic Energy Commission and the Inor-ganic Materials R e s e a r c h Division of the L a w r e n c eRadiation Laboratory, Berkeley, California.

1. C. O. Smith:Nuclear Reactor Materials, Addison-Wesley Publishing Co.,Reading, Mass., 1967.

2, A. R. Kaufmann, ed.: Nuelear Reactor Fuel Elements, Interscience Publishers,New York, 1962.

3. L. G. Carpenter and T. F. Hade: Proc. Roy. Soc., London, 1932, vol. 136A,p. 243.

4. F. FSrster and G. Tschentke: Z. Metallk., 1940,vol. 32, p. 191.5. C. C. Person:Ann. Chim. Phys., 1848, vol. 24, p. 128.6. S. Umino: Sci. Rep., Tohoku Imp. Univ., 1926, vol. 15, p. 597,7. A. Wiist, A. Meuthen, and R. Durrer: Forsch. Geb. lngenieurw., 1918,vol.

204, p. 1.8. K. K. Kelley: U.S. Bur.Mines,Bull,, 1960, no. 584.9. R. L. Orr, A. Goldberg, and R. Hultgren: Rev. Sci. Instrum., 1957, vol.28, p.

767.10.H. Heffan: Master's Thesis, University ofCalifornia, 1958.11. R. Hultgren, R. L. Orr, P. O. Anderson, and K. K. Kelley: Selected Values o f

ThermodynamicProperties o fMetal and Alloys, John Wiley &Sons, Inc., NewYork, 1963.

12.A. Latin: J. Inst. Metals, 1940, vol. 66, p. 177.13. A. I. Bublik and A. G. Buntar: Fiz.Metal.Metalloved., 1957,vol. 5, p. 53.14.R. Hultgren and R. L. Orr: Rev. Int. Hautes Temper. R~fract., 1967, vol. 4,

p. 123.15. J. F. Kineaid and H. Eyring:3". Chem. Phys., 1937, vol. 5, p. 587.16.T. W.Chapman: Mater.ScL Eng., 1966, vol. 1, p. 65.

Annihilation of Vacancies by SmallAngle Grain Boundaries DuringSinteringV . K . LINDROOS

T H E explanation b a s e d on the consideration that largeangle gra in boundaries alone could act as effective va-cancy sinks in sintering is open to discussion on ki-netic grounds. As emphasized by Hirth,1 s m a l l anglegra in boundaries, i.e. dislocations, can be more dom-inant than gra in boundaries in controlling sinteringprovided the spacing of the f o r m e r is s m a l l compared

V. K. LINDROOS is Associate Professor, Laboratory of PhysicalMetallurgy, Ins t i tu te of Technology, Otaniemi-Helsinki, Finland.

Manuscript submit ted February 27, 1970.

METALLURGICAL TRANSACTIONS VOLUME 2, NOVEMBER 1971-3231